rrarbiter.sv 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Michael Schaffner <schaffner@iis.ee.ethz.ch>, ETH Zurich
// Date: 16.08.2018
// Description: Round robin arbiter with lookahead
//
// this unit is a generic round robin arbiter with "look ahead" - i.e. it jumps
// to the next valid request signal instead of stepping around with stepsize 1.
// if the current req signal has been acknowledged in the last cycle, and it is
// again valid in the current cycle, the arbiter will first serve the other req
// signals (if there is a valid one) in the req vector before acknowledging the
// same signal again (this prevents starvation).
//
// the arbiter has a request signal vector input (req_i) and an ack
// signal vector ouput (ack_o). to enable the arbiter the signal
// en_i has to be asserted. vld_o is high when one of the req_i signals is
// acknowledged.
//
// the entity has one register which stores the index of the last request signal
// that was served.
//
// the lock-in feature prevents the arbiter from changing the arbitration decision
// when the arbiter is disabled - i.e., the index of the first request that wins the
// arbitration will be locked until en_i is asserted again.
//
// dependencies: relies on fast leading zero counter tree "lzc" in common_cells

module rrarbiter #(
  parameter int unsigned NUM_REQ = 13,
  parameter int unsigned LOCK_IN = 0
) (
  input logic                         clk_i,
  input logic                         rst_ni,

  input logic                         flush_i, // clears the fsm and control signal registers
  input logic                         en_i,    // arbiter enable
  input logic [NUM_REQ-1:0]           req_i,   // request signals

  output logic [NUM_REQ-1:0]          ack_o,   // acknowledge signals
  output logic                        vld_o,   // request ack'ed
  output logic [$clog2(NUM_REQ)-1:0]  idx_o    // idx output
);

  localparam SEL_WIDTH = $clog2(NUM_REQ);

  logic [SEL_WIDTH-1:0] arb_sel_d, arb_sel_q;
  logic [SEL_WIDTH-1:0] arb_sel_lock_d, arb_sel_lock_q;


  // only used in case of more than 2 requesters
  logic [NUM_REQ-1:0] mask_lut[NUM_REQ-1:0];
  logic [NUM_REQ-1:0] mask;
  logic [NUM_REQ-1:0] masked_lower;
  logic [NUM_REQ-1:0] masked_upper;
  logic [SEL_WIDTH-1:0] lower_idx;
  logic [SEL_WIDTH-1:0] upper_idx;
  logic [SEL_WIDTH-1:0] next_idx;
  logic no_lower_ones;
  logic lock_d, lock_q;

  // shared
  assign idx_o          = arb_sel_d;
  assign vld_o          = (|req_i) & en_i;

  if (LOCK_IN > 0) begin : g_lock_in
    // latch decision in case we got at least one req and no acknowledge
    assign lock_d         = (|req_i) & ~en_i;
    assign arb_sel_lock_d = arb_sel_d;
  end else begin
    // disable
    assign lock_d         = '0;
    assign arb_sel_lock_d = '0;
  end

  // only 2 input requesters
  if (NUM_REQ == 2 && !LOCK_IN) begin : g_rrlogic

    assign arb_sel_d = (( arb_sel_q) | (~arb_sel_q & ~req_i[0])) & req_i[1];
    assign ack_o[0]  = ((~arb_sel_q) | ( arb_sel_q & ~req_i[1])) & req_i[0] & en_i;
    assign ack_o[1]  = arb_sel_d                                            & en_i;

  end else begin

    // this mask is used to mask the incoming req vector
    // depending on the index of the last served index
    assign mask = mask_lut[arb_sel_q];

    // get index from masked vectors
    lzc #(
        .WIDTH ( NUM_REQ )
    ) i_lower_ff1 (
        .in_i    ( masked_lower  ),
        .cnt_o   ( lower_idx     ),
        .empty_o ( no_lower_ones )
    );

    lzc #(
        .WIDTH ( NUM_REQ )
    ) i_upper_ff1 (
        .in_i    ( masked_upper  ),
        .cnt_o   ( upper_idx     ),
        .empty_o (               )
    );

    // wrap around
    assign next_idx   = (no_lower_ones)      ? upper_idx      :
                                               lower_idx;
    assign arb_sel_d  = (lock_q)             ? arb_sel_lock_q :
                        (next_idx < NUM_REQ) ? next_idx       :
                                               unsigned'(NUM_REQ-1);
  end

  for (genvar k=0; (k < NUM_REQ) && (NUM_REQ > 2 || LOCK_IN); k++) begin : g_mask
    assign mask_lut[k]     = unsigned'(2**(k+1)-1);
    assign masked_lower[k] = (~mask[k]) & req_i[k];
    assign masked_upper[k] = mask[k]    & req_i[k];
    assign ack_o[k]        = ((arb_sel_d == k) && vld_o );
  end

  always_ff @(posedge clk_i or negedge rst_ni) begin : p_regs
    if(~rst_ni) begin
      arb_sel_q      <= '0;
      lock_q         <= 1'b0;
      arb_sel_lock_q <= '0;
    end else begin
      if (flush_i) begin
        arb_sel_q      <= '0;
        lock_q         <= 1'b0;
        arb_sel_lock_q <= '0;
      end else begin
        lock_q         <= lock_d;
        arb_sel_lock_q <= arb_sel_lock_d;

        if (vld_o) begin
          arb_sel_q    <= arb_sel_d;
        end
      end
    end
  end

// pragma translate_off
`ifndef VERILATOR
    // check parameterization, enable and hot1 property of acks
    // todo: check RR fairness with sequence assertion
    initial begin : p_assertions
      assert (NUM_REQ>=2) else $fatal ("minimum input width of req vecor is 2");
    end
    ack_implies_vld: assert property (@(posedge clk_i) disable iff (~rst_ni) |ack_o |-> vld_o)
      else $fatal (1,"an asserted ack signal implies that vld_o must be asserted, too");

    vld_implies_ack: assert property (@(posedge clk_i) disable iff (~rst_ni) vld_o  |-> |ack_o)
      else $fatal (1,"an asserted vld_o signal implies that one ack_o must be asserted, too");

    en_vld_check:    assert property (@(posedge clk_i) disable iff (~rst_ni) !en_i  |-> !vld_o)
      else $fatal (1,"vld must not be asserted when arbiter is disabled");

    en_ack_check:    assert property (@(posedge clk_i) disable iff (~rst_ni) !en_i  |-> !ack_o)
      else $fatal (1,"ack_o must not be asserted when arbiter is disabled");

    ack_idx_check:   assert property (@(posedge clk_i) disable iff (~rst_ni) vld_o |-> ack_o[idx_o])
      else $fatal (1,"index / ack_o do not match");

    hot1_check:      assert property (@(posedge clk_i) disable iff (~rst_ni) ((~(1<<idx_o)) & ack_o) == 0 )
      else $fatal (1,"only one ack_o can be asserted at a time (i.e. ack_o must be hot1)");
`endif
// pragma translate_on

endmodule : rrarbiter