tb_axi_serializer.sv 9.62 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
// Copyright (c) 2019 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

`include "axi/typedef.svh"
`include "axi/assign.svh"

module tb_axi_serializer #(
    parameter int unsigned NoWrites = 5000,  // How many writes per master
    parameter int unsigned NoReads  = 3000   // How many reads per master
  );
  // Random master no Transactions
  localparam int unsigned NoPendingDut = 4;
  // Random Master Atomics
  localparam int unsigned MaxAW      = 32'd30;
  localparam int unsigned MaxAR      = 32'd30;
  localparam bit          EnAtop     = 1'b1;
  // timing parameters
  localparam time CyclTime = 10ns;
  localparam time ApplTime =  2ns;
  localparam time TestTime =  8ns;
  // AXI configuration
  localparam int unsigned AxiIdWidth   =  4;
  localparam int unsigned AxiAddrWidth =  32;    // Axi Address Width
  localparam int unsigned AxiDataWidth =  64;    // Axi Data Width
  localparam int unsigned AxiUserWidth =  5;
  // Sim print config, how many transactions
  localparam int unsigned PrintTxn = 500;

  typedef axi_test::axi_rand_master #(
    // AXI interface parameters
    .AW ( AxiAddrWidth ),
    .DW ( AxiDataWidth ),
    .IW ( AxiIdWidth   ),
    .UW ( AxiUserWidth ),
    // Stimuli application and test time
    .TA ( ApplTime ),
    .TT ( TestTime ),
    // Maximum number of read and write transactions in flight
    .MAX_READ_TXNS  ( MaxAR  ),
    .MAX_WRITE_TXNS ( MaxAW  ),
    .AXI_ATOPS      ( EnAtop )
  ) axi_rand_master_t;
  typedef axi_test::axi_rand_slave #(
    // AXI interface parameters
    .AW ( AxiAddrWidth ),
    .DW ( AxiDataWidth ),
    .IW ( AxiIdWidth   ),
    .UW ( AxiUserWidth ),
    // Stimuli application and test time
    .TA ( ApplTime ),
    .TT ( TestTime )
  ) axi_rand_slave_t;

  // -------------
  // DUT signals
  // -------------
  logic clk;
  logic rst_n;
  logic end_of_sim;

  // interfaces
  AXI_BUS #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth ),
    .AXI_DATA_WIDTH ( AxiDataWidth ),
    .AXI_ID_WIDTH   ( AxiIdWidth   ),
    .AXI_USER_WIDTH ( AxiUserWidth )
  ) master ();
  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth ),
    .AXI_DATA_WIDTH ( AxiDataWidth ),
    .AXI_ID_WIDTH   ( AxiIdWidth   ),
    .AXI_USER_WIDTH ( AxiUserWidth )
  ) master_dv (clk);
  AXI_BUS #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth ),
    .AXI_DATA_WIDTH ( AxiDataWidth ),
    .AXI_ID_WIDTH   ( AxiIdWidth   ),
    .AXI_USER_WIDTH ( AxiUserWidth )
  ) slave ();
  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth ),
    .AXI_DATA_WIDTH ( AxiDataWidth ),
    .AXI_ID_WIDTH   ( AxiIdWidth   ),
    .AXI_USER_WIDTH ( AxiUserWidth )
  ) slave_dv (clk);

  `AXI_ASSIGN(master, master_dv)
  `AXI_ASSIGN(slave_dv, slave)

  //-----------------------------------
  // Clock generator
  //-----------------------------------
  clk_rst_gen #(
    .ClkPeriod    ( CyclTime ),
    .RstClkCycles ( 5        )
  ) i_clk_gen (
    .clk_o (clk),
    .rst_no(rst_n)
  );

