snitch_shared_muldiv.sv 13.3 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
// Copyright 2020 ETH Zurich and University of Bologna.
// Solderpad Hardware License, Version 0.51, see LICENSE for details.
// SPDX-License-Identifier: SHL-0.51

/// Shared Multiply/Divide a.k.a M Extension
/// Based on Ariane Multiply Divide
/// Author: Michael Schaffner,  <schaffner@iis.ee.ethz.ch>
/// Author: Florian Zaruba , <zarubaf@iis.ee.ethz.ch>

module snitch_shared_muldiv #(
  parameter int unsigned IdWidth = 5
) (
  input  logic                     clk_i,
  input  logic                     rst_i,
  // Accelerator Interface - Slave
  input  logic [31:0]              acc_qaddr_i, // unused
  input  logic [IdWidth-1:0]       acc_qid_i,
  input  logic [31:0]              acc_qdata_op_i, // RISC-V instruction
  input  logic [31:0]              acc_qdata_arga_i,
  input  logic [31:0]              acc_qdata_argb_i,
  input  logic [31:0]              acc_qdata_argc_i,
  input  logic                     acc_qvalid_i,
  output logic                     acc_qready_o,
  output logic [31:0]              acc_pdata_o,
  output logic [IdWidth-1:0]       acc_pid_o,
  output logic                     acc_perror_o,
  output logic                     acc_pvalid_o,
  input  logic                     acc_pready_i
);
  `include "common_cells/registers.svh"

  typedef struct packed {
    logic [31:0]        result;
    logic [IdWidth-1:0] id;
  } result_t;
  // input handshake
  logic div_valid_op, div_ready_op;
  logic mul_valid_op, mul_ready_op;
  // output handshake
  logic mul_valid, mul_ready;
  logic div_valid, div_ready;
  result_t div, mul, oup;
  logic illegal_instruction;

  always_comb begin
    mul_valid_op = 1'b0;
    div_valid_op = 1'b0;
    acc_qready_o = 1'b0;
    acc_perror_o = 1'b0;
    illegal_instruction = 1'b0;
    unique casez (acc_qdata_op_i)
      riscv_instr::MUL,
      riscv_instr::MULH,
      riscv_instr::MULHSU,
      riscv_instr::MULHU: begin
        mul_valid_op = acc_qvalid_i;
        acc_qready_o = mul_ready_op;
      end
      riscv_instr::DIV,
      riscv_instr::DIVU,
      riscv_instr::REM,
      riscv_instr::REMU: begin
        div_valid_op = acc_qvalid_i;
        acc_qready_o = div_ready_op;
      end
      default: illegal_instruction = 1'b1;
    endcase
  end

  // Multiplication
  multiplier #(
    .Width    ( 32      ),
    .IdWidth  ( IdWidth )
  ) i_multiplier (
    .clk_i,
    .rst_i,
    .id_i        ( acc_qid_i              ),
    .operator_i  ( acc_qdata_op_i         ),
    .operand_a_i ( acc_qdata_arga_i       ),
    .operand_b_i ( acc_qdata_argb_i       ),
    .valid_i     ( mul_valid_op           ),
    .ready_o     ( mul_ready_op           ),
    .result_o    ( mul.result             ),
    .valid_o     ( mul_valid              ),
    .ready_i     ( mul_ready              ),
    .id_o        ( mul.id                 )
  );
  // Serial Divider
  serdiv #(
      .WIDTH       ( 32      ),
      .IdWidth     ( IdWidth )
  ) i_div (
      .clk_i       ( clk_i                ),
      .rst_ni      ( ~rst_i               ),
      .id_i        ( acc_qid_i              ),
      .operator_i  ( acc_qdata_op_i         ),
      .op_a_i      ( acc_qdata_arga_i       ),
      .op_b_i      ( acc_qdata_argb_i       ),
      .in_vld_i    ( div_valid_op           ),
      .in_rdy_o    ( div_ready_op           ),
      .out_vld_o   ( div_valid              ),
      .out_rdy_i   ( div_ready              ),
      .id_o        ( div.id                 ),
      .res_o       ( div.result             )
  );
  // Output Arbitration
  stream_arbiter #(
    .DATA_T ( result_t ),
    .N_INP  ( 2        )
  ) i_stream_arbiter (
    .clk_i,
    .rst_ni      ( ~rst_i                 ),
    .inp_data_i  ( {div, mul}             ),
    .inp_valid_i ( {div_valid, mul_valid} ),
    .inp_ready_o ( {div_ready, mul_ready} ),
    .oup_data_o  ( oup                    ),
    .oup_valid_o ( acc_pvalid_o           ),
    .oup_ready_i ( acc_pready_i           )
  );
  assign acc_pdata_o = oup.result;
  assign acc_pid_o = oup.id;
endmodule

