tb_axi_xbar.sv 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
// Copyright (c) 2019 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Florian Zaruba <zarubaf@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

// Directed Random Verification Testbench for `axi_xbar`:  The crossbar is instantiated with
// a number of random axi master and slave modules.  Each random master executes a fixed number of
// writes and reads over the whole addess map.  All masters simultaneously issue transactions
// through the crossbar, thereby saturating it.  A monitor, which snoops the transactions of each
// master and slave port and models the crossbar with a network of FIFOs, checks whether each
// transaction follows the expected route.

`include "axi/typedef.svh"
`include "axi/assign.svh"

module tb_axi_xbar #(
  parameter bit TbEnAtop = 1'b1,    // enable atomic operations (ATOPs)
  parameter bit TbEnExcl = 1'b0,    // enable exclusive accesses
  parameter bit TbUniqueIds = 1'b0  // restrict to only unique IDs
);
  // Dut parameters
  localparam int unsigned NoMasters   = 6;    // How many Axi Masters there are
  localparam int unsigned NoSlaves    = 8;    // How many Axi Slaves  there are
  // Random master no Transactions
  localparam int unsigned NoWrites   = 125;   // How many writes per master
  localparam int unsigned NoReads    = 125;   // How many reads per master
  // timing parameters
  localparam time CyclTime = 10ns;
  localparam time ApplTime =  2ns;
  localparam time TestTime =  8ns;

  // axi configuration
  localparam int unsigned AxiIdWidthMasters =  4;
  localparam int unsigned AxiIdUsed         =  3; // Has to be <= AxiIdWidthMasters
  localparam int unsigned AxiIdWidthSlaves  =  AxiIdWidthMasters + $clog2(NoMasters);
  localparam int unsigned AxiAddrWidth      =  32;    // Axi Address Width
  localparam int unsigned AxiDataWidth      =  64;    // Axi Data Width
  localparam int unsigned AxiStrbWidth      =  AxiDataWidth / 8;
  localparam int unsigned AxiUserWidth      =  5;
  // in the bench can change this variables which are set here freely
  localparam axi_pkg::xbar_cfg_t xbar_cfg = '{
    NoSlvPorts:         NoMasters,
    NoMstPorts:         NoSlaves,
    MaxMstTrans:        10,
    MaxSlvTrans:        6,
    FallThrough:        1'b0,
    LatencyMode:        axi_pkg::CUT_ALL_AX,
    AxiIdWidthSlvPorts: AxiIdWidthMasters,
    AxiIdUsedSlvPorts:  AxiIdUsed,
    UniqueIds:          TbUniqueIds,
    AxiAddrWidth:       AxiAddrWidth,
    AxiDataWidth:       AxiDataWidth,
    NoAddrRules:        8
  };
  typedef logic [AxiIdWidthMasters-1:0] id_mst_t;
  typedef logic [AxiIdWidthSlaves-1:0]  id_slv_t;
  typedef logic [AxiAddrWidth-1:0]      addr_t;
  typedef axi_pkg::xbar_rule_32_t       rule_t; // Has to be the same width as axi addr
  typedef logic [AxiDataWidth-1:0]      data_t;
  typedef logic [AxiStrbWidth-1:0]      strb_t;
  typedef logic [AxiUserWidth-1:0]      user_t;

  `AXI_TYPEDEF_AW_CHAN_T(aw_chan_mst_t, addr_t, id_mst_t, user_t)
  `AXI_TYPEDEF_AW_CHAN_T(aw_chan_slv_t, addr_t, id_slv_t, user_t)
  `AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)
  `AXI_TYPEDEF_B_CHAN_T(b_chan_mst_t, id_mst_t, user_t)
  `AXI_TYPEDEF_B_CHAN_T(b_chan_slv_t, id_slv_t, user_t)

  `AXI_TYPEDEF_AR_CHAN_T(ar_chan_mst_t, addr_t, id_mst_t, user_t)
  `AXI_TYPEDEF_AR_CHAN_T(ar_chan_slv_t, addr_t, id_slv_t, user_t)
  `AXI_TYPEDEF_R_CHAN_T(r_chan_mst_t, data_t, id_mst_t, user_t)
  `AXI_TYPEDEF_R_CHAN_T(r_chan_slv_t, data_t, id_slv_t, user_t)

