axi_lite_regs.sv 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
// Copyright (c) 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

`include "axi/typedef.svh"
`include "common_cells/registers.svh"

/// AXI4-Lite registers with optional read-only and protection features.
///
/// This module contains a parametrizable number of bytes in flip-flops (FFs) and makes them
/// accessible on two interfaces:
/// - as memory-mapped AXI4-Lite slave (ports `axi_req_i` and `axi_resp_o`), and
/// - as wires to directly attach other hardware logic (ports `reg_d_i`, `reg_load_i`, `reg_q_o`,
///   `wr_active_o`, `rd_active_o`).
///
/// ## Address Map
///
/// The address range covered by this module is defined by `RegNumBytes`.  The base address of this
/// module *must* be aligned to `RegNumBytes`.  The first byte is accessible at offset `0`, the last
/// byte is accessible at offset `RegNumBytes-1`.  The slice `[$clog2(RegNumBytes)-1:0]` of a given
/// address is used to decode the accessed byte within this module.  Address bits outside that slice
/// are ignored.  Accesses to addresses within the slice but with an offset above the last byte are
/// responded with `SLVERR`.
///
/// ## Read-Only Bytes
///
/// Any set of bytes can be configured as read-only by setting the `AxiReadOnly` parameter
/// accordingly.  A read-only byte cannot be written via the AXI interface, but it can be changed
/// from the logic interface.
///
/// When one or multiple bytes in a write transaction are read-only, they are not modified.  A write
/// transaction is responded with `OKAY` if it wrote at least one byte.  Write transactions / that
/// have `wstrb` set *only* for read-only bytes are responded with `SLVERR`.
///
/// This read-only mechanism can be used to expose constants (lookup-table data) as follows.
///
/// ### Exposing Constants
///
/// To make a byte with constant value (e.g., implemented as LUT instead of FF after synthesis)
/// readable from the AXI4-Lite port:
/// - Make the byte read-only from the AXI4-Lite port by setting its `AxiReadOnly` bit to `1`.
/// - Disable loading the byte from logic by driving its `reg_load_i` bit to `0`.
/// - Define the value of the byte by setting its `RegRstVal` entry.
///
/// ## Protection
///
/// This module can be configured to only allow *privileged* and/or *secure* accesses (see A4.7
/// of the AXI4 specification) by setting the `PrivProtOnly` and/or `SecuProtOnly` parameter,
/// respectively.
module axi_lite_regs #(
  /// The size of the register field in bytes.
  parameter int unsigned RegNumBytes = 32'd0,
  /// Address width of the AXI4-Lite port.
  ///
  /// The minimum value of this parameter is `$clog2(RegNumBytes)`.
  parameter int unsigned AxiAddrWidth = 32'd0,
  /// Data width of the AXI4-Lite port.
  parameter int unsigned AxiDataWidth = 32'd0,
  /// Only allow *privileged* accesses on the AXI4-Lite port.
  ///
  /// If this parameter is set to `1`, this module only allows reads and writes that have the
  /// `AxProt[0]` bit set.  If a transaction does not have the `AxProt[0]` bit set, this module
  /// replies with `SLVERR` and does not read or write register data.
  parameter bit PrivProtOnly = 1'b0,
  /// Only allow *secure* accesses on the AXI4-Lite port.
  ///
  /// If this parameter is set to `1`, this module only allows reads and writes that have the
  /// `AxProt[1]` bit set.  If a transaction does not have the `AxProt[1]` bit set, this module
  /// replies with `SLVERR` and does not read or write register data.
  parameter bit SecuProtOnly = 1'b0,
  /// Define individual bytes as *read-only from the AXI4-Lite port*.
  ///
  /// This parameter is an array with one bit for each byte.  If that bit is `0`, the byte can be
  /// read and written on the AXI4-Lite port; if that bit is `1`, the byte can only be read on the
  /// AXI4-Lite port.
  parameter logic [RegNumBytes-1:0] AxiReadOnly = {RegNumBytes{1'b0}},
  /// Constant (=**do not overwrite!**); type of a byte is 8 bit.
  parameter type byte_t = logic [7:0],
  /// Reset value for the whole register array.
  ///
  /// This parameter is an array with one byte value for each byte.  At reset, each byte is
  /// assigned its value from this array.
  parameter byte_t [RegNumBytes-1:0] RegRstVal = {RegNumBytes{8'h00}},
  /// Request struct of the AXI4-Lite port.
  parameter type req_lite_t = logic,
  /// Response struct of the AXI4-Lite port.
  parameter type resp_lite_t = logic
) (
  /// Rising-edge clock of all ports
  input  logic clk_i,
  /// Asynchronous reset, active low
  input  logic rst_ni,
  /// AXI4-Lite slave request
  input  req_lite_t axi_req_i,
  /// AXI4-Lite slave response
  output resp_lite_t axi_resp_o,
  /// Signals that a byte is being written from the AXI4-Lite port in the current clock cycle.  This
  /// signal is asserted regardless of the value of `AxiReadOnly` and can therefore be used by
  /// surrounding logic to react to write-on-read-only-byte errors.
  output logic [RegNumBytes-1:0] wr_active_o,
  /// Signals that a byte is being read from the AXI4-Lite port in the current clock cycle.
  output logic [RegNumBytes-1:0] rd_active_o,
  /// Input value of each byte.  If `reg_load_i` is `1` for a byte in the current clock cycle, the
  /// byte register in this module is set to the value of the byte in `reg_d_i` at the next clock
  /// edge.
  input  byte_t [RegNumBytes-1:0] reg_d_i,
  /// Load enable of each byte.
  ///
  /// If `reg_load_i` is `1` for a byte defined as non-read-only in a clock cycle, an AXI4-Lite
  /// write transaction is stalled when it tries to write the same byte.  That is, a write
  /// transaction is stalled if all of the following conditions are true for the byte at index `i`:
  /// - `AxiReadOnly[i]` is `0`,
  /// - `reg_load_i[i]` is `1`,
  /// - the bit in `axi_req_i.w.strb` that affects the byte is `1`.
  ///
  /// If unused, set this input to `'0`.
  input  logic  [RegNumBytes-1:0] reg_load_i,
  /// The registered value of each byte.
  output byte_t [RegNumBytes-1:0] reg_q_o
);

