tb_axi_lite_to_apb.sv 8.62 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
// Copyright (c) 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

// Description: This testbench sends random generated AXI4-Lite transfers to the bridge
//              Each APB slave is simulated by randomly updating its response signals each clock
//              Cycle. There are some assertions testing sequences for correct APB4 signaling.

`include "axi/typedef.svh"
`include "axi/assign.svh"

module tb_axi_lite_to_apb #(
  parameter bit TbPipelineRequest = 1'b0,
  parameter bit TbPipelineResponse = 1'b0
);
  // Dut parameters
  localparam int unsigned NoApbSlaves = 8;    // How many APB Slaves  there are
  localparam int unsigned NoAddrRules = 9;    // How many address rules for the APB slaves
  // Random master no Transactions
  localparam int unsigned NoWrites    = 10000;  // How many rand writes of the master
  localparam int unsigned NoReads     = 20000;  // How many rand reads of the master
  // timing parameters
  localparam time CyclTime = 10ns;
  localparam time ApplTime =  2ns;
  localparam time TestTime =  8ns;
  // Type widths
  localparam int unsigned AxiAddrWidth = 32;
  localparam int unsigned AxiDataWidth = 32;
  localparam int unsigned AxiStrbWidth = AxiDataWidth/8;

  typedef logic [AxiAddrWidth-1:0]      addr_t;
  typedef axi_pkg::xbar_rule_32_t       rule_t; // Has to be the same width as axi addr
  typedef logic [AxiDataWidth-1:0]      data_t;
  typedef logic [AxiStrbWidth-1:0]      strb_t;

  `AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t)
  `AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t)
  `AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_t)

  `AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t)
  `AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_t, data_t)

  `AXI_LITE_TYPEDEF_REQ_T(axi_req_t, aw_chan_t, w_chan_t, ar_chan_t)
  `AXI_LITE_TYPEDEF_RESP_T(axi_resp_t, b_chan_t, r_chan_t)

  typedef logic [NoApbSlaves-1:0] sel_t;

  typedef struct packed {
    addr_t          paddr;
    axi_pkg::prot_t pprot;   // same as AXI, this is allowed
    logic           psel;    // onehot
    logic           penable;
    logic           pwrite;
    data_t          pwdata;
    strb_t          pstrb;
  } apb_req_t;

  typedef struct packed {
    logic  pready;
    data_t prdata;
    logic  pslverr;
  } apb_resp_t;

  localparam rule_t [NoAddrRules-1:0] AddrMap = '{
    '{idx: 32'd7, start_addr: 32'h0001_0000, end_addr: 32'h0001_1000},
    '{idx: 32'd6, start_addr: 32'h0000_9000, end_addr: 32'h0001_0000},
    '{idx: 32'd5, start_addr: 32'h0000_8000, end_addr: 32'h0000_9000},
    '{idx: 32'd4, start_addr: 32'h0002_0000, end_addr: 32'h0002_1000},
    '{idx: 32'd4, start_addr: 32'h0000_7000, end_addr: 32'h0000_8000},
    '{idx: 32'd3, start_addr: 32'h0000_6300, end_addr: 32'h0000_7000},
    '{idx: 32'd2, start_addr: 32'h0000_4000, end_addr: 32'h0000_6300},
    '{idx: 32'd1, start_addr: 32'h0000_3000, end_addr: 32'h0000_4000},
    '{idx: 32'd0, start_addr: 32'h0000_0000, end_addr: 32'h0000_3000}
  };

  typedef axi_test::axi_lite_rand_master #(
    // AXI interface parameters
    .AW       ( AxiAddrWidth  ),
    .DW       ( AxiDataWidth  ),
    // Stimuli application and test time
    .TA       ( ApplTime       ),
    .TT       ( TestTime       ),
    .MIN_ADDR ( 32'h0000_0000  ),
    .MAX_ADDR ( 32'h0002_2000  ),
    // Maximum number of open transactions
    .MAX_READ_TXNS  ( 32'd10   ),
    .MAX_WRITE_TXNS ( 32'd10   ),
    // Upper and lower bounds on wait cycles on Ax, W, and resp (R and B) channels
    .AX_MIN_WAIT_CYCLES (    0 ),
    .AX_MAX_WAIT_CYCLES (   10 ),
    .W_MIN_WAIT_CYCLES  (    0 ),
    .W_MAX_WAIT_CYCLES  (    5 ),
    .RESP_MIN_WAIT_CYCLES (  0 ),
    .RESP_MAX_WAIT_CYCLES ( 20 )
  ) axi_lite_rand_master_t;

  // -------------
  // DUT signals
  // -------------
  logic clk;
  // DUT signals
  logic rst_n;
  logic end_of_sim;

  // master structs
  axi_req_t  axi_req;
  axi_resp_t axi_resp;

  // slave structs
  apb_req_t  [NoApbSlaves-1:0] apb_req;
  apb_resp_t [NoApbSlaves-1:0] apb_resps;