  `AXI_TYPEDEF_REQ_T(mst_req_t, aw_chan_mst_t, w_chan_t, ar_chan_mst_t)
  `AXI_TYPEDEF_RESP_T(mst_resp_t, b_chan_mst_t, r_chan_mst_t)
  `AXI_TYPEDEF_REQ_T(slv_req_t, aw_chan_slv_t, w_chan_t, ar_chan_slv_t)
  `AXI_TYPEDEF_RESP_T(slv_resp_t, b_chan_slv_t, r_chan_slv_t)

  localparam rule_t [xbar_cfg.NoAddrRules-1:0] AddrMap = '{
    '{idx: 32'd7, start_addr: 32'h0001_0000, end_addr: 32'h0001_1000},
    '{idx: 32'd6, start_addr: 32'h0000_9000, end_addr: 32'h0001_0000},
    '{idx: 32'd5, start_addr: 32'h0000_8000, end_addr: 32'h0000_9000},
    '{idx: 32'd4, start_addr: 32'h0000_7000, end_addr: 32'h0000_8000},
    '{idx: 32'd3, start_addr: 32'h0000_6300, end_addr: 32'h0000_7000},
    '{idx: 32'd2, start_addr: 32'h0000_4000, end_addr: 32'h0000_6300},
    '{idx: 32'd1, start_addr: 32'h0000_3000, end_addr: 32'h0000_4000},
    '{idx: 32'd0, start_addr: 32'h0000_0000, end_addr: 32'h0000_3000}
  };

  typedef axi_test::axi_rand_master #(
    // AXI interface parameters
    .AW ( AxiAddrWidth       ),
    .DW ( AxiDataWidth       ),
    .IW ( AxiIdWidthMasters  ),
    .UW ( AxiUserWidth       ),
    // Stimuli application and test time
    .TA ( ApplTime           ),
    .TT ( TestTime           ),
    // Maximum number of read and write transactions in flight
    .MAX_READ_TXNS  ( 20     ),
    .MAX_WRITE_TXNS ( 20     ),
    .AXI_EXCLS      ( TbEnExcl ),
    .AXI_ATOPS      ( TbEnAtop ),
    .UNIQUE_IDS     ( TbUniqueIds )
  ) axi_rand_master_t;
  typedef axi_test::axi_rand_slave #(
    // AXI interface parameters
    .AW ( AxiAddrWidth     ),
    .DW ( AxiDataWidth     ),
    .IW ( AxiIdWidthSlaves ),
    .UW ( AxiUserWidth     ),
    // Stimuli application and test time
    .TA ( ApplTime         ),
    .TT ( TestTime         )
  ) axi_rand_slave_t;

  // -------------
  // DUT signals
  // -------------
  logic clk;
  // DUT signals
  logic rst_n;
  logic [NoMasters-1:0] end_of_sim;

  // master structs
  mst_req_t  [NoMasters-1:0] masters_req;
  mst_resp_t [NoMasters-1:0] masters_resp;

  // slave structs
  slv_req_t  [NoSlaves-1:0] slaves_req;
  slv_resp_t [NoSlaves-1:0] slaves_resp;

  // -------------------------------
  // AXI Interfaces
  // -------------------------------
  AXI_BUS #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
    .AXI_DATA_WIDTH ( AxiDataWidth      ),
    .AXI_ID_WIDTH   ( AxiIdWidthMasters ),
    .AXI_USER_WIDTH ( AxiUserWidth      )
  ) master [NoMasters-1:0] ();
  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
    .AXI_DATA_WIDTH ( AxiDataWidth      ),
    .AXI_ID_WIDTH   ( AxiIdWidthMasters ),
    .AXI_USER_WIDTH ( AxiUserWidth      )
  ) master_dv [NoMasters-1:0] (clk);
  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
    .AXI_DATA_WIDTH ( AxiDataWidth      ),
    .AXI_ID_WIDTH   ( AxiIdWidthMasters ),
    .AXI_USER_WIDTH ( AxiUserWidth      )
  ) master_monitor_dv [NoMasters-1:0] (clk);
  for (genvar i = 0; i < NoMasters; i++) begin : gen_conn_dv_masters
    `AXI_ASSIGN (master[i], master_dv[i])
    `AXI_ASSIGN_TO_REQ(masters_req[i], master[i])
    `AXI_ASSIGN_FROM_RESP(master[i], masters_resp[i])
  end

