tb_axi_lite_xbar.sv 6.9 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
// Copyright (c) 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Fabian Schuiki <fschuiki@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

// Directed Random Verification Testbench for `axi_lite_xbar`:  The crossbar is instantiated with
// a number of random axi master and slave modules. Each random master executes a fixed number of
// writes and reads over the whole addess map. All masters simultaneously issue transactions
// through the crossbar, thereby fully saturating all its bandwidth.

`include "axi/typedef.svh"
`include "axi/assign.svh"

module tb_axi_lite_xbar;
  // Dut parameters
  localparam int unsigned NoMasters   = 32'd6;    // How many Axi Masters there are
  localparam int unsigned NoSlaves    = 32'd8;    // How many Axi Slaves  there are
  // Random master no Transactions
  localparam int unsigned NoWrites   = 32'd10000;  // How many writes per master
  localparam int unsigned NoReads    = 32'd10000;  // How many reads per master
  // timing parameters
  localparam time CyclTime = 10ns;
  localparam time ApplTime =  2ns;
  localparam time TestTime =  8ns;
  // axi configuration
  localparam int unsigned AxiAddrWidth      =  32'd32;    // Axi Address Width
  localparam int unsigned AxiDataWidth      =  32'd64;    // Axi Data Width
  localparam int unsigned AxiStrbWidth      =  AxiDataWidth / 32'd8;
  // in the bench can change this variables which are set here freely
  localparam axi_pkg::xbar_cfg_t xbar_cfg = '{
    NoSlvPorts:         NoMasters,
    NoMstPorts:         NoSlaves,
    MaxMstTrans:        32'd10,
    MaxSlvTrans:        32'd6,
    FallThrough:        1'b0,
    LatencyMode:        axi_pkg::CUT_ALL_AX,
    AxiAddrWidth:       AxiAddrWidth,
    AxiDataWidth:       AxiDataWidth,
    NoAddrRules:        32'd8,
    default:            '0
  };
  typedef logic [AxiAddrWidth-1:0]      addr_t;
  typedef axi_pkg::xbar_rule_32_t       rule_t; // Has to be the same width as axi addr
  typedef logic [AxiDataWidth-1:0]      data_t;
  typedef logic [AxiStrbWidth-1:0]      strb_t;

  localparam rule_t [xbar_cfg.NoAddrRules-1:0] AddrMap = '{
    '{idx: 32'd7, start_addr: 32'h0001_0000, end_addr: 32'h0001_1000},
    '{idx: 32'd6, start_addr: 32'h0000_9000, end_addr: 32'h0001_0000},
    '{idx: 32'd5, start_addr: 32'h0000_8000, end_addr: 32'h0000_9000},
    '{idx: 32'd4, start_addr: 32'h0000_7000, end_addr: 32'h0000_8000},
    '{idx: 32'd3, start_addr: 32'h0000_6300, end_addr: 32'h0000_7000},
    '{idx: 32'd2, start_addr: 32'h0000_4000, end_addr: 32'h0000_6300},
    '{idx: 32'd1, start_addr: 32'h0000_3000, end_addr: 32'h0000_4000},
    '{idx: 32'd0, start_addr: 32'h0000_0000, end_addr: 32'h0000_3000}
  };

  typedef axi_test::axi_lite_rand_master #(
    // AXI interface parameters
    .AW ( AxiAddrWidth       ),
    .DW ( AxiDataWidth       ),
    // Stimuli application and test time
    .TA ( ApplTime           ),
    .TT ( TestTime           ),
    .MIN_ADDR ( 32'h0000_0000 ),
    .MAX_ADDR ( 32'h0001_3000 ),
    .MAX_READ_TXNS  ( 10 ),
    .MAX_WRITE_TXNS ( 10 )
  ) rand_lite_master_t;
  typedef axi_test::axi_lite_rand_slave #(
    // AXI interface parameters
    .AW ( AxiAddrWidth       ),
    .DW ( AxiDataWidth       ),
    // Stimuli application and test time
    .TA ( ApplTime           ),
    .TT ( TestTime           )
  ) rand_lite_slave_t;

