store_unit.sv 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Florian Zaruba, ETH Zurich
// Date: 22.05.2017
// Description: Store Unit, takes care of all store requests and atomic memory operations (AMOs)

import ariane_pkg::*;

module store_unit (
    input  logic                     clk_i,    // Clock
    input  logic                     rst_ni,  // Asynchronous reset active low
    input  logic                     flush_i,
    output logic                     no_st_pending_o,
    // store unit input port
    input  logic                     valid_i,
    input  lsu_ctrl_t                lsu_ctrl_i,
    output logic                     pop_st_o,
    input  logic                     commit_i,
    output logic                     commit_ready_o,
    input  logic                     amo_valid_commit_i,
    // store unit output port
    output logic                     valid_o,
    output logic [TRANS_ID_BITS-1:0] trans_id_o,
    output logic [63:0]              result_o,
    output exception_t               ex_o,
    // MMU -> Address Translation
    output logic                     translation_req_o, // request address translation
    output logic [63:0]              vaddr_o,           // virtual address out
    input  logic [63:0]              paddr_i,           // physical address in
    input  exception_t               ex_i,
    input  logic                     dtlb_hit_i,       // will be one in the same cycle translation_req was asserted if it hits
    // address checker
    input  logic [11:0]              page_offset_i,
    output logic                     page_offset_matches_o,
    // D$ interface
    output amo_req_t                 amo_req_o,
    input  amo_resp_t                amo_resp_i,
    input  dcache_req_o_t            req_port_i,
    output dcache_req_i_t            req_port_o
);
    // it doesn't matter what we are writing back as stores don't return anything
    assign result_o = 64'b0;

    enum logic [1:0] {
        IDLE,
        VALID_STORE,
        WAIT_TRANSLATION,
        WAIT_STORE_READY
    } state_d, state_q;

    // store buffer control signals
    logic st_ready;
    logic st_valid;
    logic st_valid_without_flush;
    logic instr_is_amo;
    assign instr_is_amo = is_amo(lsu_ctrl_i.operator);
    // keep the data and the byte enable for the second cycle (after address translation)
    logic [63:0]  st_data_n,      st_data_q;
    logic [7:0]   st_be_n,        st_be_q;
    logic [1:0]   st_data_size_n, st_data_size_q;
    amo_t         amo_op_d,       amo_op_q;

    logic [TRANS_ID_BITS-1:0] trans_id_n, trans_id_q;

    // output assignments
    assign vaddr_o    = lsu_ctrl_i.vaddr; // virtual address
    assign trans_id_o = trans_id_q; // transaction id from previous cycle

    always_comb begin : store_control
        translation_req_o      = 1'b0;
        valid_o                = 1'b0;
        st_valid               = 1'b0;
        st_valid_without_flush = 1'b0;
        pop_st_o               = 1'b0;
        ex_o                   = ex_i;
        trans_id_n             = lsu_ctrl_i.trans_id;
        state_d                     = state_q;

        case (state_q)
            // we got a valid store
            IDLE: begin
                if (valid_i) begin
                    state_d = VALID_STORE;
                    translation_req_o = 1'b1;
                    pop_st_o = 1'b1;
                    // check if translation was valid and we have space in the store buffer
                    // otherwise simply stall
                    if (!dtlb_hit_i) begin
                        state_d = WAIT_TRANSLATION;
                        pop_st_o = 1'b0;
                    end

                    if (!st_ready) begin
                        state_d = WAIT_STORE_READY;
                        pop_st_o = 1'b0;
                    end
                end
            end

            VALID_STORE: begin
                valid_o  = 1'b1;
                // post this store to the store buffer if we are not flushing
                if (!flush_i)
                    st_valid = 1'b1;

                st_valid_without_flush = 1'b1;

                // we have another request and its not an AMO (the AMO buffer only has depth 1)
                if (valid_i && !instr_is_amo) begin

                    translation_req_o = 1'b1;
                    state_d = VALID_STORE;
                    pop_st_o = 1'b1;

                    if (!dtlb_hit_i) begin
                        state_d = WAIT_TRANSLATION;
                        pop_st_o = 1'b0;
                    end

                    if (!st_ready) begin
                        state_d = WAIT_STORE_READY;
                        pop_st_o = 1'b0;
                    end
                // if we do not have another request go back to idle
                end else begin
                    state_d = IDLE;
                end
            end

            // the store queue is currently full
            WAIT_STORE_READY: begin
                // keep the translation request high
                translation_req_o = 1'b1;

                if (st_ready && dtlb_hit_i) begin
                    state_d = IDLE;
                end
            end

            // we didn't receive a valid translation, wait for one
            // but we know that the store queue is not full as we could only have landed here if
            // it wasn't full
            WAIT_TRANSLATION: begin
                translation_req_o = 1'b1;

                if (dtlb_hit_i) begin
                    state_d = IDLE;
                end
            end
        endcase

