tb_axi_modify_address.sv 7.48 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
// Copyright 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

`include "axi/assign.svh"
`include "axi/typedef.svh"

/// Testbench for `axi_modify_address`
module tb_axi_modify_address #(
  // DUT Parameters
  parameter int unsigned AXI_SLV_PORT_ADDR_WIDTH = 32,
  parameter int unsigned AXI_MST_PORT_ADDR_WIDTH = 48,
  parameter int unsigned AXI_DATA_WIDTH = 64,
  parameter int unsigned AXI_ID_WIDTH = 3,
  parameter int unsigned AXI_USER_WIDTH = 2,
  // TB Parameters
  parameter time TCLK = 10ns,
  parameter time TA = TCLK * 1/4,
  parameter time TT = TCLK * 3/4,
  parameter int unsigned REQ_MIN_WAIT_CYCLES = 0,
  parameter int unsigned REQ_MAX_WAIT_CYCLES = 10,
  parameter int unsigned RESP_MIN_WAIT_CYCLES = 0,
  parameter int unsigned RESP_MAX_WAIT_CYCLES = REQ_MAX_WAIT_CYCLES/2,
  parameter int unsigned N_TXNS = 1000
);

  localparam int unsigned N_RD_TXNS = N_TXNS / 2;
  localparam int unsigned N_WR_TXNS = N_TXNS / 2;

  // Clock and Reset
  logic clk,
        rst_n;
  clk_rst_gen #(
    .ClkPeriod     (TCLK),
    .RstClkCycles  (5)
  ) i_clk_rst_gen (
    .clk_o  (clk),
    .rst_no (rst_n)
  );

  // AXI Interfaces
  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH (AXI_SLV_PORT_ADDR_WIDTH),
    .AXI_DATA_WIDTH (AXI_DATA_WIDTH),
    .AXI_ID_WIDTH   (AXI_ID_WIDTH),
    .AXI_USER_WIDTH (AXI_USER_WIDTH)
  ) upstream_dv (
    .clk_i  (clk)
  );
  AXI_BUS #(
    .AXI_ADDR_WIDTH (AXI_SLV_PORT_ADDR_WIDTH),
    .AXI_DATA_WIDTH (AXI_DATA_WIDTH),
    .AXI_ID_WIDTH   (AXI_ID_WIDTH),
    .AXI_USER_WIDTH (AXI_USER_WIDTH)
  ) upstream ();
  `AXI_ASSIGN(upstream, upstream_dv)
  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH (AXI_MST_PORT_ADDR_WIDTH),
    .AXI_DATA_WIDTH (AXI_DATA_WIDTH),
    .AXI_ID_WIDTH   (AXI_ID_WIDTH),
    .AXI_USER_WIDTH (AXI_USER_WIDTH)
  ) downstream_dv (
    .clk_i  (clk)
  );
  AXI_BUS #(
    .AXI_ADDR_WIDTH (AXI_MST_PORT_ADDR_WIDTH),
    .AXI_DATA_WIDTH (AXI_DATA_WIDTH),
    .AXI_ID_WIDTH   (AXI_ID_WIDTH),
    .AXI_USER_WIDTH (AXI_USER_WIDTH)
  ) downstream ();
  `AXI_ASSIGN(downstream_dv, downstream)

  // Types
  typedef logic [AXI_MST_PORT_ADDR_WIDTH-1:0]   addr_t;
  typedef logic [AXI_DATA_WIDTH-1:0]            data_t;
  typedef logic [AXI_ID_WIDTH-1:0]              id_t;
  typedef logic [AXI_MST_PORT_ADDR_WIDTH-13:0]  page_t;
  typedef logic [AXI_DATA_WIDTH/8-1:0]          strb_t;
  typedef logic [AXI_USER_WIDTH-1:0]            user_t;
  `AXI_TYPEDEF_AW_CHAN_T(aw_t, addr_t, id_t, user_t)
  `AXI_TYPEDEF_W_CHAN_T(w_t, data_t, strb_t, user_t)
  `AXI_TYPEDEF_B_CHAN_T(b_t, id_t, user_t)
  `AXI_TYPEDEF_AR_CHAN_T(ar_t, addr_t, id_t, user_t)
  `AXI_TYPEDEF_R_CHAN_T(r_t, data_t, id_t, user_t)

  // DUT
  addr_t  mst_aw_addr,
          mst_ar_addr;
  axi_modify_address_intf #(
    .AXI_SLV_PORT_ADDR_WIDTH  (AXI_SLV_PORT_ADDR_WIDTH),
    .AXI_MST_PORT_ADDR_WIDTH  (AXI_MST_PORT_ADDR_WIDTH),
    .AXI_DATA_WIDTH           (AXI_DATA_WIDTH),
    .AXI_ID_WIDTH             (AXI_ID_WIDTH),
    .AXI_USER_WIDTH           (AXI_USER_WIDTH)
  ) i_dut (
    .slv            (upstream),
    .mst_aw_addr_i  (mst_aw_addr),
    .mst_ar_addr_i  (mst_ar_addr),
    .mst            (downstream)
  );