  //-----------------------------------
  // DUT
  //-----------------------------------
  axi_serializer_intf #(
    .MAX_READ_TXNS  ( NoPendingDut ),
    .MAX_WRITE_TXNS ( NoPendingDut ),
    .AXI_ID_WIDTH   ( AxiIdWidth   ), // AXI ID width
    .AXI_ADDR_WIDTH ( AxiAddrWidth ), // AXI address width
    .AXI_DATA_WIDTH ( AxiDataWidth ), // AXI data width
    .AXI_USER_WIDTH ( AxiUserWidth )  // AXI user width
  ) i_dut (
    .clk_i      ( clk      ), // clock
    .rst_ni     ( rst_n    ), // asynchronous reset active low
    .slv        ( master   ), // slave port
    .mst        ( slave    )  // master port
  );

  initial begin : proc_axi_master
    automatic axi_rand_master_t axi_rand_master = new(master_dv);
    end_of_sim <= 1'b0;
    axi_rand_master.add_memory_region(32'h0000_0000, 32'h1000_0000, axi_pkg::DEVICE_NONBUFFERABLE);
    axi_rand_master.add_memory_region(32'h2000_0000, 32'h3000_0000, axi_pkg::WTHRU_NOALLOCATE);
    axi_rand_master.add_memory_region(32'h4000_0000, 32'h5000_0000, axi_pkg::WBACK_RWALLOCATE);
    axi_rand_master.reset();
    @(posedge rst_n);
    axi_rand_master.run(NoReads, NoWrites);
    end_of_sim <= 1'b1;
    repeat (100) @(posedge clk);
    $stop();
  end

  initial begin : proc_axi_slave
    automatic axi_rand_slave_t  axi_rand_slave  = new(slave_dv);
    axi_rand_slave.reset();
    @(posedge rst_n);
    axi_rand_slave.run();
  end

  // Checker
  typedef logic [AxiIdWidth-1:0]     axi_id_t;
  typedef logic [AxiAddrWidth-1:0]   axi_addr_t;
  typedef logic [AxiDataWidth-1:0]   axi_data_t;
  typedef logic [AxiDataWidth/8-1:0] axi_strb_t;
  typedef logic [AxiUserWidth-1:0]   axi_user_t;
  `AXI_TYPEDEF_AW_CHAN_T(aw_chan_t, axi_addr_t,  axi_id_t,  axi_user_t)
  `AXI_TYPEDEF_W_CHAN_T(w_chan_t,  axi_data_t,  axi_strb_t,  axi_user_t)
  `AXI_TYPEDEF_B_CHAN_T(b_chan_t,  axi_id_t,  axi_user_t)
  `AXI_TYPEDEF_AR_CHAN_T(ar_chan_t,  axi_addr_t,  axi_id_t,  axi_user_t)
  `AXI_TYPEDEF_R_CHAN_T(r_chan_t,  axi_data_t,  axi_id_t,  axi_user_t)
  axi_id_t  aw_queue[$];
  axi_id_t  ar_queue[$];
  aw_chan_t aw_chan[$];
  w_chan_t   w_chan[$];
  b_chan_t   b_chan[$];
  ar_chan_t ar_chan[$];
  r_chan_t   r_chan[$];