module multiplier  #(
  parameter int unsigned Width = 64,
  parameter int unsigned IdWidth = 5
) (
    input  logic               clk_i,
    input  logic               rst_i,
    input  logic [IdWidth-1:0] id_i,
    input  logic [31:0]        operator_i,
    input  logic [Width-1:0]   operand_a_i,
    input  logic [Width-1:0]   operand_b_i,
    input  logic               valid_i,
    output logic               ready_o,
    output logic [Width-1:0]   result_o,
    output logic               valid_o,
    input  logic               ready_i,
    output logic [IdWidth-1:0] id_o
);
  // Pipeline register
  logic [IdWidth-1:0] id_q;
  logic               valid_d, valid_q;
  logic               select_upper_q, select_upper_d;
  logic [2*Width-1:0] result_d, result_q;

  // control registers
  logic  sign_a, sign_b;
  // control signals
  assign ready_o    = ~valid_o | ready_i;
  // datapath
  logic [2*Width-1:0] mult_result;
  assign mult_result = $signed({operand_a_i[Width-1] & sign_a, operand_a_i}) * $signed({operand_b_i[Width-1] & sign_b, operand_b_i});
  // Sign Select MUX
  always_comb begin
    sign_a = 1'b0;
    sign_b = 1'b0;
    unique casez (operator_i)
      riscv_instr::MULH: begin
        sign_a   = 1'b1;
        sign_b   = 1'b1;
        select_upper_d = 1'b1;
      end
      riscv_instr::MULHU: begin
        select_upper_d = 1'b1;
      end
      riscv_instr::MULHSU: begin
        sign_a   = 1'b1;
        select_upper_d = 1'b1;
      end
      // MUL performs an XLEN-bit × XLEN-bit multiplication and places the lower XLEN bits in the destination register
      default: begin            // including MUL
        select_upper_d = 1'b0;
      end
    endcase
  end
  // single stage version
  assign result_d = $signed({operand_a_i[Width-1] & sign_a, operand_a_i}) *
                    $signed({operand_b_i[Width-1] & sign_b, operand_b_i});
  // ressult mux
  always_comb begin
    result_o = result_q[Width-1:0];
    if (select_upper_q) begin
      result_o = result_q[2*Width-1:Width];
    end
  end

  always_comb begin
    valid_d = valid_q;
    if (valid_q & ready_i)
      valid_d = 0;
    if (valid_i & ready_o)
      valid_d = 1;
  end
  `FFAR(valid_q, valid_d, '0, clk_i, rst_i)
  // Pipe-line registers
  `FFLAR(id_q,           id_i,           (valid_i & ready_o), '0, clk_i, rst_i)
  `FFLAR(result_q,       result_d,       (valid_i & ready_o), '0, clk_i, rst_i)
  `FFLAR(select_upper_q, select_upper_d, (valid_i & ready_o), '0, clk_i, rst_i)

  assign id_o = id_q;
  assign valid_o = valid_q;

endmodule


module serdiv #(
  parameter WIDTH = 64,
  parameter int unsigned IdWidth = 5
) (
  input  logic                 clk_i,
  input  logic                 rst_ni,
  // input IF
  input  logic [IdWidth-1:0]   id_i,
  input  logic [31:0]          operator_i,
  input  logic [WIDTH-1:0]     op_a_i,
  input  logic [WIDTH-1:0]     op_b_i,
  // handshake
  input  logic                 in_vld_i, // there is a cycle delay from in_rdy_o->in_vld_i, see issue_read_operands.sv stage
  output logic                 in_rdy_o,
  // output IF
  output logic                 out_vld_o,
  input  logic                 out_rdy_i,
  output logic [IdWidth-1:0]   id_o,
  output logic [WIDTH-1:0]     res_o
);

