tb_axi_cdc.sv 7.91 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
// Copyright 2019-2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Andreas Kurth <akurth@iis.ee.ethz.ch>
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>

`include "axi/typedef.svh"
`include "axi/assign.svh"

module tb_axi_cdc #(
  // AXI Parameters
  parameter int unsigned AXI_AW = 32,
  parameter int unsigned AXI_DW = 64,
  parameter int unsigned AXI_IW = 4,
  parameter int unsigned AXI_UW = 2,
  parameter int unsigned AXI_MAX_READ_TXNS = 10,
  parameter int unsigned AXI_MAX_WRITE_TXNS = 12,
  // TB Parameters
  parameter time TCLK_UPSTREAM = 10ns,
  parameter time TA_UPSTREAM = TCLK_UPSTREAM * 1/4,
  parameter time TT_UPSTREAM = TCLK_UPSTREAM * 3/4,
  parameter time TCLK_DOWNSTREAM = 3ns,
  parameter time TA_DOWNSTREAM = TCLK_DOWNSTREAM * 1/4,
  parameter time TT_DOWNSTREAM = TCLK_DOWNSTREAM * 3/4,
  parameter int unsigned REQ_MIN_WAIT_CYCLES = 0,
  parameter int unsigned REQ_MAX_WAIT_CYCLES = 10,
  parameter int unsigned RESP_MIN_WAIT_CYCLES = 0,
  parameter int unsigned RESP_MAX_WAIT_CYCLES = REQ_MAX_WAIT_CYCLES/2,
  parameter int unsigned N_TXNS = 1000
);

  localparam int unsigned N_RD_TXNS = N_TXNS / 2;
  localparam int unsigned N_WR_TXNS = N_TXNS / 2;

  // Clocks and Resets

  logic upstream_clk,
        downstream_clk,
        upstream_rst_n,
        downstream_rst_n;

  clk_rst_gen #(
    .ClkPeriod    (TCLK_UPSTREAM),
    .RstClkCycles (5)
  ) i_clk_rst_gen_upstream (
    .clk_o  (upstream_clk),
    .rst_no (upstream_rst_n)
  );

  clk_rst_gen #(
    .ClkPeriod    (TCLK_DOWNSTREAM),
    .RstClkCycles (5)
  ) i_clk_rst_gen_downstream (
    .clk_o  (downstream_clk),
    .rst_no (downstream_rst_n)
  );

  // AXI Interfaces

  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH (AXI_AW),
    .AXI_DATA_WIDTH (AXI_DW),
    .AXI_ID_WIDTH   (AXI_IW),
    .AXI_USER_WIDTH (AXI_UW)
  ) upstream_dv (
    .clk_i  (upstream_clk)
  );

  AXI_BUS #(
    .AXI_ADDR_WIDTH (AXI_AW),
    .AXI_DATA_WIDTH (AXI_DW),
    .AXI_ID_WIDTH   (AXI_IW),
    .AXI_USER_WIDTH (AXI_UW)
  ) upstream ();

  `AXI_ASSIGN(upstream, upstream_dv)

  AXI_BUS_DV #(
    .AXI_ADDR_WIDTH (AXI_AW),
    .AXI_DATA_WIDTH (AXI_DW),
    .AXI_ID_WIDTH   (AXI_IW),
    .AXI_USER_WIDTH (AXI_UW)
  ) downstream_dv (
    .clk_i  (downstream_clk)
  );

  AXI_BUS #(
    .AXI_ADDR_WIDTH (AXI_AW),
    .AXI_DATA_WIDTH (AXI_DW),
    .AXI_ID_WIDTH   (AXI_IW),
    .AXI_USER_WIDTH (AXI_UW)
  ) downstream ();

  `AXI_ASSIGN(downstream_dv, downstream)

  // AXI Channel Structs

  typedef logic [AXI_AW-1:0]    addr_t;
  typedef logic [AXI_DW-1:0]    data_t;
  typedef logic [AXI_IW-1:0]    id_t;
  typedef logic [AXI_DW/8-1:0]  strb_t;
  typedef logic [AXI_UW-1:0]    user_t;

  `AXI_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t, id_t, user_t)
  `AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)
  `AXI_TYPEDEF_B_CHAN_T(b_chan_t, id_t, user_t)
  `AXI_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t, id_t, user_t)
  `AXI_TYPEDEF_R_CHAN_T(r_chan_t, data_t, id_t, user_t)

  axi_cdc_intf #(
    .AXI_ADDR_WIDTH (AXI_AW),
    .AXI_DATA_WIDTH (AXI_DW),
    .AXI_ID_WIDTH   (AXI_IW),
    .AXI_USER_WIDTH (AXI_UW),
    .LOG_DEPTH      (2)
  ) dut (
    .src_clk_i  (upstream_clk),
    .src_rst_ni (upstream_rst_n),
    .src        (upstream),
    .dst_clk_i  (downstream_clk),
    .dst_rst_ni (downstream_rst_n),
    .dst        (downstream)
  );