  // Define the number of register chunks needed to map all `RegNumBytes` to the AXI channel.
  // Eg: `AxiDataWidth == 32'd32`
  // AXI strb:                       3 2 1 0
  //                                 | | | |
  //             *---------*---------* | | |
  //             | *-------|-*-------|-* | |
  //             | | *-----|-|-*-----|-|-* |
  //             | | | *---|-|-|-*---|-|-|-*
  //             | | | |   | | | |   | | | |
  // Reg byte:   B A 9 8   7 6 5 4   3 2 1 0
  //           | chunk_2 | chunk_1 | chunk_0 |
  localparam int unsigned AxiStrbWidth  = AxiDataWidth / 32'd8;
  localparam int unsigned NumChunks     = cf_math_pkg::ceil_div(RegNumBytes, AxiStrbWidth);
  localparam int unsigned ChunkIdxWidth = (NumChunks > 32'd1) ? $clog2(NumChunks) : 32'd1;
  // Type of the index to identify a specific register chunk.
  typedef logic [ChunkIdxWidth-1:0] chunk_idx_t;

  // Find out how many bits of the address are applicable for this module.
  // Look at the `AddrWidth` number of LSBs to calculate the multiplexer index of the AXI.
  localparam int unsigned AddrWidth = (RegNumBytes > 32'd1) ? ($clog2(RegNumBytes)+1) : 32'd2;
  typedef logic [AddrWidth-1:0] addr_t;