  logic signed_op;
  logic rem;

  always_comb begin
    signed_op = 1'b0;
    rem = 1'b0;
    unique casez (operator_i)
      riscv_instr::DIV: begin
        signed_op = 1'b1;
      end
      riscv_instr::DIVU: begin
      end
      riscv_instr::REM: begin
        signed_op = 1'b1;
        rem = 1'b1;
      end
      riscv_instr::REMU: begin
        rem = 1'b1;
      end
      default:;
    endcase
  end

  enum logic [1:0] {
    IDLE, DIVIDE, FINISH
  } state_d, state_q;

  logic [WIDTH-1:0]       res_q, res_d;
  logic [WIDTH-1:0]       op_a_q, op_a_d;
  logic [WIDTH-1:0]       op_b_q, op_b_d;
  logic                   op_a_sign, op_b_sign;
  logic                   op_b_zero, op_b_zero_q, op_b_zero_d;

  logic [IdWidth-1:0] id_q, id_d;

  logic rem_sel_d, rem_sel_q;
  logic comp_inv_d, comp_inv_q;
  logic res_inv_d, res_inv_q;

  logic [WIDTH-1:0] add_mux;
  logic [WIDTH-1:0] add_out;
  logic [WIDTH-1:0] add_tmp;
  logic [WIDTH-1:0] b_mux;
  logic [WIDTH-1:0] out_mux;

  logic [$clog2(WIDTH+1)-1:0] cnt_q, cnt_d;
  logic cnt_zero;

  logic [WIDTH-1:0] lzc_a_input, lzc_b_input, op_b;
  logic [$clog2(WIDTH)-1:0] lzc_a_result, lzc_b_result;
  logic [$clog2(WIDTH+1)-1:0] shift_a;
  logic [$clog2(WIDTH+1):0] div_shift;

  logic a_reg_en, b_reg_en, res_reg_en, ab_comp, pm_sel, load_en;
  logic lzc_a_no_one, lzc_b_no_one;
  logic div_res_zero_d, div_res_zero_q;
  /////////////////////////////////////
  // align the input operands
  // for faster division
  /////////////////////////////////////
  assign op_b_zero = (op_b_i == 0);
  assign op_a_sign = op_a_i[$high(op_a_i)];
  assign op_b_sign = op_b_i[$high(op_b_i)];

  assign lzc_a_input = (signed_op & op_a_sign) ? {~op_a_i, 1'b0} : op_a_i;
  assign lzc_b_input = (signed_op & op_b_sign) ? ~op_b_i         : op_b_i;

  lzc #(
    .MODE    ( 1          ), // count leading zeros
    .WIDTH   ( WIDTH      )
  ) i_lzc_a (
    .in_i    ( lzc_a_input  ),
    .cnt_o   ( lzc_a_result ),
    .empty_o ( lzc_a_no_one )
  );

  lzc #(
    .MODE    ( 1          ), // count leading zeros
    .WIDTH   ( WIDTH      )
  ) i_lzc_b (
    .in_i    ( lzc_b_input  ),
    .cnt_o   ( lzc_b_result ),
    .empty_o ( lzc_b_no_one )
  );

  assign shift_a      = (lzc_a_no_one) ? WIDTH : lzc_a_result;
  assign div_shift    = (lzc_b_no_one) ? WIDTH : lzc_b_result-shift_a;

  assign op_b         = op_b_i <<< $unsigned(div_shift);

  // the division is zero if |opB| > |opA| and can be terminated
  assign div_res_zero_d = (load_en) ? ($signed(div_shift) < 0) : div_res_zero_q;

