axi_cut.sv 8.36 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
// Copyright (c) 2014-2018 ETH Zurich, University of Bologna
//
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>
// - Fabian Schuiki <fschuiki@iis.ee.ethz.ch>
// - Andreas Kurth <akurth@iis.ee.ethz.ch>

/// An AXI4 cut.
///
/// Breaks all combinatorial paths between its input and output.
module axi_cut #(
  // bypass enable
  parameter bit  Bypass    = 1'b0,
  // AXI channel structs
  parameter type aw_chan_t = logic,
  parameter type  w_chan_t = logic,
  parameter type  b_chan_t = logic,
  parameter type ar_chan_t = logic,
  parameter type  r_chan_t = logic,
  // AXI request & response structs
  parameter type     req_t = logic,
  parameter type    resp_t = logic
) (
  input logic   clk_i,
  input logic   rst_ni,
  // salve port
  input  req_t  slv_req_i,
  output resp_t slv_resp_o,
  // master port
  output req_t  mst_req_o,
  input  resp_t mst_resp_i
);

  // a spill register for each channel
  spill_register #(
    .T       ( aw_chan_t ),
    .Bypass  ( Bypass    )
  ) i_reg_aw (
    .clk_i   ( clk_i               ),
    .rst_ni  ( rst_ni              ),
    .valid_i ( slv_req_i.aw_valid  ),
    .ready_o ( slv_resp_o.aw_ready ),
    .data_i  ( slv_req_i.aw        ),
    .valid_o ( mst_req_o.aw_valid  ),
    .ready_i ( mst_resp_i.aw_ready ),
    .data_o  ( mst_req_o.aw        )
  );

  spill_register #(
    .T       ( w_chan_t ),
    .Bypass  ( Bypass   )
  ) i_reg_w  (
    .clk_i   ( clk_i              ),
    .rst_ni  ( rst_ni             ),
    .valid_i ( slv_req_i.w_valid  ),
    .ready_o ( slv_resp_o.w_ready ),
    .data_i  ( slv_req_i.w        ),
    .valid_o ( mst_req_o.w_valid  ),
    .ready_i ( mst_resp_i.w_ready ),
    .data_o  ( mst_req_o.w        )
  );

  spill_register #(
    .T       ( b_chan_t ),
    .Bypass  ( Bypass   )
  ) i_reg_b  (
    .clk_i   ( clk_i              ),
    .rst_ni  ( rst_ni             ),
    .valid_i ( mst_resp_i.b_valid ),
    .ready_o ( mst_req_o.b_ready  ),
    .data_i  ( mst_resp_i.b       ),
    .valid_o ( slv_resp_o.b_valid ),
    .ready_i ( slv_req_i.b_ready  ),
    .data_o  ( slv_resp_o.b       )
  );

  spill_register #(
    .T       ( ar_chan_t ),
    .Bypass  ( Bypass    )
  ) i_reg_ar (
    .clk_i   ( clk_i               ),
    .rst_ni  ( rst_ni              ),
    .valid_i ( slv_req_i.ar_valid  ),
    .ready_o ( slv_resp_o.ar_ready ),
    .data_i  ( slv_req_i.ar        ),
    .valid_o ( mst_req_o.ar_valid  ),
    .ready_i ( mst_resp_i.ar_ready ),
    .data_o  ( mst_req_o.ar        )
  );

  spill_register #(
    .T       ( r_chan_t ),
    .Bypass  ( Bypass   )
  ) i_reg_r  (
    .clk_i   ( clk_i              ),
    .rst_ni  ( rst_ni             ),
    .valid_i ( mst_resp_i.r_valid ),
    .ready_o ( mst_req_o.r_ready  ),
    .data_i  ( mst_resp_i.r       ),
    .valid_o ( slv_resp_o.r_valid ),
    .ready_i ( slv_req_i.r_ready  ),
    .data_o  ( slv_resp_o.r       )
  );
endmodule

`include "axi/assign.svh"
`include "axi/typedef.svh"

// interface wrapper
module axi_cut_intf #(
  // Bypass eneable
  parameter bit          BYPASS     = 1'b0,
  // The address width.
  parameter int unsigned ADDR_WIDTH = 0,
  // The data width.
  parameter int unsigned DATA_WIDTH = 0,
  // The ID width.
  parameter int unsigned ID_WIDTH   = 0,
  // The user data width.
  parameter int unsigned USER_WIDTH = 0
) (
  input logic     clk_i  ,
  input logic     rst_ni ,
  AXI_BUS.Slave   in     ,
  AXI_BUS.Master  out
);

  typedef logic [ID_WIDTH-1:0]     id_t;
  typedef logic [ADDR_WIDTH-1:0]   addr_t;
  typedef logic [DATA_WIDTH-1:0]   data_t;
  typedef logic [DATA_WIDTH/8-1:0] strb_t;
  typedef logic [USER_WIDTH-1:0]   user_t;

  `AXI_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t, id_t, user_t)
  `AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)
  `AXI_TYPEDEF_B_CHAN_T(b_chan_t, id_t, user_t)
  `AXI_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t, id_t, user_t)
  `AXI_TYPEDEF_R_CHAN_T(r_chan_t, data_t, id_t, user_t)
  `AXI_TYPEDEF_REQ_T(req_t, aw_chan_t, w_chan_t, ar_chan_t)
  `AXI_TYPEDEF_RESP_T(resp_t, b_chan_t, r_chan_t)

  req_t  slv_req,  mst_req;
  resp_t slv_resp, mst_resp;