  // Define the address map which maps each register chunk onto an AXI address.
  typedef struct packed {
    int unsigned idx;
    addr_t       start_addr;
    addr_t       end_addr;
  } axi_rule_t;
  axi_rule_t    [NumChunks-1:0] addr_map;
  for (genvar i = 0; i < NumChunks; i++) begin : gen_addr_map
    assign addr_map[i] = axi_rule_t'{
      idx:        i,
      start_addr: addr_t'( i   * AxiStrbWidth),
      end_addr:   addr_t'((i+1)* AxiStrbWidth)
    };
  end

  // Channel definitions for spill register
  typedef logic [AxiDataWidth-1:0] axi_data_t;
  `AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_lite_t)
  `AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_lite_t, axi_data_t)

  // Register array declarations
  byte_t [RegNumBytes-1:0] reg_q,        reg_d;
  logic  [RegNumBytes-1:0] reg_update;

  // Write logic
  chunk_idx_t              aw_chunk_idx;
  logic                    aw_dec_valid;
  b_chan_lite_t            b_chan;
  logic                    b_valid,      b_ready;
  logic                    aw_prot_ok;
  logic                    chunk_loaded, chunk_ro;

  // Flag for telling that the protection level is the right one.
  assign aw_prot_ok = (PrivProtOnly ? axi_req_i.aw.prot[0] : 1'b1) &
                      (SecuProtOnly ? axi_req_i.aw.prot[1] : 1'b1);
  // Have a flag which is true if any of the bytes inside a chunk are directly loaded.
  logic [AxiStrbWidth-1:0] load;
  logic [AxiStrbWidth-1:0] read_only;
  // Address of the lowest byte byte of a chunk accessed by an AXI write transaction.
  addr_t byte_w_addr;
  assign byte_w_addr = addr_t'(aw_chunk_idx * AxiStrbWidth);

  for (genvar i = 0; i < AxiStrbWidth; i++) begin : gen_load_assign
    // Indexed byte address
    addr_t reg_w_idx;
    assign reg_w_idx = byte_w_addr + addr_t'(i);
    // Only assert load flag for non read only bytes.
    assign load[i]      = (reg_w_idx < RegNumBytes) ?
        (reg_load_i[reg_w_idx] && !AxiReadOnly[reg_w_idx]) : 1'b0;
    // Flag to find out that all bytes of the chunk are read only.
    assign read_only[i] = (reg_w_idx < RegNumBytes) ? AxiReadOnly[reg_w_idx] : 1'b1;
  end
  // Only assert the loaded flag if there could be a load conflict between a strobe and load
  // signal.
  assign chunk_loaded = |(load & axi_req_i.w.strb);
  assign chunk_ro     = &read_only;


  // Register write logic.
  always_comb begin
    automatic addr_t reg_byte_idx = '0;
    // default assignments
    reg_d               = reg_q;
    reg_update          = '0;
    // Channel handshake
    axi_resp_o.aw_ready = 1'b0;
    axi_resp_o.w_ready  = 1'b0;
    // Response
    b_chan              = b_chan_lite_t'{resp: axi_pkg::RESP_SLVERR, default: '0};
    b_valid             = 1'b0;
    // write active flag
    wr_active_o         = '0;

    // Control
    // Handle all non AXI register loads.
    for (int unsigned i = 0; i < RegNumBytes; i++) begin
      if (reg_load_i[i]) begin
        reg_d[i]      = reg_d_i[i];
        reg_update[i] = 1'b1;
      end
    end

