lfsr.sv 12.1 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
// Copyright 2019 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Michael Schaffner <schaffner@iis.ee.ethz.ch>, ETH Zurich
// Date: 26.04.2019
//
// Description: This is a parametric LFSR with precomputed coefficients for
// LFSR lengths from 4 to 64bit.

// Additional block cipher layers can be instantiated to non-linearly transform
// the pseudo-random LFSR sequence at the output, and hence break the shifting
// patterns. The additional cipher layers can only be used for an LFSR width
// of 64bit, since the block cipher has been designed for that block length.

module lfsr #(
  parameter int unsigned          LfsrWidth     = 64,   // [4,64]
  parameter int unsigned          OutWidth      = 8,    // [1,LfsrWidth]
  parameter logic [LfsrWidth-1:0] RstVal        = '1,   // [1,2^LfsrWidth-1]
  // 0: disabled, the present cipher uses 31, but just a few layers (1-3) are enough
  // to break linear shifting patterns
  parameter int unsigned          CipherLayers  = 0,
  parameter bit                   CipherReg     = 1'b1  // additional output reg after cipher
) (
  input  logic                 clk_i,
  input  logic                 rst_ni,
  input  logic                 en_i,
  output logic [OutWidth-1:0]  out_o
);

// Galois LFSR feedback masks
// Automatically generated with get_lfsr_masks.py
// Masks are from https://users.ece.cmu.edu/~koopman/lfsr/
localparam logic [63:0] Masks [4:64] = '{64'hC,
                                         64'h1E,
                                         64'h39,
                                         64'h7E,
                                         64'hFA,
                                         64'h1FD,
                                         64'h3FC,
                                         64'h64B,
                                         64'hD8F,
                                         64'h1296,
                                         64'h2496,
                                         64'h4357,
                                         64'h8679,
                                         64'h1030E,
                                         64'h206CD,
                                         64'h403FE,
                                         64'h807B8,
                                         64'h1004B2,
                                         64'h2006A8,
                                         64'h4004B2,
                                         64'h800B87,
                                         64'h10004F3,
                                         64'h200072D,
                                         64'h40006AE,
                                         64'h80009E3,
                                         64'h10000583,
                                         64'h20000C92,
                                         64'h400005B6,
                                         64'h80000EA6,
                                         64'h1000007A3,
                                         64'h200000ABF,
                                         64'h400000842,
                                         64'h80000123E,
                                         64'h100000074E,
                                         64'h2000000AE9,
                                         64'h400000086A,
                                         64'h8000001213,
                                         64'h1000000077E,
                                         64'h2000000123B,
                                         64'h40000000877,
                                         64'h8000000108D,
                                         64'h100000000AE9,
                                         64'h200000000E9F,
                                         64'h4000000008A6,
                                         64'h80000000191E,
                                         64'h100000000090E,
                                         64'h2000000000FB3,
                                         64'h4000000000D7D,
                                         64'h80000000016A5,
                                         64'h10000000000B4B,
                                         64'h200000000010AF,
                                         64'h40000000000DDE,
                                         64'h8000000000181A,
                                         64'h100000000000B65,
                                         64'h20000000000102D,
                                         64'h400000000000CD5,
                                         64'h8000000000024C1,
                                         64'h1000000000000EF6,
                                         64'h2000000000001363,
                                         64'h4000000000000FCD,
                                         64'h80000000000019E2};

// this S-box and permutation P has been taken from the Present Cipher,
// a super lightweight block cipher. use the cipher layers to add additional
// non-linearity to the LFSR output. note one layer does not fully correspond
// to the present cipher round, since the key and rekeying function is not applied here.
//
// See also:
// "PRESENT: An Ultra-Lightweight Block Cipher", A. Bogdanov et al., Ches 2007
// http://www.lightweightcrypto.org/present/present_ches2007.pdf

// this is the sbox from the present cipher
localparam logic[15:0][3:0] Sbox4 = {4'h2, 4'h1, 4'h7, 4'h4,
                                     4'h8, 4'hF, 4'hE, 4'h3,
                                     4'hD, 4'hA, 4'h0, 4'h9,
                                     4'hB, 4'h6, 4'h5, 4'hC };

