axi_lite_interface.sv 6.76 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the “License”); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Florian Zaruba, ETH Zurich
// Date: 17/07/2017
// Description: AXI Lite compatible interface
//

module axi_lite_interface #(
    parameter int unsigned AXI_ADDR_WIDTH = 64,
    parameter int unsigned AXI_DATA_WIDTH = 64,
    parameter int unsigned AXI_ID_WIDTH   = 10
)(
    input logic                       clk_i,    // Clock
    input logic                       rst_ni,  // Asynchronous reset active low

    input  ariane_axi::req_t          axi_req_i,
    output ariane_axi::resp_t         axi_resp_o,

    output logic [AXI_ADDR_WIDTH-1:0] address_o,
    output logic                      en_o,        // transaction is valid
    output logic                      we_o,        // write
    input  logic [AXI_DATA_WIDTH-1:0] data_i,      // data
    output logic [AXI_DATA_WIDTH-1:0] data_o
);

    // The RLAST signal is not required, and is considered asserted for every transfer on the read data channel.
    enum logic [1:0] { IDLE, READ, WRITE, WRITE_B} CS, NS;
    // save the trans id, we will need it for reflection otherwise we are not plug compatible to the AXI standard
    logic [AXI_ID_WIDTH-1:0]   trans_id_n, trans_id_q;
    // address register
    logic [AXI_ADDR_WIDTH-1:0] address_n,  address_q;

    // pass through read data on the read data channel
    assign axi_resp_o.r.data = data_i;
    // send back the transaction id we've latched
    assign axi_resp_o.r.id = trans_id_q;
    assign axi_resp_o.b.id = trans_id_q;
    // set r_last to one as defined by the AXI4 - Lite standard
    assign axi_resp_o.r.last = 1'b1;
    // we do not support any errors so set response flag to all zeros
    assign axi_resp_o.b.resp = 2'b0;
    assign axi_resp_o.r.resp = 2'b0;
    // output data which we want to write to the slave
    assign data_o = axi_req_i.w.data;
    // ------------------------
    // AXI4-Lite State Machine
    // ------------------------
    always_comb begin
        // default signal assignment
        NS         = CS;
        address_n  = address_q;
        trans_id_n = trans_id_q;

        // we'll answer a write request only if we got address and data
        axi_resp_o.aw_ready = 1'b0;
        axi_resp_o.w_ready  = 1'b0;
        axi_resp_o.b_valid  = 1'b0;

        axi_resp_o.ar_ready = 1'b1;
        axi_resp_o.r_valid  = 1'b0;

        address_o      = '0;
        we_o           = 1'b0;
        en_o           = 1'b0;

        case (CS)
            // we are ready to accept a new request
            IDLE: begin
                // we've git a valid write request, we also know that we have asserted the aw_ready
                if (axi_req_i.aw_valid) begin

                    axi_resp_o.aw_ready = 1'b1;
                    // this costs performance but the interconnect does not obey the AXI standard
                    NS = WRITE;
                    // save address
                    address_n = axi_req_i.aw.addr;
                    // save the transaction id for reflection
                    trans_id_n = axi_req_i.aw.id;

                // we've got a valid read request, we also know that we have asserted the ar_ready
                end else if (axi_req_i.ar_valid) begin
                    NS = READ;
                    address_n = axi_req_i.ar.addr;
                    // also request the word from the memory-like interface
                    address_o = axi_req_i.ar.addr;
                    // save the transaction id for reflection
                    trans_id_n = axi_req_i.ar.id;

                end
            end
            // We've got a read request at least one cycle earlier
            // so data_i will already contain the data we'd like tor read
            READ: begin
                // enable the ram-like
                en_o       = 1'b1;
                // we are not ready for another request here
                axi_resp_o.ar_ready = 1'b0;
                // further assert the correct address
                address_o = address_q;
                // the read is valid
                axi_resp_o.r_valid = 1'b1;
                // check if we got a valid r_ready and go back to IDLE
                if (axi_req_i.r_ready)
                    NS = IDLE;
            end
            // We've got a write request at least one cycle earlier
            // wait here for the data
            WRITE: begin
                if (axi_req_i.w_valid) begin
                    // we are not ready for another request here
                    axi_resp_o.ar_ready = 1'b0;
                    axi_resp_o.w_ready = 1'b1;
                    // use the latched address
                    address_o = address_q;
                    en_o = 1'b1;
                    we_o = 1'b1;
                    // close this request
                    NS = WRITE_B;
                end
            end

            WRITE_B: begin
                axi_resp_o.b_valid  = 1'b1;
                // we've already performed the write here so wait for the ready signal
                if (axi_req_i.b_ready)
                    NS = IDLE;
            end
            default:;

        endcase
    end

    // ------------------------
    // Registers
    // ------------------------
    always_ff @(posedge clk_i or negedge rst_ni) begin
        if (~rst_ni) begin
            CS         <= IDLE;
            address_q  <= '0;
            trans_id_q <= '0;
        end else begin
            CS         <= NS;
            address_q  <= address_n;
            trans_id_q <= trans_id_n;
        end
    end

    // ------------------------
    // Assertions
    // ------------------------
    // Listen for illegal transactions
    //pragma translate_off
    `ifndef VERILATOR
    // check that burst length is just one
    assert property (@(posedge clk_i) axi_req_i.ar_valid |->  ((axi_req_i.ar.len == 8'b0)))
    else begin $error("AXI Lite does not support bursts larger than 1 or byte length unequal to the native bus size"); $stop(); end
    // do the same for the write channel
    assert property (@(posedge clk_i) axi_req_i.aw_valid |->  ((axi_req_i.aw.len == 8'b0)))
    else begin $error("AXI Lite does not support bursts larger than 1 or byte length unequal to the native bus size"); $stop(); end
    `endif
    //pragma translate_on
endmodule