tb_axi_xbar_pkg.sv 20 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
// Copyright (c) 2019 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Florian Zaruba <zarubaf@iis.ee.ethz.ch>
// - Wolfgang Roenninger <wroennin@iis.ee.ethz.ch>

// `axi_xbar_monitor` implements an AXI bus monitor that is tuned for the AXI crossbar.
// It snoops on each of the slaves and master ports of the crossbar and
// populates FIFOs and ID queues to validate that no AXI beats get
// lost or sent to the wrong destination.

package tb_axi_xbar_pkg;
  class axi_xbar_monitor #(
    parameter int unsigned AxiAddrWidth,
    parameter int unsigned AxiDataWidth,
    parameter int unsigned AxiIdWidthMasters,
    parameter int unsigned AxiIdWidthSlaves,
    parameter int unsigned AxiUserWidth,
    parameter int unsigned NoMasters,
    parameter int unsigned NoSlaves,
    parameter int unsigned NoAddrRules,
    parameter type         rule_t,
    parameter rule_t [NoAddrRules-1:0] AddrMap,
      // Stimuli application and test time
    parameter time  TimeTest
  );
    typedef logic [AxiIdWidthMasters-1:0] mst_axi_id_t;
    typedef logic [AxiIdWidthSlaves-1:0]  slv_axi_id_t;
    typedef logic [AxiAddrWidth-1:0]      axi_addr_t;

    typedef logic [$clog2(NoMasters)-1:0] idx_mst_t;
    typedef int unsigned                  idx_slv_t; // from rule_t

    typedef struct packed {
      mst_axi_id_t mst_axi_id;
      logic        last;
    } master_exp_t;
    typedef struct packed {
      slv_axi_id_t   slv_axi_id;
      axi_addr_t     slv_axi_addr;
      axi_pkg::len_t slv_axi_len;
    } exp_ax_t;
    typedef struct packed {
      slv_axi_id_t slv_axi_id;
      logic        last;
    } slave_exp_t;

    typedef rand_id_queue_pkg::rand_id_queue #(
      .data_t   ( master_exp_t      ),
      .ID_WIDTH ( AxiIdWidthMasters )
    ) master_exp_queue_t;
    typedef rand_id_queue_pkg::rand_id_queue #(
      .data_t   ( exp_ax_t         ),
      .ID_WIDTH ( AxiIdWidthSlaves )
    ) ax_queue_t;

    typedef rand_id_queue_pkg::rand_id_queue #(
      .data_t   ( slave_exp_t      ),
      .ID_WIDTH ( AxiIdWidthSlaves )
    ) slave_exp_queue_t;

    //-----------------------------------------
    // Monitoring virtual interfaces
    //-----------------------------------------
    virtual AXI_BUS_DV #(
      .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
      .AXI_DATA_WIDTH ( AxiDataWidth      ),
      .AXI_ID_WIDTH   ( AxiIdWidthMasters ),
      .AXI_USER_WIDTH ( AxiUserWidth      )
    ) masters_axi [NoMasters-1:0];
    virtual AXI_BUS_DV #(
      .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
      .AXI_DATA_WIDTH ( AxiDataWidth      ),
      .AXI_ID_WIDTH   ( AxiIdWidthSlaves  ),
      .AXI_USER_WIDTH ( AxiUserWidth      )
    ) slaves_axi [NoSlaves-1:0];
    //-----------------------------------------
    // Queues and FIFOs to hold the expected ids
    //-----------------------------------------
    // Write transactions
    ax_queue_t         exp_aw_queue [NoSlaves-1:0];
    slave_exp_t        exp_w_fifo   [NoSlaves-1:0][$];
    slave_exp_t        act_w_fifo   [NoSlaves-1:0][$];
    master_exp_queue_t exp_b_queue  [NoMasters-1:0];

    // Read transactions
    ax_queue_t            exp_ar_queue  [NoSlaves-1:0];
    master_exp_queue_t    exp_r_queue  [NoMasters-1:0];

    //-----------------------------------------
    // Bookkeeping
    //-----------------------------------------
    longint unsigned tests_expected;
    longint unsigned tests_conducted;
    longint unsigned tests_failed;
    semaphore        cnt_sem;