// these are the permutation indices of the present cipher
localparam logic[63:0][5:0] Perm = {6'd63, 6'd47, 6'd31, 6'd15, 6'd62, 6'd46, 6'd30, 6'd14,
                                    6'd61, 6'd45, 6'd29, 6'd13, 6'd60, 6'd44, 6'd28, 6'd12,
                                    6'd59, 6'd43, 6'd27, 6'd11, 6'd58, 6'd42, 6'd26, 6'd10,
                                    6'd57, 6'd41, 6'd25, 6'd09, 6'd56, 6'd40, 6'd24, 6'd08,
                                    6'd55, 6'd39, 6'd23, 6'd07, 6'd54, 6'd38, 6'd22, 6'd06,
                                    6'd53, 6'd37, 6'd21, 6'd05, 6'd52, 6'd36, 6'd20, 6'd04,
                                    6'd51, 6'd35, 6'd19, 6'd03, 6'd50, 6'd34, 6'd18, 6'd02,
                                    6'd49, 6'd33, 6'd17, 6'd01, 6'd48, 6'd32, 6'd16, 6'd00};


function automatic logic [63:0] sbox4_layer(logic [63:0] in);
  logic [63:0] out;
  //for (logic [4:0] j = '0; j<16; j++) out[j*4 +: 4] = sbox4[in[j*4 +: 4]];
  // this simulates much faster than the loop
  out[0*4  +: 4] = Sbox4[in[0*4  +: 4]];
  out[1*4  +: 4] = Sbox4[in[1*4  +: 4]];
  out[2*4  +: 4] = Sbox4[in[2*4  +: 4]];
  out[3*4  +: 4] = Sbox4[in[3*4  +: 4]];

  out[4*4  +: 4] = Sbox4[in[4*4  +: 4]];
  out[5*4  +: 4] = Sbox4[in[5*4  +: 4]];
  out[6*4  +: 4] = Sbox4[in[6*4  +: 4]];
  out[7*4  +: 4] = Sbox4[in[7*4  +: 4]];

  out[8*4  +: 4] = Sbox4[in[8*4  +: 4]];
  out[9*4  +: 4] = Sbox4[in[9*4  +: 4]];
  out[10*4 +: 4] = Sbox4[in[10*4 +: 4]];
  out[11*4 +: 4] = Sbox4[in[11*4 +: 4]];

  out[12*4 +: 4] = Sbox4[in[12*4 +: 4]];
  out[13*4 +: 4] = Sbox4[in[13*4 +: 4]];
  out[14*4 +: 4] = Sbox4[in[14*4 +: 4]];
  out[15*4 +: 4] = Sbox4[in[15*4 +: 4]];
  return out;
endfunction : sbox4_layer

function automatic logic [63:0] perm_layer(logic [63:0] in);
  logic [63:0] out;
  // for (logic [7:0] j = '0; j<64; j++) out[perm[j]] = in[j];
  // this simulates much faster than the loop
  out[Perm[0]] = in[0];
  out[Perm[1]] = in[1];
  out[Perm[2]] = in[2];
  out[Perm[3]] = in[3];
  out[Perm[4]] = in[4];
  out[Perm[5]] = in[5];
  out[Perm[6]] = in[6];
  out[Perm[7]] = in[7];
  out[Perm[8]] = in[8];
  out[Perm[9]] = in[9];

  out[Perm[10]] = in[10];
  out[Perm[11]] = in[11];
  out[Perm[12]] = in[12];
  out[Perm[13]] = in[13];
  out[Perm[14]] = in[14];
  out[Perm[15]] = in[15];
  out[Perm[16]] = in[16];
  out[Perm[17]] = in[17];
  out[Perm[18]] = in[18];
  out[Perm[19]] = in[19];

  out[Perm[20]] = in[20];
  out[Perm[21]] = in[21];
  out[Perm[22]] = in[22];
  out[Perm[23]] = in[23];
  out[Perm[24]] = in[24];
  out[Perm[25]] = in[25];
  out[Perm[26]] = in[26];
  out[Perm[27]] = in[27];
  out[Perm[28]] = in[28];
  out[Perm[29]] = in[29];

  out[Perm[30]] = in[30];
  out[Perm[31]] = in[31];
  out[Perm[32]] = in[32];
  out[Perm[33]] = in[33];
  out[Perm[34]] = in[34];
  out[Perm[35]] = in[35];
  out[Perm[36]] = in[36];
  out[Perm[37]] = in[37];
  out[Perm[38]] = in[38];
  out[Perm[39]] = in[39];