  // -------------
  // DUT signals
  // -------------
  logic clk;
  // DUT signals
  logic rst_n;
  logic [NoMasters-1:0] end_of_sim;

  // -------------------------------
  // AXI Interfaces
  // -------------------------------
  AXI_LITE #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
    .AXI_DATA_WIDTH ( AxiDataWidth      )
  ) master [NoMasters-1:0] ();
  AXI_LITE_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
    .AXI_DATA_WIDTH ( AxiDataWidth      )
  ) master_dv [NoMasters-1:0] (clk);
  for (genvar i = 0; i < NoMasters; i++) begin : gen_conn_dv_masters
    `AXI_LITE_ASSIGN(master[i], master_dv[i])
  end

  AXI_LITE #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth     ),
    .AXI_DATA_WIDTH ( AxiDataWidth     )
  ) slave [NoSlaves-1:0] ();
  AXI_LITE_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth     ),
    .AXI_DATA_WIDTH ( AxiDataWidth     )
  ) slave_dv [NoSlaves-1:0](clk);
  for (genvar i = 0; i < NoSlaves; i++) begin : gen_conn_dv_slaves
    `AXI_LITE_ASSIGN(slave_dv[i], slave[i])
  end
  // -------------------------------
  // AXI Rand Masters and Slaves
  // -------------------------------
  // Masters control simulation run time
  for (genvar i = 0; i < NoMasters; i++) begin : gen_rand_master
    initial begin : proc_generate_traffic
      automatic rand_lite_master_t lite_axi_master = new ( master_dv[i], $sformatf("MST_%0d", i));
      automatic data_t          data = '0;
      automatic axi_pkg::resp_t resp = '0;
      end_of_sim[i] <= 1'b0;
      lite_axi_master.reset();
      @(posedge rst_n);
      lite_axi_master.write(32'h0000_1100, axi_pkg::prot_t'('0), 64'hDEADBEEFDEADBEEF, 8'hFF, resp);
      lite_axi_master.read(32'h0000_e100, axi_pkg::prot_t'('0), data, resp);
      lite_axi_master.run(NoReads, NoWrites);
      end_of_sim[i] <= 1'b1;
    end
  end

  for (genvar i = 0; i < NoSlaves; i++) begin : gen_rand_slave
    initial begin : proc_recieve_traffic
      automatic rand_lite_slave_t lite_axi_slave = new( slave_dv[i] , $sformatf("SLV_%0d", i));
      lite_axi_slave.reset();
      @(posedge rst_n);
      lite_axi_slave.run();
    end
  end

  initial begin : proc_stop_sim
    wait (&end_of_sim);
    repeat (1000) @(posedge clk);
    $display("Simulation stopped as all Masters transferred their data, Success.",);
    $stop();
  end

  //-----------------------------------
  // Clock generator
  //-----------------------------------
  clk_rst_gen #(
    .ClkPeriod    ( CyclTime ),
    .RstClkCycles ( 5        )
  ) i_clk_gen (
    .clk_o (clk),
    .rst_no(rst_n)
  );

  //-----------------------------------
  // DUT
  //-----------------------------------
  axi_lite_xbar_intf #(
    .Cfg       ( xbar_cfg ),
    .rule_t    ( rule_t   )
  ) i_xbar_dut (
    .clk_i                  ( clk     ),
    .rst_ni                 ( rst_n   ),
    .test_i                 ( 1'b0    ),
    .slv_ports              ( master  ),
    .mst_ports              ( slave   ),
    .addr_map_i             ( AddrMap ),
    .en_default_mst_port_i  ( '0      ),
    .default_mst_port_i     ( '0      )
  );
endmodule