axi_mux.sv 21.5 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
// Copyright (c) 2019 ETH Zurich, University of Bologna
//
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

// AXI Multiplexer: This module multiplexes the AXI4 slave ports down to one master port.
// The AXI IDs from the slave ports get extended with the respective slave port index.
// The extension width can be calculated with `$clog2(NoSlvPorts)`. This means the AXI
// ID for the master port has to be this `$clog2(NoSlvPorts)` wider than the ID for the
// slave ports.
// Responses are switched based on these bits. For example, with 4 slave ports
// a response with ID `6'b100110` will be forwarded to slave port 2 (`2'b10`).

// register macros
`include "common_cells/registers.svh"

module axi_mux #(
  // AXI parameter and channel types
  parameter int unsigned SlvAxiIDWidth = 32'd0, // AXI ID width, slave ports
  parameter type         slv_aw_chan_t = logic, // AW Channel Type, slave ports
  parameter type         mst_aw_chan_t = logic, // AW Channel Type, master port
  parameter type         w_chan_t      = logic, //  W Channel Type, all ports
  parameter type         slv_b_chan_t  = logic, //  B Channel Type, slave ports
  parameter type         mst_b_chan_t  = logic, //  B Channel Type, master port
  parameter type         slv_ar_chan_t = logic, // AR Channel Type, slave ports
  parameter type         mst_ar_chan_t = logic, // AR Channel Type, master port
  parameter type         slv_r_chan_t  = logic, //  R Channel Type, slave ports
  parameter type         mst_r_chan_t  = logic, //  R Channel Type, master port
  parameter type         slv_req_t     = logic, // Slave port request type
  parameter type         slv_resp_t    = logic, // Slave port response type
  parameter type         mst_req_t     = logic, // Master ports request type
  parameter type         mst_resp_t    = logic, // Master ports response type
  parameter int unsigned NoSlvPorts    = 32'd0, // Number of slave ports
  // Maximum number of outstanding transactions per write
  parameter int unsigned MaxWTrans     = 32'd8,
  // If enabled, this multiplexer is purely combinatorial
  parameter bit          FallThrough   = 1'b0,
  // add spill register on write master ports, adds a cycle latency on write channels
  parameter bit          SpillAw       = 1'b1,
  parameter bit          SpillW        = 1'b0,
  parameter bit          SpillB        = 1'b0,
  // add spill register on read master ports, adds a cycle latency on read channels
  parameter bit          SpillAr       = 1'b1,
  parameter bit          SpillR        = 1'b0
) (
  input  logic                       clk_i,    // Clock
  input  logic                       rst_ni,   // Asynchronous reset active low
  input  logic                       test_i,   // Test Mode enable
  // slave ports (AXI inputs), connect master modules here
  input  slv_req_t  [NoSlvPorts-1:0] slv_reqs_i,
  output slv_resp_t [NoSlvPorts-1:0] slv_resps_o,
  // master port (AXI outputs), connect slave modules here
  output mst_req_t                   mst_req_o,
  input  mst_resp_t                  mst_resp_i
);

  localparam int unsigned MstIdxBits    = $clog2(NoSlvPorts);
  localparam int unsigned MstAxiIDWidth = SlvAxiIDWidth + MstIdxBits;

  // pass through if only one slave port
  if (NoSlvPorts == 32'h1) begin : gen_no_mux
    assign mst_req_o      = slv_reqs_i[0];
    assign slv_resps_o[0] = mst_resp_i;
  // other non degenerate cases
  end else begin : gen_mux

    typedef logic [MstIdxBits-1:0] switch_id_t;

    // AXI channels between the ID prepend unit and the rest of the multiplexer
    mst_aw_chan_t [NoSlvPorts-1:0] slv_aw_chans;
    logic         [NoSlvPorts-1:0] slv_aw_valids, slv_aw_readies;
    w_chan_t      [NoSlvPorts-1:0] slv_w_chans;
    logic         [NoSlvPorts-1:0] slv_w_valids,  slv_w_readies;
    mst_b_chan_t  [NoSlvPorts-1:0] slv_b_chans;
    logic         [NoSlvPorts-1:0] slv_b_valids,  slv_b_readies;
    mst_ar_chan_t [NoSlvPorts-1:0] slv_ar_chans;
    logic         [NoSlvPorts-1:0] slv_ar_valids, slv_ar_readies;
    mst_r_chan_t  [NoSlvPorts-1:0] slv_r_chans;
    logic         [NoSlvPorts-1:0] slv_r_valids,  slv_r_readies;

