axi_lite_mux.sv 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
// Copyright (c) 2020 ETH Zurich, University of Bologna
//
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

// AXI4-Lite Multiplexer: This module multiplexes the AXI4-Lite slave ports down to one master port.
//                        The multiplexing happens in a round robin fashion, responses get
//                        sent back in order.

// register macros
`include "common_cells/registers.svh"

module axi_lite_mux #(
  // AXI4-Lite parameter and channel types
  parameter type          aw_chan_t  = logic, // AW LITE Channel Type
  parameter type           w_chan_t  = logic, //  W LITE Channel Type
  parameter type           b_chan_t  = logic, //  B LITE Channel Type
  parameter type          ar_chan_t  = logic, // AR LITE Channel Type
  parameter type           r_chan_t  = logic, //  R LITE Channel Type
  parameter type              req_t  = logic, // AXI4-Lite request type
  parameter type             resp_t  = logic, // AXI4-Lite response type
  parameter int unsigned NoSlvPorts  = 32'd0, // Number of slave ports
  // Maximum number of outstanding transactions per write or read
  parameter int unsigned MaxTrans    = 32'd0,
  // If enabled, this multiplexer is purely combinatorial
  parameter bit          FallThrough = 1'b0,
  // add spill register on write master port, adds a cycle latency on write channels
  parameter bit          SpillAw     = 1'b1,
  parameter bit          SpillW      = 1'b0,
  parameter bit          SpillB      = 1'b0,
  // add spill register on read master port, adds a cycle latency on read channels
  parameter bit          SpillAr     = 1'b1,
  parameter bit          SpillR      = 1'b0
) (
  input  logic                   clk_i,    // Clock
  input  logic                   rst_ni,   // Asynchronous reset active low
  input  logic                   test_i,   // Test Mode enable
  // slave ports (AXI4-Lite inputs), connect master modules here
  input  req_t  [NoSlvPorts-1:0] slv_reqs_i,
  output resp_t [NoSlvPorts-1:0] slv_resps_o,
  // master port (AXI4-Lite output), connect slave module here
  output req_t                   mst_req_o,
  input  resp_t                  mst_resp_i
);
  // pass through if only one slave port
  if (NoSlvPorts == 32'h1) begin : gen_no_mux
    assign mst_req_o = slv_reqs_i[0];
    assign slv_resps_o[0] = mst_resp_i;
  // other non degenerate cases
  end else begin : gen_mux
    // typedef for the FIFO types
    typedef logic [$clog2(NoSlvPorts)-1:0] select_t;

    // input to the AW arbitration tree, unpacked from request struct
    aw_chan_t [NoSlvPorts-1:0] slv_aw_chans;
    logic     [NoSlvPorts-1:0] slv_aw_valids, slv_aw_readies;

    // AW channel arb tree decision
    select_t  aw_select;
    aw_chan_t mst_aw_chan;
    logic     mst_aw_valid, mst_aw_ready;

    // AW master handshake internal, so that we are able to stall, if w_fifo is full
    logic     aw_valid,     aw_ready;

    // FF to lock the AW valid signal, when a new arbitration decision is made the decision
    // gets pushed into the W FIFO, when it now stalls prevent subsequent pushing
    // This FF removes AW to W dependency
    logic     lock_aw_valid_d, lock_aw_valid_q;
    logic     load_aw_lock;

    // signals for the FIFO that holds the last switching decision of the AW channel
    logic     w_fifo_full,  w_fifo_empty;
    logic     w_fifo_push,  w_fifo_pop;

    // W channel spill reg
    select_t  w_select;
    w_chan_t  mst_w_chan;
    logic     mst_w_valid,  mst_w_ready;

    // switching decision for the B response back routing
    select_t  b_select;
    // signals for the FIFO that holds the last switching decision of the AW channel
    logic     b_fifo_full,  b_fifo_empty;
    logic     /*w_fifo_pop*/b_fifo_pop;