    // Handle load from AXI write.
    // `b_ready` is allowed to be a condition as it comes from a spill register.
    if (axi_req_i.aw_valid && axi_req_i.w_valid && b_ready) begin
      // The write can be performed when these conditions are true:
      // - AW decode is valid.
      // - `axi_req_i.aw.prot` has the right value.
      if (aw_dec_valid && aw_prot_ok) begin
        // Stall write as long as any direct load is going on in the current chunk.
        // Read-only bytes within a chunk have no influence on stalling.
        if (!chunk_loaded) begin
          // Go through all bytes on the W channel.
          for (int unsigned i = 0; i < AxiStrbWidth; i++) begin
            reg_byte_idx = byte_w_addr + addr_t'(i);
            // Only execute if the byte is mapped onto the register array.
            if (reg_byte_idx < RegNumBytes) begin
              // Only update the reg from an AXI write if it is not `ReadOnly`.
              // Only connect the data and load to the reg, if the byte is written from AXI.
              // This allows for simultaneous direct load onto unwritten bytes.
              if (!AxiReadOnly[reg_byte_idx] && axi_req_i.w.strb[i]) begin
                reg_d[reg_byte_idx]      = axi_req_i.w.data[8*i+:8];
                reg_update[reg_byte_idx] = 1'b1;
              end
              wr_active_o[reg_byte_idx] = axi_req_i.w.strb[i];
            end
          end
          b_chan.resp         = chunk_ro ? axi_pkg::RESP_SLVERR : axi_pkg::RESP_OKAY;
          b_valid             = 1'b1;
          axi_resp_o.aw_ready = 1'b1;
          axi_resp_o.w_ready  = 1'b1;
        end
      end else begin
        // Send default B error response on each not allowed write transaction.
        b_valid             = 1'b1;
        axi_resp_o.aw_ready = 1'b1;
        axi_resp_o.w_ready  = 1'b1;
      end
    end
  end

  // Read logic
  chunk_idx_t   ar_chunk_idx;
  logic         ar_dec_valid;
  r_chan_lite_t r_chan;
  logic         r_valid,      r_ready;
  logic         ar_prot_ok;
  assign ar_prot_ok = (PrivProtOnly ? axi_req_i.ar.prot[0] : 1'b1) &
                      (SecuProtOnly ? axi_req_i.ar.prot[1] : 1'b1);
  // Multiplexer to determine R channel
  always_comb begin
    automatic int unsigned reg_byte_idx = '0;
    // Default R channel throws an error.
    r_chan = r_chan_lite_t'{
      data: axi_data_t'(32'hBA5E1E55),
      resp: axi_pkg::RESP_SLVERR,
      default: '0
    };
    // Default nothing is reading the registers
    rd_active_o = '0;
    // Read is valid on a chunk
    if (ar_dec_valid && ar_prot_ok) begin
      // Calculate the corresponding byte index from `ar_chunk_idx`.
      for (int unsigned i = 0; i < AxiStrbWidth; i++) begin
        reg_byte_idx = unsigned'(ar_chunk_idx) * AxiStrbWidth + i;
        // Guard to not index outside the `reg_q_o` array.
        if (reg_byte_idx < RegNumBytes) begin
          r_chan.data[8*i+:8]       = reg_q_o[reg_byte_idx];
          rd_active_o[reg_byte_idx] = r_valid & r_ready;
        end else begin
          r_chan.data[8*i+:8] = 8'h00;
        end
      end
      r_chan.resp = axi_pkg::RESP_OKAY;
    end
  end

  assign r_valid             = axi_req_i.ar_valid; // to spill register
  assign axi_resp_o.ar_ready = r_ready;            // from spill register