    // These signals are all ID prepended
    // AW channel
    mst_aw_chan_t   mst_aw_chan;
    logic           mst_aw_valid, mst_aw_ready;

    // AW master handshake internal, so that we are able to stall, if w_fifo is full
    logic           aw_valid,     aw_ready;

    // FF to lock the AW valid signal, when a new arbitration decision is made the decision
    // gets pushed into the W FIFO, when it now stalls prevent subsequent pushing
    // This FF removes AW to W dependency
    logic           lock_aw_valid_d, lock_aw_valid_q;
    logic           load_aw_lock;

    // signals for the FIFO that holds the last switching decision of the AW channel
    logic           w_fifo_full,  w_fifo_empty;
    logic           w_fifo_push,  w_fifo_pop;
    switch_id_t     w_fifo_data;

    // W channel spill reg
    w_chan_t        mst_w_chan;
    logic           mst_w_valid,  mst_w_ready;

    // master ID in the b_id
    switch_id_t     switch_b_id;

    // B channel spill reg
    mst_b_chan_t    mst_b_chan;
    logic           mst_b_valid;

    // AR channel for when spill is enabled
    mst_ar_chan_t   mst_ar_chan;
    logic           ar_valid,     ar_ready;

    // master ID in the r_id
    switch_id_t     switch_r_id;

    // R channel spill reg
    mst_r_chan_t    mst_r_chan;
    logic           mst_r_valid;

    //--------------------------------------
    // ID prepend for all slave ports
    //--------------------------------------
    for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_id_prepend
      axi_id_prepend #(
        .NoBus            ( 32'd1               ), // one AXI bus per slave port
        .AxiIdWidthSlvPort( SlvAxiIDWidth       ),
        .AxiIdWidthMstPort( MstAxiIDWidth       ),
        .slv_aw_chan_t    ( slv_aw_chan_t       ),
        .slv_w_chan_t     ( w_chan_t            ),
        .slv_b_chan_t     ( slv_b_chan_t        ),
        .slv_ar_chan_t    ( slv_ar_chan_t       ),
        .slv_r_chan_t     ( slv_r_chan_t        ),
        .mst_aw_chan_t    ( mst_aw_chan_t       ),
        .mst_w_chan_t     ( w_chan_t            ),
        .mst_b_chan_t     ( mst_b_chan_t        ),
        .mst_ar_chan_t    ( mst_ar_chan_t       ),
        .mst_r_chan_t     ( mst_r_chan_t        )
      ) i_id_prepend (
        .pre_id_i         ( switch_id_t'(i)         ),
        .slv_aw_chans_i   ( slv_reqs_i[i].aw        ),
        .slv_aw_valids_i  ( slv_reqs_i[i].aw_valid  ),
        .slv_aw_readies_o ( slv_resps_o[i].aw_ready ),
        .slv_w_chans_i    ( slv_reqs_i[i].w         ),
        .slv_w_valids_i   ( slv_reqs_i[i].w_valid   ),
        .slv_w_readies_o  ( slv_resps_o[i].w_ready  ),
        .slv_b_chans_o    ( slv_resps_o[i].b        ),
        .slv_b_valids_o   ( slv_resps_o[i].b_valid  ),
        .slv_b_readies_i  ( slv_reqs_i[i].b_ready   ),
        .slv_ar_chans_i   ( slv_reqs_i[i].ar        ),
        .slv_ar_valids_i  ( slv_reqs_i[i].ar_valid  ),
        .slv_ar_readies_o ( slv_resps_o[i].ar_ready ),
        .slv_r_chans_o    ( slv_resps_o[i].r        ),
        .slv_r_valids_o   ( slv_resps_o[i].r_valid  ),
        .slv_r_readies_i  ( slv_reqs_i[i].r_ready   ),
        .mst_aw_chans_o   ( slv_aw_chans[i]         ),
        .mst_aw_valids_o  ( slv_aw_valids[i]        ),
        .mst_aw_readies_i ( slv_aw_readies[i]       ),
        .mst_w_chans_o    ( slv_w_chans[i]          ),
        .mst_w_valids_o   ( slv_w_valids[i]         ),
        .mst_w_readies_i  ( slv_w_readies[i]        ),
        .mst_b_chans_i    ( slv_b_chans[i]          ),
        .mst_b_valids_i   ( slv_b_valids[i]         ),
        .mst_b_readies_o  ( slv_b_readies[i]        ),
        .mst_ar_chans_o   ( slv_ar_chans[i]         ),
        .mst_ar_valids_o  ( slv_ar_valids[i]        ),
        .mst_ar_readies_i ( slv_ar_readies[i]       ),
        .mst_r_chans_i    ( slv_r_chans[i]          ),
        .mst_r_valids_i   ( slv_r_valids[i]         ),
        .mst_r_readies_o  ( slv_r_readies[i]        )
      );
    end