    // B channel spill reg
    b_chan_t  mst_b_chan;
    logic     mst_b_valid,  mst_b_ready;

    // input to the AR arbitration tree, unpacked from request struct
    ar_chan_t [NoSlvPorts-1:0] slv_ar_chans;
    logic     [NoSlvPorts-1:0] slv_ar_valids, slv_ar_readies;

    // AR channel for when spill is enabled
    select_t  ar_select;
    ar_chan_t mst_ar_chan;
    logic     mst_ar_valid, mst_ar_ready;

    // AR master handshake internal, so that we are able to stall, if R_fifo is full
    logic     ar_valid,     ar_ready;

    // master ID in the r_id
    select_t  r_select;

    // signals for the FIFO that holds the last switching decision of the AR channel
    logic     r_fifo_full,  r_fifo_empty;
    logic     r_fifo_push,  r_fifo_pop;

    // R channel spill reg
    r_chan_t  mst_r_chan;
    logic     mst_r_valid,  mst_r_ready;

    //--------------------------------------
    // AW Channel
    //--------------------------------------
    // unpach AW channel from request/response array
    for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_aw_arb_input
      assign slv_aw_chans[i]         = slv_reqs_i[i].aw;
      assign slv_aw_valids[i]        = slv_reqs_i[i].aw_valid;
      assign slv_resps_o[i].aw_ready = slv_aw_readies[i];
    end
    rr_arb_tree #(
      .NumIn    ( NoSlvPorts ),
      .DataType ( aw_chan_t  ),
      .AxiVldRdy( 1'b1       ),
      .LockIn   ( 1'b1       )
    ) i_aw_arbiter (
      .clk_i  ( clk_i          ),
      .rst_ni ( rst_ni         ),
      .flush_i( 1'b0           ),
      .rr_i   ( '0             ),
      .req_i  ( slv_aw_valids  ),
      .gnt_o  ( slv_aw_readies ),
      .data_i ( slv_aw_chans   ),
      .gnt_i  ( aw_ready       ),
      .req_o  ( aw_valid       ),
      .data_o ( mst_aw_chan    ),
      .idx_o  ( aw_select      )
    );

    // control of the AW channel
    always_comb begin
      // default assignments
      lock_aw_valid_d = lock_aw_valid_q;
      load_aw_lock    = 1'b0;
      w_fifo_push     = 1'b0;
      mst_aw_valid    = 1'b0;
      aw_ready        = 1'b0;
      // had a downstream stall, be valid and send the AW along
      if (lock_aw_valid_q) begin
        mst_aw_valid = 1'b1;
        // transaction
        if (mst_aw_ready) begin
          aw_ready        = 1'b1;
          lock_aw_valid_d = 1'b0;
          load_aw_lock    = 1'b1;
        end
      end else begin
        if (!w_fifo_full && aw_valid) begin
          mst_aw_valid = 1'b1;
          w_fifo_push = 1'b1;
          if (mst_aw_ready) begin
            aw_ready = 1'b1;
          end else begin
            // go to lock if transaction not in this cycle
            lock_aw_valid_d = 1'b1;
            load_aw_lock    = 1'b1;
          end
        end
      end
    end

    `FFLARN(lock_aw_valid_q, lock_aw_valid_d, load_aw_lock, '0, clk_i, rst_ni)

    fifo_v3 #(
      .FALL_THROUGH ( FallThrough ),
      .DEPTH        ( MaxTrans    ),
      .dtype        ( select_t    )
    ) i_w_fifo (
      .clk_i     ( clk_i        ),
      .rst_ni    ( rst_ni       ),
      .flush_i   ( 1'b0         ),
      .testmode_i( test_i       ),
      .full_o    ( w_fifo_full  ),
      .empty_o   ( w_fifo_empty ),
      .usage_o   (              ),
      .data_i    ( aw_select    ),
      .push_i    ( w_fifo_push  ),
      .data_o    ( w_select     ),
      .pop_i     ( w_fifo_pop   )
    );