  // Register array mapping, even read only register can be loaded over `reg_load_i`.
  for (genvar i = 0; i < RegNumBytes; i++) begin : gen_rw_regs
    `FFLARN(reg_q[i], reg_d[i], reg_update[i], RegRstVal[i], clk_i, rst_ni)
    assign reg_q_o[i] = reg_q[i];
  end

  addr_decode #(
    .NoIndices ( NumChunks  ),
    .NoRules   ( NumChunks  ),
    .addr_t    ( addr_t     ),
    .rule_t    ( axi_rule_t )
  ) i_aw_decode (
    .addr_i           ( addr_t'(axi_req_i.aw.addr) ), // Only look at the `AddrWidth` LSBs.
    .addr_map_i       ( addr_map                   ),
    .idx_o            ( aw_chunk_idx               ),
    .dec_valid_o      ( aw_dec_valid               ),
    .dec_error_o      ( /*not used*/               ),
    .en_default_idx_i ( '0                         ),
    .default_idx_i    ( '0                         )
  );

  addr_decode #(
    .NoIndices ( NumChunks  ),
    .NoRules   ( NumChunks  ),
    .addr_t    ( addr_t     ),
    .rule_t    ( axi_rule_t )
  ) i_ar_decode (
    .addr_i           ( addr_t'(axi_req_i.ar.addr) ), // Only look at the `AddrWidth` LSBs.
    .addr_map_i       ( addr_map                   ),
    .idx_o            ( ar_chunk_idx               ),
    .dec_valid_o      ( ar_dec_valid               ),
    .dec_error_o      ( /*not used*/               ),
    .en_default_idx_i ( '0                         ),
    .default_idx_i    ( '0                         )
  );

  // Add a cycle delay on AXI response, cut all comb paths between slave port inputs and outputs.
  spill_register #(
    .T      ( b_chan_lite_t ),
    .Bypass ( 1'b0          )
  ) i_b_spill_register (
    .clk_i,
    .rst_ni,
    .valid_i ( b_valid            ),
    .ready_o ( b_ready            ),
    .data_i  ( b_chan             ),
    .valid_o ( axi_resp_o.b_valid ),
    .ready_i ( axi_req_i.b_ready  ),
    .data_o  ( axi_resp_o.b       )
  );

  // Add a cycle delay on AXI response, cut all comb paths between slave port inputs and outputs.
  spill_register #(
    .T      ( r_chan_lite_t ),
    .Bypass ( 1'b0          )
  ) i_r_spill_register (
    .clk_i,
    .rst_ni,
    .valid_i ( r_valid            ),
    .ready_o ( r_ready            ),
    .data_i  ( r_chan             ),
    .valid_o ( axi_resp_o.r_valid ),
    .ready_i ( axi_req_i.r_ready  ),
    .data_o  ( axi_resp_o.r       )
  );

  // Validate parameters.
  // pragma translate_off
  `ifndef VERILATOR
    initial begin: p_assertions
      assert (RegNumBytes > 32'd0) else
          $fatal(1, "The number of bytes must be at least 1!");
      assert (AxiAddrWidth >= AddrWidth) else
          $fatal(1, "AxiAddrWidth is not wide enough, has to be at least %0d-bit wide!", AddrWidth);
      assert ($bits(axi_req_i.aw.addr) == AxiAddrWidth) else
          $fatal(1, "AddrWidth does not match req_i.aw.addr!");
      assert ($bits(axi_req_i.ar.addr) == AxiAddrWidth) else
          $fatal(1, "AddrWidth does not match req_i.ar.addr!");
      assert (AxiDataWidth == $bits(axi_req_i.w.data)) else
          $fatal(1, "AxiDataWidth has to be: AxiDataWidth == $bits(axi_req_i.w.data)!");
      assert (AxiDataWidth == $bits(axi_resp_o.r.data)) else
          $fatal(1, "AxiDataWidth has to be: AxiDataWidth == $bits(axi_resp_o.r.data)!");
      assert (RegNumBytes == $bits(AxiReadOnly)) else
          $fatal(1, "Each register needs a `ReadOnly` flag!");
    end
    default disable iff (~rst_ni);
    for (genvar i = 0; i < RegNumBytes; i++) begin
      assert property (@(posedge clk_i) (!reg_load_i[i] && AxiReadOnly[i] |=> $stable(reg_q_o[i])))
          else $fatal(1, "Read-only register at `byte_index: %0d` was changed by AXI!", i);
    end
  `endif
  // pragma translate_on
endmodule