  AXI_BUS #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth     ),
    .AXI_DATA_WIDTH ( AxiDataWidth     ),
    .AXI_ID_WIDTH   ( AxiIdWidthSlaves ),
    .AXI_USER_WIDTH ( AxiUserWidth     )
  ) slave [NoSlaves-1:0] ();
  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth     ),
    .AXI_DATA_WIDTH ( AxiDataWidth     ),
    .AXI_ID_WIDTH   ( AxiIdWidthSlaves ),
    .AXI_USER_WIDTH ( AxiUserWidth     )
  ) slave_dv [NoSlaves-1:0](clk);
  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth     ),
    .AXI_DATA_WIDTH ( AxiDataWidth     ),
    .AXI_ID_WIDTH   ( AxiIdWidthSlaves ),
    .AXI_USER_WIDTH ( AxiUserWidth     )
  ) slave_monitor_dv [NoSlaves-1:0](clk);
  for (genvar i = 0; i < NoSlaves; i++) begin : gen_conn_dv_slaves
    `AXI_ASSIGN(slave_dv[i], slave[i])
    `AXI_ASSIGN_FROM_REQ(slave[i], slaves_req[i])
    `AXI_ASSIGN_TO_RESP(slaves_resp[i], slave[i])
  end
  // -------------------------------
  // AXI Rand Masters and Slaves
  // -------------------------------
  // Masters control simulation run time
  for (genvar i = 0; i < NoMasters; i++) begin : gen_rand_master
      static axi_rand_master_t axi_rand_master = new ( master_dv[i] );
    initial begin
      end_of_sim[i] <= 1'b0;
      axi_rand_master.add_memory_region(AddrMap[0].start_addr,
                                      AddrMap[xbar_cfg.NoAddrRules-1].end_addr,
                                      axi_pkg::DEVICE_NONBUFFERABLE);
      axi_rand_master.reset();
      @(posedge rst_n);
      axi_rand_master.run(NoReads, NoWrites);
      end_of_sim[i] <= 1'b1;
    end
  end

  for (genvar i = 0; i < NoSlaves; i++) begin : gen_rand_slave
      static axi_rand_slave_t axi_rand_slave = new( slave_dv[i] );
    initial begin
      axi_rand_slave.reset();
      @(posedge rst_n);
      axi_rand_slave.run();
    end
  end

  initial begin : proc_monitor
    static tb_axi_xbar_pkg::axi_xbar_monitor #(
      .AxiAddrWidth      ( AxiAddrWidth         ),
      .AxiDataWidth      ( AxiDataWidth         ),
      .AxiIdWidthMasters ( AxiIdWidthMasters    ),
      .AxiIdWidthSlaves  ( AxiIdWidthSlaves     ),
      .AxiUserWidth      ( AxiUserWidth         ),
      .NoMasters         ( NoMasters            ),
      .NoSlaves          ( NoSlaves             ),
      .NoAddrRules       ( xbar_cfg.NoAddrRules ),
      .rule_t            ( rule_t               ),
      .AddrMap           ( AddrMap              ),
      .TimeTest          ( TestTime             )
    ) monitor = new( master_monitor_dv, slave_monitor_dv );
    fork
      monitor.run();
      do begin
        #TestTime;
        if(end_of_sim == '1) begin
          monitor.print_result();
          $stop();
        end
        @(posedge clk);
      end while (1'b1);
    join
  end

  //-----------------------------------
  // Clock generator
  //-----------------------------------
    clk_rst_gen #(
    .ClkPeriod    ( CyclTime ),
    .RstClkCycles ( 5        )
  ) i_clk_gen (
    .clk_o (clk),
    .rst_no(rst_n)
  );