    //-----------------------------------------
    // Constructor
    //-----------------------------------------
    function new(
      virtual AXI_BUS_DV #(
        .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
        .AXI_DATA_WIDTH ( AxiDataWidth      ),
        .AXI_ID_WIDTH   ( AxiIdWidthMasters ),
        .AXI_USER_WIDTH ( AxiUserWidth      )
      ) axi_masters_vif [NoMasters-1:0],
      virtual AXI_BUS_DV #(
        .AXI_ADDR_WIDTH ( AxiAddrWidth      ),
        .AXI_DATA_WIDTH ( AxiDataWidth      ),
        .AXI_ID_WIDTH   ( AxiIdWidthSlaves  ),
        .AXI_USER_WIDTH ( AxiUserWidth      )
      ) axi_slaves_vif [NoSlaves-1:0]
    );
      begin
        this.masters_axi     = axi_masters_vif;
        this.slaves_axi      = axi_slaves_vif;
        this.tests_expected  = 0;
        this.tests_conducted = 0;
        this.tests_failed    = 0;
        for (int unsigned i = 0; i < NoMasters; i++) begin
          this.exp_b_queue[i] = new;
          this.exp_r_queue[i] = new;
        end
        for (int unsigned i = 0; i < NoSlaves; i++) begin
          this.exp_aw_queue[i] = new;
          this.exp_ar_queue[i] = new;
        end
        this.cnt_sem = new(1);
      end
    endfunction

    // when start the testing
    task cycle_start;
      #TimeTest;
    endtask

    // when is cycle finished
    task cycle_end;
      @(posedge masters_axi[0].clk_i);
    endtask

    // This task monitors a slave ports of the crossbar. Every time an AW beat is seen
    // it populates an id queue at the right master port (if there is no expected decode error),
    // populates the expected b response in its own id_queue and in case when the atomic bit [5]
    // is set it also injects an expected response in the R channel.
    task automatic monitor_mst_aw(input int unsigned i);
      idx_slv_t    to_slave_idx;
      exp_ax_t     exp_aw;
      slv_axi_id_t exp_aw_id;
      bit          decerr;

      master_exp_t exp_b;

      if (masters_axi[i].aw_valid && masters_axi[i].aw_ready) begin
        // check if it should go to a decerror
        decerr = 1'b1;
        for (int unsigned j = 0; j < NoAddrRules; j++) begin
          if ((masters_axi[i].aw_addr >= AddrMap[j].start_addr) &&
              (masters_axi[i].aw_addr < AddrMap[j].end_addr)) begin
            to_slave_idx = idx_slv_t'(AddrMap[j].idx);
            decerr = 1'b0;
          end
        end
        // send the exp aw beat down into the queue of the slave when no decerror
        if (!decerr) begin
          exp_aw_id = {idx_mst_t'(i), masters_axi[i].aw_id};
          // $display("Test exp aw_id: %b",exp_aw_id);
          exp_aw = '{slv_axi_id:   exp_aw_id,
                     slv_axi_addr: masters_axi[i].aw_addr,
                     slv_axi_len:  masters_axi[i].aw_len   };
          this.exp_aw_queue[to_slave_idx].push(exp_aw_id, exp_aw);
          incr_expected_tests(3);
          $display("%0tns > Master %0d: AW to Slave %0d: Axi ID: %b",
              $time, i, to_slave_idx, masters_axi[i].aw_id);
        end else begin
          $display("%0tns > Master %0d: AW to Decerror: Axi ID: %b",
              $time, i, to_slave_idx, masters_axi[i].aw_id);
        end
        // populate the expected b queue anyway
        exp_b = '{mst_axi_id: masters_axi[i].aw_id, last: 1'b1};
        this.exp_b_queue[i].push(masters_axi[i].aw_id, exp_b);
        incr_expected_tests(1);
        $display("        Expect B response.");
        // inject expected r beats on this id, if it is an atop
        if(masters_axi[i].aw_atop[5]) begin
          // push the required r beats into the right fifo (reuse the exp_b variable)
          $display("        Expect R response, len: %0d.", masters_axi[i].aw_len);
          for (int unsigned j = 0; j <= masters_axi[i].aw_len; j++) begin
            exp_b = (j == masters_axi[i].aw_len) ?
                '{mst_axi_id: masters_axi[i].aw_id, last: 1'b1} :
                '{mst_axi_id: masters_axi[i].aw_id, last: 1'b0};
            this.exp_r_queue[i].push(masters_axi[i].aw_id, exp_b);
            incr_expected_tests(1);
          end
        end
      end
    endtask : monitor_mst_aw