`include "axi/assign.svh"
/// Interface variant of [`axi_lite_regs`](module.axi_lite_regs).
///
/// See the documentation of the main module for the definition of ports and parameters.
module axi_lite_regs_intf #(
  parameter type byte_t = logic [7:0],
  parameter int unsigned                REG_NUM_BYTES  = 32'd0,
  parameter int unsigned                AXI_ADDR_WIDTH = 32'd0,
  parameter int unsigned                AXI_DATA_WIDTH = 32'd0,
  parameter bit                         PRIV_PROT_ONLY = 1'd0,
  parameter bit                         SECU_PROT_ONLY = 1'd0,
  parameter logic  [REG_NUM_BYTES-1:0]  AXI_READ_ONLY = {REG_NUM_BYTES{1'b0}},
  parameter byte_t [REG_NUM_BYTES-1:0]  REG_RST_VAL = {REG_NUM_BYTES{8'h00}}
) (
  input  logic                      clk_i,
  input  logic                      rst_ni,
  AXI_LITE.Slave                    slv,
  output logic  [REG_NUM_BYTES-1:0] wr_active_o,
  output logic  [REG_NUM_BYTES-1:0] rd_active_o,
  input  byte_t [REG_NUM_BYTES-1:0] reg_d_i,
  input  logic  [REG_NUM_BYTES-1:0] reg_load_i,
  output byte_t [REG_NUM_BYTES-1:0] reg_q_o
);

  typedef logic [AXI_ADDR_WIDTH-1:0]   addr_t;
  typedef logic [AXI_DATA_WIDTH-1:0]   data_t;
  typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
  `AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_lite_t, addr_t)
  `AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_lite_t, data_t, strb_t)
  `AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_lite_t)
  `AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_lite_t, addr_t)
  `AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_lite_t, data_t)
  `AXI_LITE_TYPEDEF_REQ_T(req_lite_t, aw_chan_lite_t, w_chan_lite_t, ar_chan_lite_t)
  `AXI_LITE_TYPEDEF_RESP_T(resp_lite_t, b_chan_lite_t, r_chan_lite_t)

  req_lite_t  axi_lite_req;
  resp_lite_t axi_lite_resp;

  `AXI_LITE_ASSIGN_TO_REQ(axi_lite_req, slv)
  `AXI_LITE_ASSIGN_FROM_RESP(slv, axi_lite_resp)

  axi_lite_regs #(
    .RegNumBytes  ( REG_NUM_BYTES  ),
    .AxiAddrWidth ( AXI_ADDR_WIDTH ),
    .AxiDataWidth ( AXI_DATA_WIDTH ),
    .PrivProtOnly ( PRIV_PROT_ONLY ),
    .SecuProtOnly ( SECU_PROT_ONLY ),
    .AxiReadOnly  ( AXI_READ_ONLY  ),
    .RegRstVal    ( REG_RST_VAL    ),
    .req_lite_t   ( req_lite_t     ),
    .resp_lite_t  ( resp_lite_t    )
  ) i_axi_lite_regs (
    .clk_i,
    .rst_ni,
    .axi_req_i   ( axi_lite_req  ),
    .axi_resp_o  ( axi_lite_resp ),
    .wr_active_o,
    .rd_active_o,
    .reg_d_i,
    .reg_load_i,
    .reg_q_o
  );

  // Validate parameters.
  // pragma translate_off
  `ifndef VERILATOR
    initial begin: p_assertions
      assert (AXI_ADDR_WIDTH == $bits(slv.aw_addr))
          else $fatal(1, "AXI_ADDR_WIDTH does not match slv interface!");
      assert (AXI_DATA_WIDTH == $bits(slv.w_data))
          else $fatal(1, "AXI_DATA_WIDTH does not match slv interface!");
    end
  `endif
  // pragma translate_on
endmodule