std_nbdcache.sv 11.2 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Florian Zaruba, ETH Zurich
// Date: 13.10.2017
// Description: Nonblocking private L1 dcache

import ariane_pkg::*;
import std_cache_pkg::*;

module std_nbdcache #(
    parameter logic [63:0] CACHE_START_ADDR = 64'h8000_0000
)(
    input  logic                           clk_i,       // Clock
    input  logic                           rst_ni,      // Asynchronous reset active low
    // Cache management
    input  logic                           enable_i,    // from CSR
    input  logic                           flush_i,     // high until acknowledged
    output logic                           flush_ack_o, // send a single cycle acknowledge signal when the cache is flushed
    output logic                           miss_o,      // we missed on a LD/ST
    // AMOs
    input  amo_req_t                       amo_req_i,
    output amo_resp_t                      amo_resp_o,
    // Request ports
    input  dcache_req_i_t [2:0]            req_ports_i,  // request ports
    output dcache_req_o_t [2:0]            req_ports_o,  // request ports
    // Cache AXI refill port
    output ariane_axi::req_t               axi_data_o,
    input  ariane_axi::resp_t              axi_data_i,
    output ariane_axi::req_t               axi_bypass_o,
    input  ariane_axi::resp_t              axi_bypass_i
);

    // -------------------------------
    // Controller <-> Arbiter
    // -------------------------------
    // 1. Miss handler
    // 2. PTW
    // 3. Load Unit
    // 4. Store unit
    logic        [3:0][DCACHE_SET_ASSOC-1:0]  req;
    logic        [3:0][DCACHE_INDEX_WIDTH-1:0]addr;
    logic        [3:0]                        gnt;
    cache_line_t [DCACHE_SET_ASSOC-1:0]       rdata;
    logic        [3:0][DCACHE_TAG_WIDTH-1:0]  tag;

    cache_line_t [3:0]                        wdata;
    logic        [3:0]                        we;
    cl_be_t      [3:0]                        be;
    logic        [DCACHE_SET_ASSOC-1:0]       hit_way;
    // -------------------------------
    // Controller <-> Miss unit
    // -------------------------------
    logic [2:0]                        busy;
    logic [2:0][55:0]                  mshr_addr;
    logic [2:0]                        mshr_addr_matches;
    logic [2:0]                        mshr_index_matches;
    logic [63:0]                       critical_word;
    logic                              critical_word_valid;

    logic [2:0][$bits(miss_req_t)-1:0] miss_req;
    logic [2:0]                        miss_gnt;
    logic [2:0]                        active_serving;

    logic [2:0]                        bypass_gnt;
    logic [2:0]                        bypass_valid;
    logic [2:0][63:0]                  bypass_data;
    // -------------------------------
    // Arbiter <-> Datram,
    // -------------------------------
    logic [DCACHE_SET_ASSOC-1:0]         req_ram;
    logic [DCACHE_INDEX_WIDTH-1:0]       addr_ram;
    logic                                we_ram;
    cache_line_t                         wdata_ram;
    cache_line_t [DCACHE_SET_ASSOC-1:0]  rdata_ram;
    cl_be_t                              be_ram;

    // ------------------
    // Cache Controller
    // ------------------
    generate
        for (genvar i = 0; i < 3; i++) begin : master_ports
            cache_ctrl  #(
                .CACHE_START_ADDR      ( CACHE_START_ADDR     )
            ) i_cache_ctrl (
                .bypass_i              ( ~enable_i            ),
                .busy_o                ( busy            [i]  ),
                // from core
                .req_port_i            ( req_ports_i     [i]  ),
                .req_port_o            ( req_ports_o     [i]  ),
                // to SRAM array
                .req_o                 ( req            [i+1] ),
                .addr_o                ( addr           [i+1] ),
                .gnt_i                 ( gnt            [i+1] ),
                .data_i                ( rdata                ),
                .tag_o                 ( tag            [i+1] ),
                .data_o                ( wdata          [i+1] ),
                .we_o                  ( we             [i+1] ),
                .be_o                  ( be             [i+1] ),
                .hit_way_i             ( hit_way              ),

                .miss_req_o            ( miss_req        [i]  ),
                .miss_gnt_i            ( miss_gnt        [i]  ),
                .active_serving_i      ( active_serving  [i]  ),
                .critical_word_i       ( critical_word        ),
                .critical_word_valid_i ( critical_word_valid  ),
                .bypass_gnt_i          ( bypass_gnt      [i]  ),
                .bypass_valid_i        ( bypass_valid    [i]  ),
                .bypass_data_i         ( bypass_data     [i]  ),

                .mshr_addr_o           ( mshr_addr         [i] ),
                .mshr_addr_matches_i   ( mshr_addr_matches [i] ),
                .mshr_index_matches_i  ( mshr_index_matches[i] ),
                .*
            );
        end
    endgenerate