    // This task monitors a slave port of the crossbar. Every time there is an AW vector it
    // gets checked for its contents and if it was expected. The task then pushes an expected
    // amount of W beats in the respective fifo. Emphasis of the last flag.
    task automatic monitor_slv_aw(input int unsigned i);
      exp_ax_t    exp_aw;
      slave_exp_t exp_slv_w;
      //  $display("%0t > Was triggered: aw_valid %b, aw_ready: %b",
      //       $time(), slaves_axi[i].aw_valid, slaves_axi[i].aw_ready);
      if (slaves_axi[i].aw_valid && slaves_axi[i].aw_ready) begin
        // test if the aw beat was expected
        exp_aw = this.exp_aw_queue[i].pop_id(slaves_axi[i].aw_id);
        $display("%0tns > Slave  %0d: AW Axi ID: %b",
            $time, i, slaves_axi[i].aw_id);
        if (exp_aw.slv_axi_id != slaves_axi[i].aw_id) begin
          incr_failed_tests(1);
          $warning("Slave %0d: Unexpected AW with ID: %b", i, slaves_axi[i].aw_id);
        end
        if (exp_aw.slv_axi_addr != slaves_axi[i].aw_addr) begin
          incr_failed_tests(1);
          $warning("Slave %0d: Unexpected AW with ID: %b and ADDR: %h, exp: %h",
              i, slaves_axi[i].aw_id, slaves_axi[i].aw_addr, exp_aw.slv_axi_addr);
        end
        if (exp_aw.slv_axi_len != slaves_axi[i].aw_len) begin
          incr_failed_tests(1);
          $warning("Slave %0d: Unexpected AW with ID: %b and LEN: %h, exp: %h",
              i, slaves_axi[i].aw_id, slaves_axi[i].aw_len, exp_aw.slv_axi_len);
        end
        incr_conducted_tests(3);

        // push the required w beats into the right fifo
        incr_expected_tests(slaves_axi[i].aw_len + 1);
        for (int unsigned j = 0; j <= slaves_axi[i].aw_len; j++) begin
          exp_slv_w = (j == slaves_axi[i].aw_len) ?
              '{slv_axi_id: slaves_axi[i].aw_id, last: 1'b1} :
              '{slv_axi_id: slaves_axi[i].aw_id, last: 1'b0};
          this.exp_w_fifo[i].push_back(exp_slv_w);
        end
      end
    endtask : monitor_slv_aw

    // This task just pushes every W beat that gets sent on a master port in its respective fifo.
    task automatic monitor_slv_w(input int unsigned i);
      slave_exp_t     act_slv_w;
      if (slaves_axi[i].w_valid && slaves_axi[i].w_ready) begin
        // $display("%0t > W beat on Slave %0d, last flag: %b", $time, i, slaves_axi[i].w_last);
        act_slv_w = '{last: slaves_axi[i].w_last , default:'0};
        this.act_w_fifo[i].push_back(act_slv_w);
      end
    endtask : monitor_slv_w

    // This task compares the expected and actual W beats on a master port. The reason that
    // this is not done in `monitor_slv_w` is that there can be per protocol W beats on the
    // channel, before AW is sent to the slave.
    task automatic check_slv_w(input int unsigned i);
      slave_exp_t exp_w, act_w;
      while (this.exp_w_fifo[i].size() != 0 && this.act_w_fifo[i].size() != 0) begin

        exp_w = this.exp_w_fifo[i].pop_front();
        act_w = this.act_w_fifo[i].pop_front();
        // do the check
        incr_conducted_tests(1);
        if(exp_w.last != act_w.last) begin
          incr_failed_tests(1);
          $warning("Slave %d: unexpected W beat last flag %b, expected: %b.",
                 i, act_w.last, exp_w.last);
        end
      end
    endtask : check_slv_w

    // This task checks if a B response is allowed on a slave port of the crossbar.
    task automatic monitor_mst_b(input int unsigned i);
      master_exp_t exp_b;
      mst_axi_id_t axi_b_id;
      if (masters_axi[i].b_valid && masters_axi[i].b_ready) begin
        incr_conducted_tests(1);
        axi_b_id = masters_axi[i].b_id;
        $display("%0tns > Master %0d: Got last B with id: %b",
                $time, i, axi_b_id);
        if (this.exp_b_queue[i].empty()) begin
          incr_failed_tests(1);
          $warning("Master %d: unexpected B beat with ID: %b detected!", i, axi_b_id);
        end else begin
          exp_b = this.exp_b_queue[i].pop_id(axi_b_id);
          if (axi_b_id != exp_b.mst_axi_id) begin
            incr_failed_tests(1);
            $warning("Master: %d got unexpected B with ID: %b", i, axi_b_id);
          end
        end
      end
    endtask : monitor_mst_b