  typedef axi_test::axi_rand_master #(
    .AW                   (AXI_AW),
    .DW                   (AXI_DW),
    .IW                   (AXI_IW),
    .UW                   (AXI_UW),
    .TA                   (TA_UPSTREAM),
    .TT                   (TT_UPSTREAM),
    .MAX_READ_TXNS        (AXI_MAX_READ_TXNS),
    .MAX_WRITE_TXNS       (AXI_MAX_WRITE_TXNS),
    .AX_MIN_WAIT_CYCLES   (REQ_MIN_WAIT_CYCLES),
    .AX_MAX_WAIT_CYCLES   (REQ_MAX_WAIT_CYCLES),
    .W_MIN_WAIT_CYCLES    (REQ_MIN_WAIT_CYCLES),
    .W_MAX_WAIT_CYCLES    (REQ_MAX_WAIT_CYCLES),
    .RESP_MIN_WAIT_CYCLES (RESP_MIN_WAIT_CYCLES),
    .RESP_MAX_WAIT_CYCLES (RESP_MAX_WAIT_CYCLES),
    .AXI_MAX_BURST_LEN    (16)
  ) axi_master_t;
  axi_master_t axi_master = new(upstream_dv);

  initial begin
    wait (upstream_rst_n);
    axi_master.run(N_RD_TXNS, N_WR_TXNS);
  end

  typedef axi_test::axi_rand_slave #(
    .AW                   (AXI_AW),
    .DW                   (AXI_DW),
    .IW                   (AXI_IW),
    .UW                   (AXI_UW),
    .TA                   (TA_DOWNSTREAM),
    .TT                   (TT_DOWNSTREAM),
    .AX_MIN_WAIT_CYCLES   (RESP_MIN_WAIT_CYCLES),
    .AX_MAX_WAIT_CYCLES   (RESP_MAX_WAIT_CYCLES),
    .R_MIN_WAIT_CYCLES    (RESP_MIN_WAIT_CYCLES),
    .R_MAX_WAIT_CYCLES    (RESP_MAX_WAIT_CYCLES),
    .RESP_MIN_WAIT_CYCLES (RESP_MIN_WAIT_CYCLES),
    .RESP_MAX_WAIT_CYCLES (RESP_MAX_WAIT_CYCLES)
  ) axi_slave_t;
  axi_slave_t axi_slave = new(downstream_dv);

  initial begin
    wait (downstream_rst_n);
    axi_slave.run();
  end

  ar_chan_t   mst_ar, slv_ar, ar_queue[$];
  aw_chan_t   mst_aw, slv_aw, aw_queue[$];
  b_chan_t    mst_b,  slv_b,  b_queue[$];
  r_chan_t    mst_r,  slv_r,  r_queue[$];
  w_chan_t    mst_w,  slv_w,  w_queue[$];

  `AXI_ASSIGN_TO_AR(mst_ar, upstream)
  `AXI_ASSIGN_TO_AR(slv_ar, downstream)
  `AXI_ASSIGN_TO_AW(mst_aw, upstream)
  `AXI_ASSIGN_TO_AW(slv_aw, downstream)
  `AXI_ASSIGN_TO_B(mst_b, upstream)
  `AXI_ASSIGN_TO_B(slv_b, downstream)
  `AXI_ASSIGN_TO_R(mst_r, upstream)
  `AXI_ASSIGN_TO_R(slv_r, downstream)
  `AXI_ASSIGN_TO_W(mst_w, upstream)
  `AXI_ASSIGN_TO_W(slv_w, downstream)

  logic mst_done = 1'b0;
  // Monitor and check upstream
  initial begin
    automatic b_chan_t exp_b;
    automatic r_chan_t exp_r;
    automatic int unsigned rd_cnt = 0, wr_cnt = 0;
    forever begin
      @(posedge upstream_clk);
      #(TT_UPSTREAM);
      if (upstream.aw_valid && upstream.aw_ready) begin
        aw_queue.push_back(mst_aw);
      end
      if (upstream.w_valid && upstream.w_ready) begin
        w_queue.push_back(mst_w);
      end
      if (upstream.b_valid && upstream.b_ready) begin
        exp_b = b_queue.pop_front();
        assert (mst_b == exp_b);
        wr_cnt++;
      end
      if (upstream.ar_valid && upstream.ar_ready) begin
        ar_queue.push_back(mst_ar);
      end
      if (upstream.r_valid && upstream.r_ready) begin
        exp_r = r_queue.pop_front();
        assert (mst_r == exp_r);
        if (upstream.r_last) begin
          rd_cnt++;
        end
      end
      if (rd_cnt == N_RD_TXNS && wr_cnt == N_WR_TXNS) begin
        mst_done = 1'b1;
      end
    end
  end

  // Monitor and check downstream
  initial begin
    automatic ar_chan_t exp_ar;
    automatic aw_chan_t exp_aw;
    automatic w_chan_t  exp_w;
    forever begin
      @(posedge downstream_clk);
      #(TT_DOWNSTREAM);
      if (downstream.aw_valid && downstream.aw_ready) begin
        exp_aw = aw_queue.pop_front();
        assert (slv_aw == exp_aw);
      end
      if (downstream.w_valid && downstream.w_ready) begin
        exp_w = w_queue.pop_front();
        assert (slv_w == exp_w);
      end
      if (downstream.b_valid && downstream.b_ready) begin
        b_queue.push_back(slv_b);
      end
      if (downstream.ar_valid && downstream.ar_ready) begin
        exp_ar = ar_queue.pop_front();
        assert (slv_ar == exp_ar);
      end
      if (downstream.r_valid && downstream.r_ready) begin
        r_queue.push_back(slv_r);
      end
    end
  end

  // Terminate simulation after all transactions have completed.
  initial begin
   wait (mst_done);
   #(10*TCLK_UPSTREAM);
   $finish();
  end

endmodule