    spill_register #(
      .T       ( aw_chan_t  ),
      .Bypass  ( ~SpillAw   ) // Param indicated that we want a spill reg
    ) i_aw_spill_reg (
      .clk_i   ( clk_i               ),
      .rst_ni  ( rst_ni              ),
      .valid_i ( mst_aw_valid        ),
      .ready_o ( mst_aw_ready        ),
      .data_i  ( mst_aw_chan         ),
      .valid_o ( mst_req_o.aw_valid  ),
      .ready_i ( mst_resp_i.aw_ready ),
      .data_o  ( mst_req_o.aw        )
    );

    //--------------------------------------
    // W Channel
    //--------------------------------------
    // multiplexer
    assign mst_w_chan      = (!w_fifo_empty && !b_fifo_full) ? slv_reqs_i[w_select].w        :   '0;
    assign mst_w_valid     = (!w_fifo_empty && !b_fifo_full) ? slv_reqs_i[w_select].w_valid  : 1'b0;
    for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_slv_w_ready
      assign slv_resps_o[i].w_ready =  mst_w_ready & ~w_fifo_empty &
                                      ~b_fifo_full & (w_select == select_t'(i));
    end
    assign w_fifo_pop      = mst_w_valid & mst_w_ready;

    fifo_v3 #(
      .FALL_THROUGH ( FallThrough ),
      .DEPTH        ( MaxTrans    ),
      .dtype        ( select_t    )
    ) i_b_fifo (
      .clk_i     ( clk_i        ),
      .rst_ni    ( rst_ni       ),
      .flush_i   ( 1'b0         ),
      .testmode_i( test_i       ),
      .full_o    ( b_fifo_full  ),
      .empty_o   ( b_fifo_empty ),
      .usage_o   (              ),
      .data_i    ( w_select     ),
      .push_i    ( w_fifo_pop   ), // push the selection for the B channel on W transaction
      .data_o    ( b_select     ),
      .pop_i     ( b_fifo_pop   )
    );

    spill_register #(
      .T       ( w_chan_t ),
      .Bypass  ( ~SpillW  )
    ) i_w_spill_reg (
      .clk_i   ( clk_i              ),
      .rst_ni  ( rst_ni             ),
      .valid_i ( mst_w_valid        ),
      .ready_o ( mst_w_ready        ),
      .data_i  ( mst_w_chan         ),
      .valid_o ( mst_req_o.w_valid  ),
      .ready_i ( mst_resp_i.w_ready ),
      .data_o  ( mst_req_o.w        )
    );

    //--------------------------------------
    // B Channel
    //--------------------------------------
    // replicate B channels
    for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_slv_resps_b
      assign slv_resps_o[i].b       = mst_b_chan;
      assign slv_resps_o[i].b_valid = mst_b_valid & ~b_fifo_empty & (b_select == select_t'(i));
    end
    assign mst_b_ready    = ~b_fifo_empty & slv_reqs_i[b_select].b_ready;
    assign b_fifo_pop     = mst_b_valid & mst_b_ready;

    spill_register #(
      .T       ( b_chan_t ),
      .Bypass  ( ~SpillB  )
    ) i_b_spill_reg (
      .clk_i   ( clk_i              ),
      .rst_ni  ( rst_ni             ),
      .valid_i ( mst_resp_i.b_valid ),
      .ready_o ( mst_req_o.b_ready  ),
      .data_i  ( mst_resp_i.b       ),
      .valid_o ( mst_b_valid        ),
      .ready_i ( mst_b_ready        ),
      .data_o  ( mst_b_chan         )
    );