    //--------------------------------------
    // AW Channel
    //--------------------------------------
    rr_arb_tree #(
      .NumIn    ( NoSlvPorts    ),
      .DataType ( mst_aw_chan_t ),
      .AxiVldRdy( 1'b1          ),
      .LockIn   ( 1'b1          )
    ) i_aw_arbiter (
      .clk_i  ( clk_i           ),
      .rst_ni ( rst_ni          ),
      .flush_i( 1'b0            ),
      .rr_i   ( '0              ),
      .req_i  ( slv_aw_valids   ),
      .gnt_o  ( slv_aw_readies  ),
      .data_i ( slv_aw_chans    ),
      .gnt_i  ( aw_ready        ),
      .req_o  ( aw_valid        ),
      .data_o ( mst_aw_chan     ),
      .idx_o  (                 )
    );

    // control of the AW channel
    always_comb begin
      // default assignments
      lock_aw_valid_d = lock_aw_valid_q;
      load_aw_lock    = 1'b0;
      w_fifo_push     = 1'b0;
      mst_aw_valid    = 1'b0;
      aw_ready        = 1'b0;
      // had a downstream stall, be valid and send the AW along
      if (lock_aw_valid_q) begin
        mst_aw_valid = 1'b1;
        // transaction
        if (mst_aw_ready) begin
          aw_ready        = 1'b1;
          lock_aw_valid_d = 1'b0;
          load_aw_lock    = 1'b1;
        end
      end else begin
        if (!w_fifo_full && aw_valid) begin
          mst_aw_valid = 1'b1;
          w_fifo_push = 1'b1;
          if (mst_aw_ready) begin
            aw_ready = 1'b1;
          end else begin
            // go to lock if transaction not in this cycle
            lock_aw_valid_d = 1'b1;
            load_aw_lock    = 1'b1;
          end
        end
      end
    end

    `FFLARN(lock_aw_valid_q, lock_aw_valid_d, load_aw_lock, '0, clk_i, rst_ni)

    fifo_v3 #(
      .FALL_THROUGH ( FallThrough ),
      .DEPTH        ( MaxWTrans   ),
      .dtype        ( switch_id_t )
    ) i_w_fifo (
      .clk_i     ( clk_i                                     ),
      .rst_ni    ( rst_ni                                    ),
      .flush_i   ( 1'b0                                      ),
      .testmode_i( test_i                                    ),
      .full_o    ( w_fifo_full                               ),
      .empty_o   ( w_fifo_empty                              ),
      .usage_o   (                                           ),
      .data_i    ( mst_aw_chan.id[SlvAxiIDWidth+:MstIdxBits] ),
      .push_i    ( w_fifo_push                               ),
      .data_o    ( w_fifo_data                               ),
      .pop_i     ( w_fifo_pop                                )
    );

    spill_register #(
      .T       ( mst_aw_chan_t ),
      .Bypass  ( ~SpillAw      ) // Param indicated that we want a spill reg
    ) i_aw_spill_reg (
      .clk_i   ( clk_i               ),
      .rst_ni  ( rst_ni              ),
      .valid_i ( mst_aw_valid        ),
      .ready_o ( mst_aw_ready        ),
      .data_i  ( mst_aw_chan         ),
      .valid_o ( mst_req_o.aw_valid  ),
      .ready_i ( mst_resp_i.aw_ready ),
      .data_o  ( mst_req_o.aw        )
    );