    // ------------------
    // Miss Handling Unit
    // ------------------
    miss_handler #(
        .NR_PORTS               ( 3                    )
    ) i_miss_handler (
        .flush_i                ( flush_i              ),
        .busy_i                 ( |busy                ),
        // AMOs
        .amo_req_i              ( amo_req_i            ),
        .amo_resp_o             ( amo_resp_o           ),
        .miss_req_i             ( miss_req             ),
        .miss_gnt_o             ( miss_gnt             ),
        .bypass_gnt_o           ( bypass_gnt           ),
        .bypass_valid_o         ( bypass_valid         ),
        .bypass_data_o          ( bypass_data          ),
        .critical_word_o        ( critical_word        ),
        .critical_word_valid_o  ( critical_word_valid  ),
        .mshr_addr_i            ( mshr_addr            ),
        .mshr_addr_matches_o    ( mshr_addr_matches    ),
        .mshr_index_matches_o   ( mshr_index_matches   ),
        .active_serving_o       ( active_serving       ),
        .req_o                  ( req             [0]  ),
        .addr_o                 ( addr            [0]  ),
        .data_i                 ( rdata                ),
        .be_o                   ( be              [0]  ),
        .data_o                 ( wdata           [0]  ),
        .we_o                   ( we              [0]  ),
        .axi_bypass_o,
        .axi_bypass_i,
        .axi_data_o,
        .axi_data_i,
        .*
    );

    assign tag[0] = '0;

    // --------------
    // Memory Arrays
    // --------------
    for (genvar i = 0; i < DCACHE_SET_ASSOC; i++) begin : sram_block
        sram #(
            .DATA_WIDTH ( DCACHE_LINE_WIDTH                 ),
            .NUM_WORDS  ( DCACHE_NUM_WORDS                  )
        ) data_sram (
            .req_i   ( req_ram [i]                          ),
            .rst_ni  ( rst_ni                               ),
            .we_i    ( we_ram                               ),
            .addr_i  ( addr_ram[DCACHE_INDEX_WIDTH-1:DCACHE_BYTE_OFFSET]  ),
            .wdata_i ( wdata_ram.data                       ),
            .be_i    ( be_ram.data                          ),
            .rdata_o ( rdata_ram[i].data                    ),
            .*
        );

        sram #(
            .DATA_WIDTH ( DCACHE_TAG_WIDTH                  ),
            .NUM_WORDS  ( DCACHE_NUM_WORDS                  )
        ) tag_sram (
            .req_i   ( req_ram [i]                          ),
            .rst_ni  ( rst_ni                               ),
            .we_i    ( we_ram                               ),
            .addr_i  ( addr_ram[DCACHE_INDEX_WIDTH-1:DCACHE_BYTE_OFFSET]  ),
            .wdata_i ( wdata_ram.tag                        ),
            .be_i    ( be_ram.tag                           ),
            .rdata_o ( rdata_ram[i].tag                     ),
            .*
        );

    end

    // ----------------
    // Valid/Dirty Regs
    // ----------------

    // align each valid/dirty bit pair to a byte boundary in order to leverage byte enable signals.
    // note: if you have an SRAM that supports flat bit enables for your target technology,
    // you can use it here to save the extra 4x overhead introduced by this workaround.
    logic [4*DCACHE_DIRTY_WIDTH-1:0] dirty_wdata, dirty_rdata;

    for (genvar i = 0; i < DCACHE_SET_ASSOC; i++) begin
        assign dirty_wdata[8*i]   = wdata_ram.dirty;
        assign dirty_wdata[8*i+1] = wdata_ram.valid;
        assign rdata_ram[i].dirty = dirty_rdata[8*i];
        assign rdata_ram[i].valid = dirty_rdata[8*i+1];
    end

    sram #(
        .DATA_WIDTH ( 4*DCACHE_DIRTY_WIDTH             ),
        .NUM_WORDS  ( DCACHE_NUM_WORDS                 )
    ) valid_dirty_sram (
        .clk_i   ( clk_i                               ),
        .rst_ni  ( rst_ni                              ),
        .req_i   ( |req_ram                            ),
        .we_i    ( we_ram                              ),
        .addr_i  ( addr_ram[DCACHE_INDEX_WIDTH-1:DCACHE_BYTE_OFFSET] ),
        .wdata_i ( dirty_wdata                         ),
        .be_i    ( be_ram.vldrty                       ),
        .rdata_o ( dirty_rdata                         )
    );

    // ------------------------------------------------
    // Tag Comparison and memory arbitration
    // ------------------------------------------------
    tag_cmp #(
        .NR_PORTS           ( 4                  ),
        .ADDR_WIDTH         ( DCACHE_INDEX_WIDTH ),
        .DCACHE_SET_ASSOC   ( DCACHE_SET_ASSOC   )
    ) i_tag_cmp (
        .req_i              ( req         ),
        .gnt_o              ( gnt         ),
        .addr_i             ( addr        ),
        .wdata_i            ( wdata       ),
        .we_i               ( we          ),
        .be_i               ( be          ),
        .rdata_o            ( rdata       ),
        .tag_i              ( tag         ),
        .hit_way_o          ( hit_way     ),

        .req_o              ( req_ram     ),
        .addr_o             ( addr_ram    ),
        .wdata_o            ( wdata_ram   ),
        .we_o               ( we_ram      ),
        .be_o               ( be_ram      ),
        .rdata_i            ( rdata_ram   ),
        .*
    );


//pragma translate_off
    initial begin
        assert ($bits(axi_data_o.aw.addr) == 64) else $fatal(1, "Ariane needs a 64-bit bus");
        assert (DCACHE_LINE_WIDTH/64 inside {2, 4, 8, 16}) else $fatal(1, "Cache line size needs to be a power of two multiple of 64");
    end
//pragma translate_on
endmodule