    // This task monitors the AR channel of a slave port of the crossbar. For each AR it populates
    // the corresponding ID queue with the number of r beats indicated on the `ar_len` field.
    // Emphasis on the last flag. We will detect reordering, if the last flags do not match,
    // as each `random` burst tend to have a different length.
    task automatic monitor_mst_ar(input int unsigned i);
      mst_axi_id_t   mst_axi_id;
      axi_addr_t     mst_axi_addr;
      axi_pkg::len_t mst_axi_len;

      idx_slv_t      exp_slv_idx;
      slv_axi_id_t   exp_slv_axi_id;
      exp_ax_t       exp_slv_ar;
      master_exp_t   exp_mst_r;

      logic          exp_decerr;

      if (masters_axi[i].ar_valid && masters_axi[i].ar_ready) begin
        exp_decerr     = 1'b1;
        mst_axi_id     = masters_axi[i].ar_id;
        mst_axi_addr   = masters_axi[i].ar_addr;
        mst_axi_len    = masters_axi[i].ar_len;
        exp_slv_axi_id = {idx_mst_t'(i), mst_axi_id};
        exp_slv_idx    = '0;
        for (int unsigned j = 0; j < NoAddrRules; j++) begin
          if ((mst_axi_addr >= AddrMap[j].start_addr) && (mst_axi_addr < AddrMap[j].end_addr)) begin
            exp_slv_idx = AddrMap[j].idx;
            exp_decerr  = 1'b0;
          end
        end
        if (exp_decerr) begin
          $display("%0tns > Master %0d: AR to Decerror: Axi ID: %b",
              $time, i, mst_axi_id);
        end else begin
          $display("%0tns > Master %0d: AR to Slave %0d: Axi ID: %b",
              $time, i, exp_slv_idx, mst_axi_id);
          // push the expected vectors AW for exp_slv
          exp_slv_ar = '{slv_axi_id:    exp_slv_axi_id,
                         slv_axi_addr:  mst_axi_addr,
                         slv_axi_len:   mst_axi_len     };
          //$display("Expected Slv Axi Id is: %b", exp_slv_axi_id);
          this.exp_ar_queue[exp_slv_idx].push(exp_slv_axi_id, exp_slv_ar);
          incr_expected_tests(1);
        end
        // push the required r beats into the right fifo
          $display("        Expect R response, len: %0d.", masters_axi[i].ar_len);
          for (int unsigned j = 0; j <= mst_axi_len; j++) begin
          exp_mst_r = (j == mst_axi_len) ? '{mst_axi_id: mst_axi_id, last: 1'b1} :
                                           '{mst_axi_id: mst_axi_id, last: 1'b0};
          this.exp_r_queue[i].push(mst_axi_id, exp_mst_r);
          incr_expected_tests(1);
        end
      end
    endtask : monitor_mst_ar

    // This task monitors a master port of the crossbar and checks if a transmitted AR beat was
    // expected.
    task automatic monitor_slv_ar(input int unsigned i);
      exp_ax_t       exp_slv_ar;
      slv_axi_id_t   slv_axi_id;
      if (slaves_axi[i].ar_valid && slaves_axi[i].ar_ready) begin
        incr_conducted_tests(1);
        slv_axi_id = slaves_axi[i].ar_id;
        if (this.exp_ar_queue[i].empty()) begin
          incr_failed_tests(1);
        end else begin
          // check that the ids are the same
          exp_slv_ar = this.exp_ar_queue[i].pop_id(slv_axi_id);
          $display("%0tns > Slave  %0d: AR Axi ID: %b", $time, i, slv_axi_id);
          if (exp_slv_ar.slv_axi_id != slv_axi_id) begin
            incr_failed_tests(1);
            $warning("Slave  %d: Unexpected AR with ID: %b", i, slv_axi_id);
          end
        end
      end
    endtask : monitor_slv_ar