  initial begin : proc_checker
    automatic axi_id_t  id_exp; // expected ID
    automatic aw_chan_t aw_exp; // expected AW
    automatic aw_chan_t aw_act; // actual AW
    automatic w_chan_t   w_exp; // expected W
    automatic w_chan_t   w_act; // actual W
    automatic b_chan_t   b_exp; // expected B
    automatic b_chan_t   b_act; // actual B
    automatic ar_chan_t ar_exp; // expected AR
    automatic ar_chan_t ar_act; // actual AR
    automatic r_chan_t   r_exp; // expected R
    automatic r_chan_t   r_act; // actual R
    forever begin
      @(posedge clk);
      #TestTime;
      // All FIFOs get populated if there is something to put in
      if (master.aw_valid && master.aw_ready) begin
        `AXI_SET_TO_AW(aw_exp, master)
        aw_exp.id = '0;
        id_exp    = master.aw_id;
        aw_chan.push_back(aw_exp);
        aw_queue.push_back(id_exp);
        if (master.aw_atop[axi_pkg::ATOP_R_RESP]) begin
          ar_queue.push_back(id_exp);
        end
      end
      if (master.w_valid && master.w_ready) begin
        `AXI_SET_TO_W(w_exp, master)
        w_chan.push_back(w_exp);
      end
      if (slave.b_valid && slave.b_ready) begin
        id_exp = aw_queue.pop_front();
        `AXI_SET_TO_B(b_exp, slave)
        b_exp.id = id_exp;
        b_chan.push_back(b_exp);
      end
      if (master.ar_valid && master.ar_ready) begin
        `AXI_SET_TO_AR(ar_exp, master)
        ar_exp.id = '0;
        id_exp    = master.ar_id;
        ar_chan.push_back(ar_exp);
        ar_queue.push_back(id_exp);
      end
      if (slave.r_valid && slave.r_ready) begin
        `AXI_SET_TO_R(r_exp, slave)
        if (slave.r_last) begin
          id_exp = ar_queue.pop_front();
        end else begin
          id_exp = ar_queue[0];
        end
        r_exp.id = id_exp;
        r_chan.push_back(r_exp);
      end
      // Check that all channels match the expected response
      if (slave.aw_valid && slave.aw_ready) begin
        aw_exp = aw_chan.pop_front();
        `AXI_SET_TO_AW(aw_act, slave)
        assert(aw_act == aw_exp) else $error("AW Measured: %h Expected: %h", aw_act, aw_exp);
      end
      if (slave.w_valid && slave.w_ready) begin
        w_exp = w_chan.pop_front();
        `AXI_SET_TO_W(w_act, slave)
        assert(w_act == w_exp) else $error("W Measured: %h Expected: %h", w_act, w_exp);
      end
      if (master.b_valid && master.b_ready) begin
        b_exp = b_chan.pop_front();
        `AXI_SET_TO_B(b_act, master)
        assert(b_act == b_exp) else $error("B Measured: %h Expected: %h", b_act, b_exp);
      end
      if (slave.ar_valid && slave.ar_ready) begin
        ar_exp = ar_chan.pop_front();
        `AXI_SET_TO_AR(ar_act, slave)
        assert(ar_act == ar_exp) else $error("AR Measured: %h Expected: %h", ar_act, ar_exp);
      end
      if (master.r_valid && master.r_ready) begin
        r_exp = r_chan.pop_front();
        `AXI_SET_TO_R(r_act, master)
        assert(r_act == r_exp) else $error("R Measured: %h Expected: %h", r_act, r_exp);
      end
    end
  end

  initial begin : proc_sim_progress
    automatic int unsigned aw         = 0;
    automatic int unsigned ar         = 0;
    automatic bit          aw_printed = 1'b0;
    automatic bit          ar_printed = 1'b0;

    @(posedge rst_n);

    forever begin
      @(posedge clk);
      #TestTime;
      if (master.aw_valid && master.aw_ready) begin
        aw++;
      end
      if (master.ar_valid && master.ar_ready) begin
        ar++;
      end

      if ((aw % PrintTxn == 0) && ! aw_printed) begin
        $display("%t> Transmit AW %d of %d.", $time(), aw, NoWrites);
        aw_printed = 1'b1;
      end
      if ((ar % PrintTxn == 0) && !ar_printed) begin
        $display("%t> Transmit AR %d of %d.", $time(), ar, NoReads);
        ar_printed = 1'b1;
      end

      if (aw % PrintTxn == 1) begin
        aw_printed = 1'b0;
      end
      if (ar % PrintTxn == 1) begin
        ar_printed = 1'b0;
      end

      if (end_of_sim) begin
        $info("All transactions completed.");
        break;
      end
    end
  end
endmodule