  //-----------------------------------
  // DUT
  //-----------------------------------
  axi_xbar #(
    .Cfg          ( xbar_cfg ),
    .slv_aw_chan_t( aw_chan_mst_t ),
    .mst_aw_chan_t( aw_chan_slv_t ),
    .w_chan_t     (  w_chan_t     ),
    .slv_b_chan_t (  b_chan_mst_t ),
    .mst_b_chan_t (  b_chan_slv_t ),
    .slv_ar_chan_t( ar_chan_mst_t ),
    .mst_ar_chan_t( ar_chan_slv_t ),
    .slv_r_chan_t (  r_chan_mst_t ),
    .mst_r_chan_t (  r_chan_slv_t ),
    .slv_req_t    ( mst_req_t     ),
    .slv_resp_t   ( mst_resp_t    ),
    .mst_req_t    ( slv_req_t     ),
    .mst_resp_t   ( slv_resp_t    ),
    .rule_t       (rule_t         )
  ) i_xbar_dut (
    .clk_i      ( clk      ),
    .rst_ni     ( rst_n    ),
    .test_i     ( 1'b0     ),
    .slv_ports_req_i  ( masters_req  ),
    .slv_ports_resp_o ( masters_resp ),
    .mst_ports_req_o  ( slaves_req   ),
    .mst_ports_resp_i ( slaves_resp  ),
    .addr_map_i       ( AddrMap      ),
    .en_default_mst_port_i ( '0      ),
    .default_mst_port_i    ( '0      )
  );

  // logger for master modules
  for (genvar i = 0; i < NoMasters; i++) begin : gen_master_logger
    axi_chan_logger #(
      .TestTime  ( TestTime      ), // Time after clock, where sampling happens
      .LoggerName( $sformatf("axi_logger_master_%0d", i)),
      .aw_chan_t ( aw_chan_mst_t ), // axi AW type
      .w_chan_t  (  w_chan_t     ), // axi  W type
      .b_chan_t  (  b_chan_mst_t ), // axi  B type
      .ar_chan_t ( ar_chan_mst_t ), // axi AR type
      .r_chan_t  (  r_chan_mst_t )  // axi  R type
    ) i_mst_channel_logger (
      .clk_i      ( clk         ),    // Clock
      .rst_ni     ( rst_n       ),    // Asynchronous reset active low, when `1'b0` no sampling
      .end_sim_i  ( &end_of_sim ),
      // AW channel
      .aw_chan_i  ( masters_req[i].aw        ),
      .aw_valid_i ( masters_req[i].aw_valid  ),
      .aw_ready_i ( masters_resp[i].aw_ready ),
      //  W channel
      .w_chan_i   ( masters_req[i].w         ),
      .w_valid_i  ( masters_req[i].w_valid   ),
      .w_ready_i  ( masters_resp[i].w_ready  ),
      //  B channel
      .b_chan_i   ( masters_resp[i].b        ),
      .b_valid_i  ( masters_resp[i].b_valid  ),
      .b_ready_i  ( masters_req[i].b_ready   ),
      // AR channel
      .ar_chan_i  ( masters_req[i].ar        ),
      .ar_valid_i ( masters_req[i].ar_valid  ),
      .ar_ready_i ( masters_resp[i].ar_ready ),
      //  R channel
      .r_chan_i   ( masters_resp[i].r        ),
      .r_valid_i  ( masters_resp[i].r_valid  ),
      .r_ready_i  ( masters_req[i].r_ready   )
    );
  end
  // logger for slave modules
  for (genvar i = 0; i < NoSlaves; i++) begin : gen_slave_logger
    axi_chan_logger #(
      .TestTime  ( TestTime      ), // Time after clock, where sampling happens
      .LoggerName( $sformatf("axi_logger_slave_%0d",i)),
      .aw_chan_t ( aw_chan_slv_t ), // axi AW type
      .w_chan_t  (  w_chan_t     ), // axi  W type
      .b_chan_t  (  b_chan_slv_t ), // axi  B type
      .ar_chan_t ( ar_chan_slv_t ), // axi AR type
      .r_chan_t  (  r_chan_slv_t )  // axi  R type
    ) i_slv_channel_logger (
      .clk_i      ( clk         ),    // Clock
      .rst_ni     ( rst_n       ),    // Asynchronous reset active low, when `1'b0` no sampling
      .end_sim_i  ( &end_of_sim ),
      // AW channel
      .aw_chan_i  ( slaves_req[i].aw        ),
      .aw_valid_i ( slaves_req[i].aw_valid  ),
      .aw_ready_i ( slaves_resp[i].aw_ready ),
      //  W channel
      .w_chan_i   ( slaves_req[i].w         ),
      .w_valid_i  ( slaves_req[i].w_valid   ),
      .w_ready_i  ( slaves_resp[i].w_ready  ),
      //  B channel
      .b_chan_i   ( slaves_resp[i].b        ),
      .b_valid_i  ( slaves_resp[i].b_valid  ),
      .b_ready_i  ( slaves_req[i].b_ready   ),
      // AR channel
      .ar_chan_i  ( slaves_req[i].ar        ),
      .ar_valid_i ( slaves_req[i].ar_valid  ),
      .ar_ready_i ( slaves_resp[i].ar_ready ),
      //  R channel
      .r_chan_i   ( slaves_resp[i].r        ),
      .r_valid_i  ( slaves_resp[i].r_valid  ),
      .r_ready_i  ( slaves_req[i].r_ready   )
    );
  end