  /////////////////////////////////////
  // Datapath
  /////////////////////////////////////

  assign pm_sel      = load_en & ~(signed_op & (op_a_sign ^ op_b_sign));
  // muxes
  assign add_mux     = (load_en)   ? op_a_i  : op_b_q;
  // attention: logical shift by one in case of negative operand B!
  assign b_mux       = (load_en)   ? op_b : {comp_inv_q, (op_b_q[$high(op_b_q):1])};
  // in case of bad timing, we could output from regs -> needs a cycle more in the FSM
  assign out_mux     = (rem_sel_q) ? op_a_q : res_q;
  // invert if necessary
  assign res_o       = (res_inv_q) ? -$signed(out_mux) : out_mux;
  // main comparator
  assign ab_comp     = ((op_a_q == op_b_q) | ((op_a_q > op_b_q) ^ comp_inv_q)) & ((|op_a_q) | op_b_zero_q);
  // main adder
  assign add_tmp     = (load_en) ? 0 : op_a_q;
  assign add_out     = (pm_sel)  ? add_tmp + add_mux : add_tmp - $signed(add_mux);

  /////////////////////////////////////
  // FSM, counter
  /////////////////////////////////////
  assign cnt_zero = (cnt_q == 0);
  assign cnt_d    = (load_en)   ? div_shift  :
                    (~cnt_zero) ? cnt_q - 1  : cnt_q;

  always_comb begin : p_fsm
    // default
    state_d        = state_q;
    in_rdy_o       = 1'b0;
    out_vld_o      = 1'b0;
    load_en        = 1'b0;
    a_reg_en       = 1'b0;
    b_reg_en       = 1'b0;
    res_reg_en     = 1'b0;
    unique case (state_q)
      IDLE: begin
        in_rdy_o    = 1'b1;
        if (in_vld_i) begin
          a_reg_en  = 1'b1;
          b_reg_en  = 1'b1;
          load_en   = 1'b1;
          state_d   = DIVIDE;
        end
      end
      DIVIDE: begin
        if (!div_res_zero_q) begin
          a_reg_en     = ab_comp;
          b_reg_en     = 1'b1;
          res_reg_en   = 1'b1;
        end
        // can end the division now if the result is clearly 0
        if (div_res_zero_q) begin
          out_vld_o = 1'b1;
          state_d   = FINISH;
          if (out_rdy_i) begin
            state_d  = IDLE;
          end
        end else if (cnt_zero) begin
          state_d   = FINISH;
        end
      end
      FINISH: begin
        out_vld_o = 1'b1;

        if (out_rdy_i) begin
          state_d  = IDLE;
        end
      end
      default : state_d = IDLE;
    endcase
  end

  /////////////////////////////////////
  // regs, flags
  /////////////////////////////////////

  // get flags
  assign rem_sel_d    = (load_en) ? rem                   : rem_sel_q;
  assign comp_inv_d   = (load_en) ? signed_op & op_b_sign : comp_inv_q;
  assign op_b_zero_d  = (load_en) ? op_b_zero             : op_b_zero_q;
  assign res_inv_d    = (load_en) ? (~op_b_zero | rem) & signed_op & (op_a_sign ^ op_b_sign) : res_inv_q;

  // transaction id
  assign id_d = (load_en) ? id_i : id_q;
  assign id_o = id_q;

  assign op_a_d   = (a_reg_en)   ? add_out : op_a_q;
  assign op_b_d   = (b_reg_en)   ? b_mux   : op_b_q;
  assign res_d    = (load_en)   ? '0       :
                    (res_reg_en) ? {res_q[$high(res_q)-1:0], ab_comp} : res_q;

  always_ff @(posedge clk_i or negedge rst_ni) begin : p_regs
    if (!rst_ni) begin
      state_q        <= IDLE;
      op_a_q         <= '0;
      op_b_q         <= '0;
      res_q          <= '0;
      cnt_q          <= '0;
      id_q           <= '0;
      rem_sel_q      <= 1'b0;
      comp_inv_q     <= 1'b0;
      res_inv_q      <= 1'b0;
      op_b_zero_q    <= 1'b0;
      div_res_zero_q <= 1'b0;
    end else begin
      state_q        <= state_d;
      op_a_q         <= op_a_d;
      op_b_q         <= op_b_d;
      res_q          <= res_d;
      cnt_q          <= cnt_d;
      id_q           <= id_d;
      rem_sel_q      <= rem_sel_d;
      comp_inv_q     <= comp_inv_d;
      res_inv_q      <= res_inv_d;
      op_b_zero_q    <= op_b_zero_d;
      div_res_zero_q <= div_res_zero_d;
    end
  end

endmodule