    //--------------------------------------
    // W Channel
    //--------------------------------------
    // multiplexer
    assign mst_w_chan = slv_w_chans[w_fifo_data];
    always_comb begin
      // default assignments
      mst_w_valid   = 1'b0;
      slv_w_readies = '0;
      w_fifo_pop    = 1'b0;
      // control
      if (!w_fifo_empty) begin
        // connect the handshake
        mst_w_valid                = slv_w_valids[w_fifo_data];
        slv_w_readies[w_fifo_data] = mst_w_ready;
        // pop FIFO on a last transaction
        w_fifo_pop = slv_w_valids[w_fifo_data] & mst_w_ready & mst_w_chan.last;
      end
    end

    spill_register #(
      .T       ( w_chan_t ),
      .Bypass  ( ~SpillW  )
    ) i_w_spill_reg (
      .clk_i   ( clk_i              ),
      .rst_ni  ( rst_ni             ),
      .valid_i ( mst_w_valid        ),
      .ready_o ( mst_w_ready        ),
      .data_i  ( mst_w_chan         ),
      .valid_o ( mst_req_o.w_valid  ),
      .ready_i ( mst_resp_i.w_ready ),
      .data_o  ( mst_req_o.w        )
    );

    //--------------------------------------
    // B Channel
    //--------------------------------------
    // replicate B channels
    assign slv_b_chans  = {NoSlvPorts{mst_b_chan}};
    // control B channel handshake
    assign switch_b_id  = mst_b_chan.id[SlvAxiIDWidth+:MstIdxBits];
    assign slv_b_valids = (mst_b_valid) ? (1 << switch_b_id) : '0;

    spill_register #(
      .T       ( mst_b_chan_t ),
      .Bypass  ( ~SpillB      )
    ) i_b_spill_reg (
      .clk_i   ( clk_i                      ),
      .rst_ni  ( rst_ni                     ),
      .valid_i ( mst_resp_i.b_valid         ),
      .ready_o ( mst_req_o.b_ready          ),
      .data_i  ( mst_resp_i.b               ),
      .valid_o ( mst_b_valid                ),
      .ready_i ( slv_b_readies[switch_b_id] ),
      .data_o  ( mst_b_chan                 )
    );

    //--------------------------------------
    // AR Channel
    //--------------------------------------
    rr_arb_tree #(
      .NumIn    ( NoSlvPorts    ),
      .DataType ( mst_ar_chan_t ),
      .AxiVldRdy( 1'b1          ),
      .LockIn   ( 1'b1          )
    ) i_ar_arbiter (
      .clk_i  ( clk_i           ),
      .rst_ni ( rst_ni          ),
      .flush_i( 1'b0            ),
      .rr_i   ( '0              ),
      .req_i  ( slv_ar_valids   ),
      .gnt_o  ( slv_ar_readies  ),
      .data_i ( slv_ar_chans    ),
      .gnt_i  ( ar_ready        ),
      .req_o  ( ar_valid        ),
      .data_o ( mst_ar_chan     ),
      .idx_o  (                 )
    );

    spill_register #(
      .T       ( mst_ar_chan_t ),
      .Bypass  ( ~SpillAr      )
    ) i_ar_spill_reg (
      .clk_i   ( clk_i               ),
      .rst_ni  ( rst_ni              ),
      .valid_i ( ar_valid            ),
      .ready_o ( ar_ready            ),
      .data_i  ( mst_ar_chan         ),
      .valid_o ( mst_req_o.ar_valid  ),
      .ready_i ( mst_resp_i.ar_ready ),
      .data_o  ( mst_req_o.ar        )
    );

    //--------------------------------------
    // R Channel
    //--------------------------------------
    // replicate R channels
    assign slv_r_chans  = {NoSlvPorts{mst_r_chan}};
    // R channel handshake control
    assign switch_r_id  = mst_r_chan.id[SlvAxiIDWidth+:MstIdxBits];
    assign slv_r_valids = (mst_r_valid) ? (1 << switch_r_id) : '0;

    spill_register #(
      .T       ( mst_r_chan_t ),
      .Bypass  ( ~SpillR      )
    ) i_r_spill_reg (
      .clk_i   ( clk_i                      ),
      .rst_ni  ( rst_ni                     ),
      .valid_i ( mst_resp_i.r_valid         ),
      .ready_o ( mst_req_o.r_ready          ),
      .data_i  ( mst_resp_i.r               ),
      .valid_o ( mst_r_valid                ),
      .ready_i ( slv_r_readies[switch_r_id] ),
      .data_o  ( mst_r_chan                 )
    );
  end