  // Test harness master
  typedef axi_test::axi_rand_master #(
    .AW                   (AXI_SLV_PORT_ADDR_WIDTH),
    .DW                   (AXI_DATA_WIDTH),
    .IW                   (AXI_ID_WIDTH),
    .UW                   (AXI_USER_WIDTH),
    .TA                   (TA),
    .TT                   (TT),
    .MAX_READ_TXNS        (N_TXNS),
    .MAX_WRITE_TXNS       (N_TXNS),
    .AX_MIN_WAIT_CYCLES   (REQ_MIN_WAIT_CYCLES),
    .AX_MAX_WAIT_CYCLES   (REQ_MAX_WAIT_CYCLES),
    .W_MIN_WAIT_CYCLES    (REQ_MIN_WAIT_CYCLES),
    .W_MAX_WAIT_CYCLES    (REQ_MAX_WAIT_CYCLES),
    .RESP_MIN_WAIT_CYCLES (RESP_MIN_WAIT_CYCLES),
    .RESP_MAX_WAIT_CYCLES (RESP_MAX_WAIT_CYCLES),
    .AXI_MAX_BURST_LEN    (16)
  ) axi_master_t;
  axi_master_t axi_master = new(upstream_dv);
  initial begin
    wait (rst_n);
    axi_master.run(N_RD_TXNS, N_WR_TXNS);
    #(10*TCLK);
    $finish();
  end

  // Test harness slave
  typedef axi_test::axi_rand_slave #(
    .AW                   (AXI_MST_PORT_ADDR_WIDTH),
    .DW                   (AXI_DATA_WIDTH),
    .IW                   (AXI_ID_WIDTH),
    .UW                   (AXI_USER_WIDTH),
    .TA                   (TA),
    .TT                   (TT),
    .AX_MIN_WAIT_CYCLES   (RESP_MIN_WAIT_CYCLES),
    .AX_MAX_WAIT_CYCLES   (RESP_MAX_WAIT_CYCLES),
    .R_MIN_WAIT_CYCLES    (RESP_MIN_WAIT_CYCLES),
    .R_MAX_WAIT_CYCLES    (RESP_MAX_WAIT_CYCLES),
    .RESP_MIN_WAIT_CYCLES (RESP_MIN_WAIT_CYCLES),
    .RESP_MAX_WAIT_CYCLES (RESP_MAX_WAIT_CYCLES)
  ) axi_slave_t;
  axi_slave_t axi_slave = new(downstream_dv);
  initial begin
    wait (rst_n);
    axi_slave.run();
  end

  // Assign offset within page from upstream.
  assign mst_aw_addr[11:0] = upstream.aw_addr[11:0];
  assign mst_ar_addr[11:0] = upstream.ar_addr[11:0];

  // Randomize page number.
  page_t  mst_aw_page,
          mst_ar_page;
  assign mst_aw_addr[AXI_MST_PORT_ADDR_WIDTH-1:12] = mst_aw_page;
  assign mst_ar_addr[AXI_MST_PORT_ADDR_WIDTH-1:12] = mst_ar_page;
  initial begin
    logic rand_success;
    mst_aw_page = '0;
    mst_ar_page = '0;
    wait (rst_n);
    forever begin
      @(posedge clk);
      #TA;
      if (!(upstream.aw_valid && !upstream.aw_ready)) begin
        rand_success = std::randomize(mst_aw_page);
        assert(rand_success);
      end
      if (!(upstream.ar_valid && !upstream.ar_ready)) begin
        rand_success = std::randomize(mst_ar_page);
        assert(rand_success);
      end
    end
  end

  // Signals for expected and actual responses
  aw_t  aw_exp, aw_act;
  w_t   w_exp,  w_act;
  b_t   b_exp,  b_act;
  ar_t  ar_exp, ar_act;
  r_t   r_exp,  r_act;

  // Compute expected responses.
  always_comb begin
    `AXI_SET_TO_AW(aw_exp, upstream)
    aw_exp.addr = mst_aw_addr;
    `AXI_SET_TO_AR(ar_exp, upstream)
    ar_exp.addr = mst_ar_addr;
  end
  `AXI_ASSIGN_TO_W(w_exp, upstream)
  `AXI_ASSIGN_TO_B(b_exp, downstream)
  `AXI_ASSIGN_TO_R(r_exp, downstream)

  // Determine actual responses.
  `AXI_ASSIGN_TO_AW(aw_act, downstream)
  `AXI_ASSIGN_TO_W(w_act, downstream)
  `AXI_ASSIGN_TO_B(b_act, upstream)
  `AXI_ASSIGN_TO_AR(ar_act, downstream)
  `AXI_ASSIGN_TO_R(r_act, upstream)

  // Assert that actual responses match expected responses.
  default disable iff (~rst_n);
  aw: assert property(@(posedge clk)
    downstream.aw_valid |-> aw_act == aw_exp
  ) else $error("AW %p != %p!", aw_act, aw_exp);
  w: assert property(@(posedge clk)
    downstream.w_valid |-> w_act == w_exp
  ) else $error("W %p != %p!", w_act, w_exp);
  b: assert property(@(posedge clk)
    upstream.b_valid |-> b_act == b_exp
  ) else $error("B %p != %p!", b_act, b_exp);
  ar: assert property(@(posedge clk)
    downstream.ar_valid |-> ar_act == ar_exp
  ) else $error("AR %p != %p!", ar_act, ar_exp);
  r: assert property(@(posedge clk)
    upstream.r_valid |-> r_act == r_exp
  ) else $error("R %p != %p!", r_act, r_exp);

endmodule