  for (genvar i = 0; i < NoMasters; i++) begin : gen_connect_master_monitor
    assign master_monitor_dv[i].aw_id     = master[i].aw_id    ;
    assign master_monitor_dv[i].aw_addr   = master[i].aw_addr  ;
    assign master_monitor_dv[i].aw_len    = master[i].aw_len   ;
    assign master_monitor_dv[i].aw_size   = master[i].aw_size  ;
    assign master_monitor_dv[i].aw_burst  = master[i].aw_burst ;
    assign master_monitor_dv[i].aw_lock   = master[i].aw_lock  ;
    assign master_monitor_dv[i].aw_cache  = master[i].aw_cache ;
    assign master_monitor_dv[i].aw_prot   = master[i].aw_prot  ;
    assign master_monitor_dv[i].aw_qos    = master[i].aw_qos   ;
    assign master_monitor_dv[i].aw_region = master[i].aw_region;
    assign master_monitor_dv[i].aw_atop   = master[i].aw_atop  ;
    assign master_monitor_dv[i].aw_user   = master[i].aw_user  ;
    assign master_monitor_dv[i].aw_valid  = master[i].aw_valid ;
    assign master_monitor_dv[i].aw_ready  = master[i].aw_ready ;
    assign master_monitor_dv[i].w_data    = master[i].w_data   ;
    assign master_monitor_dv[i].w_strb    = master[i].w_strb   ;
    assign master_monitor_dv[i].w_last    = master[i].w_last   ;
    assign master_monitor_dv[i].w_user    = master[i].w_user   ;
    assign master_monitor_dv[i].w_valid   = master[i].w_valid  ;
    assign master_monitor_dv[i].w_ready   = master[i].w_ready  ;
    assign master_monitor_dv[i].b_id      = master[i].b_id     ;
    assign master_monitor_dv[i].b_resp    = master[i].b_resp   ;
    assign master_monitor_dv[i].b_user    = master[i].b_user   ;
    assign master_monitor_dv[i].b_valid   = master[i].b_valid  ;
    assign master_monitor_dv[i].b_ready   = master[i].b_ready  ;
    assign master_monitor_dv[i].ar_id     = master[i].ar_id    ;
    assign master_monitor_dv[i].ar_addr   = master[i].ar_addr  ;
    assign master_monitor_dv[i].ar_len    = master[i].ar_len   ;
    assign master_monitor_dv[i].ar_size   = master[i].ar_size  ;
    assign master_monitor_dv[i].ar_burst  = master[i].ar_burst ;
    assign master_monitor_dv[i].ar_lock   = master[i].ar_lock  ;
    assign master_monitor_dv[i].ar_cache  = master[i].ar_cache ;
    assign master_monitor_dv[i].ar_prot   = master[i].ar_prot  ;
    assign master_monitor_dv[i].ar_qos    = master[i].ar_qos   ;
    assign master_monitor_dv[i].ar_region = master[i].ar_region;
    assign master_monitor_dv[i].ar_user   = master[i].ar_user  ;
    assign master_monitor_dv[i].ar_valid  = master[i].ar_valid ;
    assign master_monitor_dv[i].ar_ready  = master[i].ar_ready ;
    assign master_monitor_dv[i].r_id      = master[i].r_id     ;
    assign master_monitor_dv[i].r_data    = master[i].r_data   ;
    assign master_monitor_dv[i].r_resp    = master[i].r_resp   ;
    assign master_monitor_dv[i].r_last    = master[i].r_last   ;
    assign master_monitor_dv[i].r_user    = master[i].r_user   ;
    assign master_monitor_dv[i].r_valid   = master[i].r_valid  ;