// pragma translate_off
`ifndef VERILATOR
  initial begin
    assert (SlvAxiIDWidth > 0) else $fatal(1, "AXI ID width of slave ports must be non-zero!");
    assert (NoSlvPorts > 0) else $fatal(1, "Number of slave ports must be non-zero!");
    assert (MaxWTrans > 0)
      else $fatal(1, "Maximum number of outstanding writes must be non-zero!");
    assert (MstAxiIDWidth >= SlvAxiIDWidth + $clog2(NoSlvPorts))
      else $fatal(1, "AXI ID width of master ports must be wide enough to identify slave ports!");
    // Assert ID widths (one slave is sufficient since they all have the same type).
    assert ($unsigned($bits(slv_reqs_i[0].aw.id)) == SlvAxiIDWidth)
      else $fatal(1, "ID width of AW channel of slave ports does not match parameter!");
    assert ($unsigned($bits(slv_reqs_i[0].ar.id)) == SlvAxiIDWidth)
      else $fatal(1, "ID width of AR channel of slave ports does not match parameter!");
    assert ($unsigned($bits(slv_resps_o[0].b.id)) == SlvAxiIDWidth)
      else $fatal(1, "ID width of B channel of slave ports does not match parameter!");
    assert ($unsigned($bits(slv_resps_o[0].r.id)) == SlvAxiIDWidth)
      else $fatal(1, "ID width of R channel of slave ports does not match parameter!");
    assert ($unsigned($bits(mst_req_o.aw.id)) == MstAxiIDWidth)
      else $fatal(1, "ID width of AW channel of master port is wrong!");
    assert ($unsigned($bits(mst_req_o.ar.id)) == MstAxiIDWidth)
      else $fatal(1, "ID width of AR channel of master port is wrong!");
    assert ($unsigned($bits(mst_resp_i.b.id)) == MstAxiIDWidth)
      else $fatal(1, "ID width of B channel of master port is wrong!");
    assert ($unsigned($bits(mst_resp_i.r.id)) == MstAxiIDWidth)
      else $fatal(1, "ID width of R channel of master port is wrong!");
  end
`endif
// pragma translate_on
endmodule

// interface wrap
`include "axi/assign.svh"
`include "axi/typedef.svh"
module axi_mux_intf #(
  parameter int unsigned SLV_AXI_ID_WIDTH = 32'd0, // Synopsys DC requires default value for params
  parameter int unsigned MST_AXI_ID_WIDTH = 32'd0,
  parameter int unsigned AXI_ADDR_WIDTH   = 32'd0,
  parameter int unsigned AXI_DATA_WIDTH   = 32'd0,
  parameter int unsigned AXI_USER_WIDTH   = 32'd0,
  parameter int unsigned NO_SLV_PORTS     = 32'd0, // Number of slave ports
  // Maximum number of outstanding transactions per write
  parameter int unsigned MAX_W_TRANS      = 32'd8,
  // if enabled, this multiplexer is purely combinatorial
  parameter bit          FALL_THROUGH     = 1'b0,
  // add spill register on write master ports, adds a cycle latency on write channels
  parameter bit          SPILL_AW         = 1'b1,
  parameter bit          SPILL_W          = 1'b0,
  parameter bit          SPILL_B          = 1'b0,
  // add spill register on read master ports, adds a cycle latency on read channels
  parameter bit          SPILL_AR         = 1'b1,
  parameter bit          SPILL_R          = 1'b0
) (
  input  logic   clk_i,                  // Clock
  input  logic   rst_ni,                 // Asynchronous reset active low
  input  logic   test_i,                 // Testmode enable
  AXI_BUS.Slave  slv [NO_SLV_PORTS-1:0], // slave ports
  AXI_BUS.Master mst                     // master port
);

  typedef logic [SLV_AXI_ID_WIDTH-1:0] slv_id_t;
  typedef logic [MST_AXI_ID_WIDTH-1:0] mst_id_t;
  typedef logic [AXI_ADDR_WIDTH -1:0]  addr_t;
  typedef logic [AXI_DATA_WIDTH-1:0]   data_t;
  typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
  typedef logic [AXI_USER_WIDTH-1:0]   user_t;
  // channels typedef
  `AXI_TYPEDEF_AW_CHAN_T(slv_aw_chan_t, addr_t, slv_id_t, user_t)
  `AXI_TYPEDEF_AW_CHAN_T(mst_aw_chan_t, addr_t, mst_id_t, user_t)