    // This task does the R channel monitoring on a slave port. It compares the last flags,
    // which are determined by the sequence of previously sent AR vectors.
    task automatic monitor_mst_r(input int unsigned i);
      master_exp_t exp_mst_r;
      mst_axi_id_t mst_axi_r_id;
      logic        mst_axi_r_last;
      if (masters_axi[i].r_valid && masters_axi[i].r_ready) begin
        incr_conducted_tests(1);
        mst_axi_r_id   = masters_axi[i].r_id;
        mst_axi_r_last = masters_axi[i].r_last;
        if (mst_axi_r_last) begin
          $display("%0tns > Master %0d: Got last R with id: %b",
                   $time, i, mst_axi_r_id);
        end
        if (this.exp_r_queue[i].empty()) begin
          incr_failed_tests(1);
          $warning("Master %d: unexpected R beat with ID: %b detected!", i, mst_axi_r_id);
        end else begin
          exp_mst_r = this.exp_r_queue[i].pop_id(mst_axi_r_id);
          if (mst_axi_r_id != exp_mst_r.mst_axi_id) begin
            incr_failed_tests(1);
            $warning("Master: %d got unexpected R with ID: %b", i, mst_axi_r_id);
          end
          if (mst_axi_r_last != exp_mst_r.last) begin
            incr_failed_tests(1);
            $warning("Master: %d got unexpected R with ID: %b and last flag: %b",
                i, mst_axi_r_id, mst_axi_r_last);
          end
        end
      end
    endtask : monitor_mst_r

    // Some tasks to manage bookkeeping of the tests conducted.
    task incr_expected_tests(input int unsigned times);
      cnt_sem.get();
      this.tests_expected += times;
      cnt_sem.put();
    endtask : incr_expected_tests

    task incr_conducted_tests(input int unsigned times);
      cnt_sem.get();
      this.tests_conducted += times;
      cnt_sem.put();
    endtask : incr_conducted_tests

    task incr_failed_tests(input int unsigned times);
      cnt_sem.get();
      this.tests_failed += times;
      cnt_sem.put();
    endtask : incr_failed_tests

    // This task invokes the various monitoring tasks. It first forks in two, spitting
    // the tasks that should continuously run and the ones that get invoked every clock cycle.
    // For the tasks every clock cycle all processes that only push something in the fifo's and
    // Queues get run. When they are finished the processes that pop something get run.
    task run();
      Continous: fork
        begin
          do begin
            cycle_start();
            // at every cycle span some monitoring processes
            // execute all processes that put something into the queues
            PushMon: fork
              proc_mst_aw: begin
                for (int unsigned i = 0; i < NoMasters; i++) begin
                  monitor_mst_aw(i);
                end
              end
              proc_mst_ar: begin
                for (int unsigned i = 0; i < NoMasters; i++) begin
                  monitor_mst_ar(i);
                end
              end
            join : PushMon
            // this one pops and pushes something
            proc_slv_aw: begin
              for (int unsigned i = 0; i < NoSlaves; i++) begin
                monitor_slv_aw(i);
              end
            end
            proc_slv_w: begin
              for (int unsigned i = 0; i < NoSlaves; i++) begin
                monitor_slv_w(i);
              end
            end
            // These only pop somethong from the queses
            PopMon: fork
              proc_mst_b: begin
                for (int unsigned i = 0; i < NoMasters; i++) begin
                  monitor_mst_b(i);
                end
              end
              proc_slv_ar: begin
                for (int unsigned i = 0; i < NoSlaves; i++) begin
                  monitor_slv_ar(i);
                end
              end
              proc_mst_r: begin
                for (int unsigned i = 0; i < NoMasters; i++) begin
                  monitor_mst_r(i);
                end
              end
            join : PopMon
            // check the slave W fifos last
            proc_check_slv_w: begin
              for (int unsigned i = 0; i < NoSlaves; i++) begin
                check_slv_w(i);
              end
            end
            cycle_end();
          end while (1'b1);
        end
      join
    endtask : run

    task print_result();
      $info("Simulation has ended!");
      $display("Tests Expected:  %d", this.tests_expected);
      $display("Tests Conducted: %d", this.tests_conducted);
      $display("Tests Failed:    %d", this.tests_failed);
      if(tests_failed > 0) begin
        $error("Simulation encountered unexpected Transactions!!!!!!");
      end
    endtask : print_result
  endclass : axi_xbar_monitor
endpackage