    //--------------------------------------
    // AR Channel
    //--------------------------------------
    // unpack AR channel from request/response struct
    for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_ar_arb_input
      assign slv_ar_chans[i]         = slv_reqs_i[i].ar;
      assign slv_ar_valids[i]        = slv_reqs_i[i].ar_valid;
      assign slv_resps_o[i].ar_ready = slv_ar_readies[i];
    end
    rr_arb_tree #(
      .NumIn    ( NoSlvPorts ),
      .DataType ( ar_chan_t  ),
      .AxiVldRdy( 1'b1       ),
      .LockIn   ( 1'b1       )
    ) i_ar_arbiter (
      .clk_i  ( clk_i          ),
      .rst_ni ( rst_ni         ),
      .flush_i( 1'b0           ),
      .rr_i   ( '0             ),
      .req_i  ( slv_ar_valids  ),
      .gnt_o  ( slv_ar_readies ),
      .data_i ( slv_ar_chans   ),
      .gnt_i  ( ar_ready       ),
      .req_o  ( ar_valid       ),
      .data_o ( mst_ar_chan    ),
      .idx_o  ( ar_select      )
    );

    // connect the handshake if there is space in the FIFO, no need for valid locking
    // as the R response is only allowed, when AR is transferred
    assign mst_ar_valid = (!r_fifo_full) ? ar_valid     : 1'b0;
    assign ar_ready     = (!r_fifo_full) ? mst_ar_ready : 1'b0;
    assign r_fifo_push  = mst_ar_valid & mst_ar_ready;

    fifo_v3 #(
      .FALL_THROUGH ( FallThrough ),
      .DEPTH        ( MaxTrans    ),
      .dtype        ( select_t    )
    ) i_r_fifo (
      .clk_i     ( clk_i        ),
      .rst_ni    ( rst_ni       ),
      .flush_i   ( 1'b0         ),
      .testmode_i( test_i       ),
      .full_o    ( r_fifo_full  ),
      .empty_o   ( r_fifo_empty ),
      .usage_o   (              ),
      .data_i    ( ar_select    ),
      .push_i    ( r_fifo_push  ), // push the selection when w transaction happens
      .data_o    ( r_select     ),
      .pop_i     ( r_fifo_pop   )
    );

    spill_register #(
      .T       ( ar_chan_t ),
      .Bypass  ( ~SpillAr  )
    ) i_ar_spill_reg (
      .clk_i   ( clk_i               ),
      .rst_ni  ( rst_ni              ),
      .valid_i ( mst_ar_valid        ),
      .ready_o ( mst_ar_ready        ),
      .data_i  ( mst_ar_chan         ),
      .valid_o ( mst_req_o.ar_valid  ),
      .ready_i ( mst_resp_i.ar_ready ),
      .data_o  ( mst_req_o.ar        )
    );

    //--------------------------------------
    // R Channel
    //--------------------------------------
    // replicate R channels
    for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_slv_resps_r
      assign slv_resps_o[i].r       = mst_r_chan;
      assign slv_resps_o[i].r_valid = mst_r_valid & ~r_fifo_empty & (r_select == select_t'(i));
    end
    assign mst_r_ready    = ~r_fifo_empty & slv_reqs_i[r_select].r_ready;
    assign r_fifo_pop     = mst_r_valid & mst_r_ready;

    spill_register #(
      .T       ( r_chan_t ),
      .Bypass  ( ~SpillR  )
    ) i_r_spill_reg (
      .clk_i   ( clk_i              ),
      .rst_ni  ( rst_ni             ),
      .valid_i ( mst_resp_i.r_valid ),
      .ready_o ( mst_req_o.r_ready  ),
      .data_i  ( mst_resp_i.r       ),
      .valid_o ( mst_r_valid        ),
      .ready_i ( mst_r_ready        ),
      .data_o  ( mst_r_chan         )
    );
  end

  // pragma translate_off
  `ifndef VERILATOR
    initial begin: p_assertions
      NoPorts:  assert (NoSlvPorts > 0) else $fatal("Number of slave ports must be at least 1!");
      MaxTnx:   assert (MaxTrans   > 0) else $fatal("Number of transactions must be at least 1!");
    end
  `endif
  // pragma translate_on
endmodule