  `AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)

  `AXI_TYPEDEF_B_CHAN_T(slv_b_chan_t, slv_id_t, user_t)
  `AXI_TYPEDEF_B_CHAN_T(mst_b_chan_t, mst_id_t, user_t)

  `AXI_TYPEDEF_AR_CHAN_T(slv_ar_chan_t, addr_t, slv_id_t, user_t)
  `AXI_TYPEDEF_AR_CHAN_T(mst_ar_chan_t, addr_t, mst_id_t, user_t)

  `AXI_TYPEDEF_R_CHAN_T(slv_r_chan_t, data_t, slv_id_t, user_t)
  `AXI_TYPEDEF_R_CHAN_T(mst_r_chan_t, data_t, mst_id_t, user_t)

  `AXI_TYPEDEF_REQ_T(slv_req_t, slv_aw_chan_t, w_chan_t, slv_ar_chan_t)
  `AXI_TYPEDEF_RESP_T(slv_resp_t, slv_b_chan_t, slv_r_chan_t)

  `AXI_TYPEDEF_REQ_T(mst_req_t, mst_aw_chan_t, w_chan_t, mst_ar_chan_t)
  `AXI_TYPEDEF_RESP_T(mst_resp_t, mst_b_chan_t, mst_r_chan_t)

  slv_req_t  [NO_SLV_PORTS-1:0] slv_reqs;
  slv_resp_t [NO_SLV_PORTS-1:0] slv_resps;
  mst_req_t                     mst_req;
  mst_resp_t                    mst_resp;

  for (genvar i = 0; i < NO_SLV_PORTS; i++) begin : gen_assign_slv_ports
    `AXI_ASSIGN_TO_REQ(slv_reqs[i], slv[i])
    `AXI_ASSIGN_FROM_RESP(slv[i], slv_resps[i])
  end

  `AXI_ASSIGN_FROM_REQ(mst, mst_req)
  `AXI_ASSIGN_TO_RESP(mst_resp, mst)

  axi_mux #(
    .SlvAxiIDWidth ( SLV_AXI_ID_WIDTH ),
    .slv_aw_chan_t ( slv_aw_chan_t    ), // AW Channel Type, slave ports
    .mst_aw_chan_t ( mst_aw_chan_t    ), // AW Channel Type, master port
    .w_chan_t      ( w_chan_t         ), //  W Channel Type, all ports
    .slv_b_chan_t  ( slv_b_chan_t     ), //  B Channel Type, slave ports
    .mst_b_chan_t  ( mst_b_chan_t     ), //  B Channel Type, master port
    .slv_ar_chan_t ( slv_ar_chan_t    ), // AR Channel Type, slave ports
    .mst_ar_chan_t ( mst_ar_chan_t    ), // AR Channel Type, master port
    .slv_r_chan_t  ( slv_r_chan_t     ), //  R Channel Type, slave ports
    .mst_r_chan_t  ( mst_r_chan_t     ), //  R Channel Type, master port
    .slv_req_t     ( slv_req_t        ),
    .slv_resp_t    ( slv_resp_t       ),
    .mst_req_t     ( mst_req_t        ),
    .mst_resp_t    ( mst_resp_t       ),
    .NoSlvPorts    ( NO_SLV_PORTS     ), // Number of slave ports
    .MaxWTrans     ( MAX_W_TRANS      ),
    .FallThrough   ( FALL_THROUGH     ),
    .SpillAw       ( SPILL_AW         ),
    .SpillW        ( SPILL_W          ),
    .SpillB        ( SPILL_B          ),
    .SpillAr       ( SPILL_AR         ),
    .SpillR        ( SPILL_R          )
  ) i_axi_mux (
    .clk_i       ( clk_i     ), // Clock
    .rst_ni      ( rst_ni    ), // Asynchronous reset active low
    .test_i      ( test_i    ), // Test Mode enable
    .slv_reqs_i  ( slv_reqs  ),
    .slv_resps_o ( slv_resps ),
    .mst_req_o   ( mst_req   ),
    .mst_resp_i  ( mst_resp  )
  );
endmodule