  `AXI_ASSIGN_TO_REQ(slv_req, in)
  `AXI_ASSIGN_FROM_RESP(in, slv_resp)

  `AXI_ASSIGN_FROM_REQ(out, mst_req)
  `AXI_ASSIGN_TO_RESP(mst_resp, out)

  axi_cut #(
    .Bypass    (    BYPASS ),
    .aw_chan_t ( aw_chan_t ),
    .w_chan_t  (  w_chan_t ),
    .b_chan_t  (  b_chan_t ),
    .ar_chan_t ( ar_chan_t ),
    .r_chan_t  (  r_chan_t ),
    .req_t     (     req_t ),
    .resp_t    (    resp_t )
  ) i_axi_cut (
    .clk_i,
    .rst_ni,
    .slv_req_i  ( slv_req  ),
    .slv_resp_o ( slv_resp ),
    .mst_req_o  ( mst_req  ),
    .mst_resp_i ( mst_resp )
  );

  // Check the invariants.
  // pragma translate_off
  `ifndef VERILATOR
  initial begin
    assert (ADDR_WIDTH > 0) else $fatal(1, "Wrong addr width parameter");
    assert (DATA_WIDTH > 0) else $fatal(1, "Wrong data width parameter");
    assert (ID_WIDTH   > 0) else $fatal(1, "Wrong id   width parameter");
    assert (USER_WIDTH > 0) else $fatal(1, "Wrong user width parameter");
    assert (in.AXI_ADDR_WIDTH  == ADDR_WIDTH) else $fatal(1, "Wrong interface definition");
    assert (in.AXI_DATA_WIDTH  == DATA_WIDTH) else $fatal(1, "Wrong interface definition");
    assert (in.AXI_ID_WIDTH    == ID_WIDTH)   else $fatal(1, "Wrong interface definition");
    assert (in.AXI_USER_WIDTH  == USER_WIDTH) else $fatal(1, "Wrong interface definition");
    assert (out.AXI_ADDR_WIDTH == ADDR_WIDTH) else $fatal(1, "Wrong interface definition");
    assert (out.AXI_DATA_WIDTH == DATA_WIDTH) else $fatal(1, "Wrong interface definition");
    assert (out.AXI_ID_WIDTH   == ID_WIDTH)   else $fatal(1, "Wrong interface definition");
    assert (out.AXI_USER_WIDTH == USER_WIDTH) else $fatal(1, "Wrong interface definition");
  end
  `endif
  // pragma translate_on
endmodule

module axi_lite_cut_intf #(
  // bypass enable
  parameter bit          BYPASS     = 1'b0,
  /// The address width.
  parameter int unsigned ADDR_WIDTH = 0,
  /// The data width.
  parameter int unsigned DATA_WIDTH = 0
) (
  input logic     clk_i  ,
  input logic     rst_ni ,
  AXI_LITE.Slave  in     ,
  AXI_LITE.Master out
);

  typedef logic [ADDR_WIDTH-1:0]   addr_t;
  typedef logic [DATA_WIDTH-1:0]   data_t;
  typedef logic [DATA_WIDTH/8-1:0] strb_t;

  `AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t)
  `AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t)
  `AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_t)
  `AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t)
  `AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_t, data_t)
  `AXI_LITE_TYPEDEF_REQ_T(req_t, aw_chan_t, w_chan_t, ar_chan_t)
  `AXI_LITE_TYPEDEF_RESP_T(resp_t, b_chan_t, r_chan_t)

  req_t   slv_req,  mst_req;
  resp_t  slv_resp, mst_resp;

  `AXI_LITE_ASSIGN_TO_REQ(slv_req, in)
  `AXI_LITE_ASSIGN_FROM_RESP(in, slv_resp)

  `AXI_LITE_ASSIGN_FROM_REQ(out, mst_req)
  `AXI_LITE_ASSIGN_TO_RESP(mst_resp, out)

  axi_cut #(
    .Bypass    (    BYPASS ),
    .aw_chan_t ( aw_chan_t ),
    .w_chan_t  (  w_chan_t ),
    .b_chan_t  (  b_chan_t ),
    .ar_chan_t ( ar_chan_t ),
    .r_chan_t  (  r_chan_t ),
    .req_t     (     req_t ),
    .resp_t    (    resp_t )
  ) i_axi_cut (
    .clk_i,
    .rst_ni,
    .slv_req_i  ( slv_req  ),
    .slv_resp_o ( slv_resp ),
    .mst_req_o  ( mst_req  ),
    .mst_resp_i ( mst_resp )
  );

  // Check the invariants.
  // pragma translate_off
  `ifndef VERILATOR
  initial begin
    assert (ADDR_WIDTH > 0) else $fatal(1, "Wrong addr width parameter");
    assert (DATA_WIDTH > 0) else $fatal(1, "Wrong data width parameter");
    assert (in.AXI_ADDR_WIDTH == ADDR_WIDTH)  else $fatal(1, "Wrong interface definition");
    assert (in.AXI_DATA_WIDTH == DATA_WIDTH)  else $fatal(1, "Wrong interface definition");
    assert (out.AXI_ADDR_WIDTH == ADDR_WIDTH) else $fatal(1, "Wrong interface definition");
    assert (out.AXI_DATA_WIDTH == DATA_WIDTH) else $fatal(1, "Wrong interface definition");
  end
  `endif
  // pragma translate_on
endmodule