    assign master_monitor_dv[i].r_ready   = master[i].r_ready  ;
  end
  for (genvar i = 0; i < NoSlaves; i++) begin : gen_connect_slave_monitor
    assign slave_monitor_dv[i].aw_id     = slave[i].aw_id    ;
    assign slave_monitor_dv[i].aw_addr   = slave[i].aw_addr  ;
    assign slave_monitor_dv[i].aw_len    = slave[i].aw_len   ;
    assign slave_monitor_dv[i].aw_size   = slave[i].aw_size  ;
    assign slave_monitor_dv[i].aw_burst  = slave[i].aw_burst ;
    assign slave_monitor_dv[i].aw_lock   = slave[i].aw_lock  ;
    assign slave_monitor_dv[i].aw_cache  = slave[i].aw_cache ;
    assign slave_monitor_dv[i].aw_prot   = slave[i].aw_prot  ;
    assign slave_monitor_dv[i].aw_qos    = slave[i].aw_qos   ;
    assign slave_monitor_dv[i].aw_region = slave[i].aw_region;
    assign slave_monitor_dv[i].aw_atop   = slave[i].aw_atop  ;
    assign slave_monitor_dv[i].aw_user   = slave[i].aw_user  ;
    assign slave_monitor_dv[i].aw_valid  = slave[i].aw_valid ;
    assign slave_monitor_dv[i].aw_ready  = slave[i].aw_ready ;
    assign slave_monitor_dv[i].w_data    = slave[i].w_data   ;
    assign slave_monitor_dv[i].w_strb    = slave[i].w_strb   ;
    assign slave_monitor_dv[i].w_last    = slave[i].w_last   ;
    assign slave_monitor_dv[i].w_user    = slave[i].w_user   ;
    assign slave_monitor_dv[i].w_valid   = slave[i].w_valid  ;
    assign slave_monitor_dv[i].w_ready   = slave[i].w_ready  ;
    assign slave_monitor_dv[i].b_id      = slave[i].b_id     ;
    assign slave_monitor_dv[i].b_resp    = slave[i].b_resp   ;
    assign slave_monitor_dv[i].b_user    = slave[i].b_user   ;
    assign slave_monitor_dv[i].b_valid   = slave[i].b_valid  ;
    assign slave_monitor_dv[i].b_ready   = slave[i].b_ready  ;
    assign slave_monitor_dv[i].ar_id     = slave[i].ar_id    ;
    assign slave_monitor_dv[i].ar_addr   = slave[i].ar_addr  ;
    assign slave_monitor_dv[i].ar_len    = slave[i].ar_len   ;
    assign slave_monitor_dv[i].ar_size   = slave[i].ar_size  ;
    assign slave_monitor_dv[i].ar_burst  = slave[i].ar_burst ;
    assign slave_monitor_dv[i].ar_lock   = slave[i].ar_lock  ;
    assign slave_monitor_dv[i].ar_cache  = slave[i].ar_cache ;
    assign slave_monitor_dv[i].ar_prot   = slave[i].ar_prot  ;
    assign slave_monitor_dv[i].ar_qos    = slave[i].ar_qos   ;
    assign slave_monitor_dv[i].ar_region = slave[i].ar_region;
    assign slave_monitor_dv[i].ar_user   = slave[i].ar_user  ;
    assign slave_monitor_dv[i].ar_valid  = slave[i].ar_valid ;
    assign slave_monitor_dv[i].ar_ready  = slave[i].ar_ready ;
    assign slave_monitor_dv[i].r_id      = slave[i].r_id     ;
    assign slave_monitor_dv[i].r_data    = slave[i].r_data   ;
    assign slave_monitor_dv[i].r_resp    = slave[i].r_resp   ;
    assign slave_monitor_dv[i].r_last    = slave[i].r_last   ;
    assign slave_monitor_dv[i].r_user    = slave[i].r_user   ;
    assign slave_monitor_dv[i].r_valid   = slave[i].r_valid  ;
    assign slave_monitor_dv[i].r_ready   = slave[i].r_ready  ;
  end
endmodule