        // -----------------
        // Access Exception
        // -----------------
        // we got an address translation exception (access rights, misaligned or page fault)
        if (ex_i.valid && (state_q != IDLE)) begin
            // the only difference is that we do not want to store this request
            pop_st_o = 1'b1;
            st_valid = 1'b0;
            state_d  = IDLE;
            valid_o  = 1'b1;
        end

        if (flush_i)
            state_d = IDLE;
    end

    // -----------
    // Re-aligner
    // -----------
    // re-align the write data to comply with the address offset
    always_comb begin
        st_be_n   = lsu_ctrl_i.be;
        // don't shift the data if we are going to perform an AMO as we still need to operate on this data
        st_data_n = instr_is_amo ? lsu_ctrl_i.data
                                 : data_align(lsu_ctrl_i.vaddr[2:0], lsu_ctrl_i.data);
        st_data_size_n = extract_transfer_size(lsu_ctrl_i.operator);
        // save AMO op for next cycle
        case (lsu_ctrl_i.operator)
            AMO_LRW, AMO_LRD:     amo_op_d = AMO_LR;
            AMO_SCW, AMO_SCD:     amo_op_d = AMO_SC;
            AMO_SWAPW, AMO_SWAPD: amo_op_d = AMO_SWAP;
            AMO_ADDW, AMO_ADDD:   amo_op_d = AMO_ADD;
            AMO_ANDW, AMO_ANDD:   amo_op_d = AMO_AND;
            AMO_ORW, AMO_ORD:     amo_op_d = AMO_OR;
            AMO_XORW, AMO_XORD:   amo_op_d = AMO_XOR;
            AMO_MAXW, AMO_MAXD:   amo_op_d = AMO_MAX;
            AMO_MAXWU, AMO_MAXDU: amo_op_d = AMO_MAXU;
            AMO_MINW, AMO_MIND:   amo_op_d = AMO_MIN;
            AMO_MINWU, AMO_MINDU: amo_op_d = AMO_MINU;
            default: amo_op_d = AMO_NONE;
        endcase
    end

    logic store_buffer_valid, amo_buffer_valid;
    logic store_buffer_ready, amo_buffer_ready;

    // multiplex between store unit and amo buffer
    assign store_buffer_valid = st_valid & (amo_op_q == AMO_NONE);
    assign amo_buffer_valid = st_valid & (amo_op_q != AMO_NONE);

    assign st_ready = store_buffer_ready & amo_buffer_ready;

    // ---------------
    // Store Queue
    // ---------------
    store_buffer store_buffer_i (
        .clk_i,
        .rst_ni,
        .flush_i,
        .no_st_pending_o,
        .page_offset_i,
        .page_offset_matches_o,
        .commit_i,
        .commit_ready_o,
        .ready_o               ( store_buffer_ready     ),
        .valid_i               ( store_buffer_valid     ),
        // the flush signal can be critical and we need this valid
        // signal to check whether the page_offset matches or not,
        // functionaly it doesn't make a difference whether we use
        // the correct valid signal or not as we are flushing
        // the whole pipeline anyway
        .valid_without_flush_i ( st_valid_without_flush ),
        .paddr_i,
        .data_i                ( st_data_q              ),
        .be_i                  ( st_be_q                ),
        .data_size_i           ( st_data_size_q         ),
        .req_port_i            ( req_port_i             ),
        .req_port_o            ( req_port_o             )
    );

    amo_buffer i_amo_buffer (
        .clk_i,
        .rst_ni,
        .flush_i,
        .valid_i            ( amo_buffer_valid   ),
        .ready_o            ( amo_buffer_ready   ),
        .paddr_i            ( paddr_i            ),
        .amo_op_i           ( amo_op_q           ),
        .data_i             ( st_data_q          ),
        .data_size_i        ( st_data_size_q     ),
        .amo_req_o          ( amo_req_o          ),
        .amo_resp_i         ( amo_resp_i         ),
        .amo_valid_commit_i ( amo_valid_commit_i ),
        .no_st_pending_i    ( no_st_pending_o    )
    );

    // ---------------
    // Registers
    // ---------------
    always_ff @(posedge clk_i or negedge rst_ni) begin
        if (~rst_ni) begin
            state_q             <= IDLE;
            st_be_q        <= '0;
            st_data_q      <= '0;
            st_data_size_q <= '0;
            trans_id_q     <= '0;
            amo_op_q       <= AMO_NONE;
        end else begin
            state_q        <= state_d;
            st_be_q        <= st_be_n;
            st_data_q      <= st_data_n;
            trans_id_q     <= trans_id_n;
            st_data_size_q <= st_data_size_n;
            amo_op_q       <= amo_op_d;
        end
    end

endmodule