  out[Perm[40]] = in[40];
  out[Perm[41]] = in[41];
  out[Perm[42]] = in[42];
  out[Perm[43]] = in[43];
  out[Perm[44]] = in[44];
  out[Perm[45]] = in[45];
  out[Perm[46]] = in[46];
  out[Perm[47]] = in[47];
  out[Perm[48]] = in[48];
  out[Perm[49]] = in[49];

  out[Perm[50]] = in[50];
  out[Perm[51]] = in[51];
  out[Perm[52]] = in[52];
  out[Perm[53]] = in[53];
  out[Perm[54]] = in[54];
  out[Perm[55]] = in[55];
  out[Perm[56]] = in[56];
  out[Perm[57]] = in[57];
  out[Perm[58]] = in[58];
  out[Perm[59]] = in[59];

  out[Perm[60]] = in[60];
  out[Perm[61]] = in[61];
  out[Perm[62]] = in[62];
  out[Perm[63]] = in[63];
  return out;
endfunction : perm_layer

////////////////////////////////////////////////////////////////////////
// lfsr
////////////////////////////////////////////////////////////////////////

logic [LfsrWidth-1:0] lfsr_d, lfsr_q;
assign lfsr_d =
  (en_i) ? (lfsr_q>>1) ^ ({LfsrWidth{lfsr_q[0]}} & Masks[LfsrWidth][LfsrWidth-1:0]) : lfsr_q;

always_ff @(posedge clk_i or negedge rst_ni) begin : p_regs
  //$display("%b %h", en_i, lfsr_d);
  if (!rst_ni) begin
    lfsr_q <= LfsrWidth'(RstVal);
  end else begin
    lfsr_q <= lfsr_d;
  end
end

////////////////////////////////////////////////////////////////////////
// block cipher layers
////////////////////////////////////////////////////////////////////////

if (CipherLayers > unsigned'(0)) begin : g_cipher_layers
  logic [63:0] ciph_layer;
  localparam int unsigned NumRepl = ((64+LfsrWidth)/LfsrWidth);

  always_comb begin : p_ciph_layer
    automatic logic [63:0] tmp;
    tmp = 64'({NumRepl{lfsr_q}});
    for(int unsigned k = 0; k < CipherLayers; k++) begin
      tmp = perm_layer(sbox4_layer(tmp));
    end
    ciph_layer = tmp;
  end

  // additiona output reg after cipher
  if (CipherReg) begin : g_cipher_reg
    logic [OutWidth-1:0] out_d, out_q;

    assign out_d = (en_i) ? ciph_layer[OutWidth-1:0] : out_q;
    assign out_o = out_q[OutWidth-1:0];

    always_ff @(posedge clk_i or negedge rst_ni) begin : p_regs
      if (!rst_ni) begin
        out_q <= '0;
      end else begin
        out_q <= out_d;
      end
    end
  // no outreg
  end else begin : g_no_out_reg
    assign out_o  = ciph_layer[OutWidth-1:0];
  end

// no block cipher
end else begin : g_no_cipher_layers
  assign out_o    = lfsr_q[OutWidth-1:0];
end

////////////////////////////////////////////////////////////////////////
// assertions
////////////////////////////////////////////////////////////////////////

// pragma translate_off
initial begin
  // these are the LUT limits
  assert(OutWidth <= LfsrWidth) else
    $fatal(1,"OutWidth must be smaller equal the LfsrWidth.");
  assert(RstVal > unsigned'(0)) else
    $fatal(1,"RstVal must be nonzero.");
  assert((LfsrWidth >= $low(Masks)) && (LfsrWidth <= $high(Masks))) else
    $fatal(1,"Unsupported LfsrWidth.");
  assert(Masks[LfsrWidth][LfsrWidth-1]) else
    $fatal(1, "LFSR mask is not correct. The MSB must be 1." );
  assert((CipherLayers > 0) && (LfsrWidth == 64) || (CipherLayers == 0)) else
    $fatal(1, "Use additional cipher layers only in conjunction with an LFSR width of 64 bit." );
end

`ifndef VERILATOR
  all_zero: assert property (
    @(posedge clk_i) disable iff (!rst_ni) en_i |-> lfsr_d)
      else $fatal(1,"Lfsr must not be all-zero.");
`endif
// pragma translate_on

endmodule // lfsr