// interface wrap
`include "axi/assign.svh"
`include "axi/typedef.svh"

module axi_lite_mux_intf #(
  parameter int unsigned AxiAddrWidth  = 32'd0,
  parameter int unsigned AxiDataWidth  = 32'd0,
  parameter int unsigned NoSlvPorts    = 32'd0, // Number of slave ports
  // Maximum number of outstanding transactions per write
  parameter int unsigned MaxTrans      = 32'd0,
  // if enabled, this multiplexer is purely combinatorial
  parameter bit          FallThrough   = 1'b0,
  // add spill register on write master ports, adds a cycle latency on write channels
  parameter bit          SpillAw       = 1'b1,
  parameter bit          SpillW        = 1'b0,
  parameter bit          SpillB        = 1'b0,
  // add spill register on read master ports, adds a cycle latency on read channels
  parameter bit          SpillAr       = 1'b1,
  parameter bit          SpillR        = 1'b0
) (
  input  logic   clk_i,                // Clock
  input  logic   rst_ni,               // Asynchronous reset active low
  input  logic   test_i,               // Testmode enable
  AXI_BUS.Slave  slv [NoSlvPorts-1:0], // slave ports
  AXI_BUS.Master mst                   // master port
);

  typedef logic [AxiAddrWidth-1:0]   addr_t;
  typedef logic [AxiDataWidth-1:0]   data_t;
  typedef logic [AxiDataWidth/8-1:0] strb_t;
  // channels typedef
  `AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t)
  `AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t)
  `AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_t)
  `AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t)
  `AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_t, data_t)
  `AXI_LITE_TYPEDEF_REQ_T(req_t, aw_chan_t, w_chan_t, ar_chan_t)
  `AXI_LITE_TYPEDEF_RESP_T(resp_t, b_chan_t, r_chan_t)

  req_t     [NoSlvPorts-1:0] slv_reqs;
  resp_t    [NoSlvPorts-1:0] slv_resps;
  req_t                      mst_req;
  resp_t                     mst_resp;

  for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_assign_slv_ports
    `AXI_LITE_ASSIGN_TO_REQ(slv_reqs[i], slv[i])
    `AXI_LITE_ASSIGN_FROM_RESP(slv[i], slv_resps[i])
  end

  `AXI_LITE_ASSIGN_FROM_REQ(mst, mst_req)
  `AXI_LITE_ASSIGN_TO_RESP(mst_resp, mst)

  axi_lite_mux #(
    .aw_chan_t     ( aw_chan_t     ), // AW Channel Type
    .w_chan_t      (  w_chan_t     ), //  W Channel Type
    .b_chan_t      (  b_chan_t     ), //  B Channel Type
    .ar_chan_t     ( ar_chan_t     ), // AR Channel Type
    .r_chan_t      (  r_chan_t     ), //  R Channel Type
    .NoSlvPorts    ( NoSlvPorts    ), // Number of slave ports
    .MaxTrans      ( MaxTrans      ),
    .FallThrough   ( FallThrough   ),
    .SpillAw       ( SpillAw       ),
    .SpillW        ( SpillW        ),
    .SpillB        ( SpillB        ),
    .SpillAr       ( SpillAr       ),
    .SpillR        ( SpillR        )
  ) i_axi_mux (
    .clk_i,  // Clock
    .rst_ni, // Asynchronous reset active low
    .test_i, // Test Mode enable
    .slv_reqs_i  ( slv_reqs  ),
    .slv_resps_o ( slv_resps ),
    .mst_req_o   ( mst_req   ),
    .mst_resp_i  ( mst_resp  )
  );

  // pragma translate_off
  `ifndef VERILATOR
    initial begin: p_assertions
      AddrWidth: assert (AxiAddrWidth > 0) else $fatal("Axi Parameter has to be > 0!");
      DataWidth: assert (AxiDataWidth > 0) else $fatal("Axi Parameter has to be > 0!");
    end
  `endif
  // pragma translate_on
endmodule