  // -------------------------------
  // AXI Interfaces
  // -------------------------------
  AXI_LITE #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
    .AXI_DATA_WIDTH ( AxiDataWidth      )
  ) master ();
  AXI_LITE_DV #(
    .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
    .AXI_DATA_WIDTH ( AxiDataWidth      )
  ) master_dv (clk);
  `AXI_LITE_ASSIGN(master, master_dv)
  `AXI_LITE_ASSIGN_TO_REQ(axi_req, master)
  `AXI_LITE_ASSIGN_FROM_RESP(master, axi_resp)

  // -------------------------------
  // AXI Rand Masters
  // -------------------------------
  // Master controls simulation run time
  initial begin : proc_axi_master
    static axi_lite_rand_master_t axi_lite_rand_master = new ( master_dv , "axi_lite_mst");
    end_of_sim <= 1'b0;
    axi_lite_rand_master.reset();
    @(posedge rst_n);
    axi_lite_rand_master.run(NoReads, NoWrites);
    end_of_sim <= 1'b1;
  end


  for (genvar i = 0; i < NoApbSlaves; i++) begin : gen_apb_slave
    initial begin : proc_apb_slave
      apb_resps[i] <= '0;
      forever begin
        @(posedge clk);
        apb_resps[i].pready  <= #ApplTime $urandom();
        apb_resps[i].prdata  <= #ApplTime $urandom();
        apb_resps[i].pslverr <= #ApplTime $urandom();
      end
    end
  end

  initial begin : proc_sim_stop
    @(posedge rst_n);
    wait (end_of_sim);
    $stop();
  end

  // pragma translate_off
  `ifndef VERILATOR
  // Assertions to determine correct APB protocol sequencing
  default disable iff (!rst_n);
  for (genvar i = 0; i < NoApbSlaves; i++) begin : gen_apb_assertions
    // when psel is not asserted, the bus is in the idle state
    sequence APB_IDLE;
      !apb_req[i].psel;
    endsequence

    // when psel is set and penable is not, it is the setup state
    sequence APB_SETUP;
      apb_req[i].psel && !apb_req[i].penable;
    endsequence

    // when psel and penable are set it is the access state
    sequence APB_ACCESS;
      apb_req[i].psel && apb_req[i].penable;
    endsequence

    // APB Transfer is APB state going from setup to access
    sequence APB_TRANSFER;
      APB_SETUP ##1 APB_ACCESS;
    endsequence

    apb_complete:   assert property ( @(posedge clk)
        (APB_SETUP |-> APB_TRANSFER));

    apb_penable:    assert property ( @(posedge clk)
        (apb_req[i].penable && apb_req[i].psel && apb_resps[i].pready |=> (!apb_req[i].penable)));

    control_stable: assert property ( @(posedge clk)
        (APB_TRANSFER |-> $stable({apb_req[i].pwrite, apb_req[i].paddr})));

    apb_valid:      assert property ( @(posedge clk)
        (APB_TRANSFER |-> ((!{apb_req[i].pwrite, apb_req[i].pstrb, apb_req[i].paddr}) !== 1'bx)));

    write_stable:   assert property ( @(posedge clk)
        ((apb_req[i].penable && apb_req[i].pwrite) |-> $stable(apb_req[i].pwdata)));

    strb_stable:    assert property ( @(posedge clk)
        ((apb_req[i].penable && apb_req[i].pwrite) |-> $stable(apb_req[i].pstrb)));
  end
  `endif
  // pragma translate_on

  //-----------------------------------
  // Clock generator
  //-----------------------------------
    clk_rst_gen #(
    .ClkPeriod    ( CyclTime ),
    .RstClkCycles ( 5        )
  ) i_clk_gen (
    .clk_o  ( clk   ),
    .rst_no ( rst_n )
  );

  //-----------------------------------
  // DUT
  //-----------------------------------
  axi_lite_to_apb #(
    .NoApbSlaves      ( NoApbSlaves         ),
    .NoRules          ( NoAddrRules         ),
    .AddrWidth        ( AxiAddrWidth        ),
    .DataWidth        ( AxiDataWidth        ),
    .PipelineRequest  ( TbPipelineRequest   ),
    .PipelineResponse ( TbPipelineResponse  ),
    .axi_lite_req_t   ( axi_req_t           ),
    .axi_lite_resp_t  ( axi_resp_t          ),
    .apb_req_t        ( apb_req_t           ),
    .apb_resp_t       ( apb_resp_t          ),
    .rule_t           ( rule_t              )
  ) i_axi_lite_to_apb_dut (
    .clk_i           ( clk          ),
    .rst_ni          ( rst_n        ),
    .axi_lite_req_i  ( axi_req      ),
    .axi_lite_resp_o ( axi_resp     ),
    .apb_req_o       ( apb_req      ),
    .apb_resp_i      ( apb_resps    ),
    .addr_map_i      ( AddrMap      )
  );
endmodule