tb_tc_sram.sv 6.88 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
// Copyright 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Wolfgang Roenninger <wroennin@ethz.ch>, ETH Zurich
// Description: Testbench for the functional `*_sram` modules

module tb_tc_sram #(
  parameter int unsigned NumPorts  = 32'd2,
  parameter int unsigned Latency   = 32'd1,
  parameter int unsigned NumWords  = 32'd1024,
  parameter int unsigned DataWidth = 32'd64,
  parameter int unsigned ByteWidth = 32'd8,
  parameter int unsigned NoReq     = 32'd200000,
  parameter string       SimInit   = "zeros",
  parameter time         CyclTime  = 10ns,
  parameter time         ApplTime  = 2ns,
  parameter time         TestTime  = 8ns
);

  //-----------------------------------
  // Clock generator
  //-----------------------------------
  logic clk, rst_n;
  clk_rst_gen #(
    .ClkPeriod   ( CyclTime ),
    .RstClkCycles( 5        )
  ) i_clk_gen (
    .clk_o  ( clk   ),
    .rst_no ( rst_n )
  );

  logic [NumPorts-1:0] done;

  localparam int unsigned AddrWidth = (NumWords > 32'd1) ? $clog2(NumWords) : 32'd1;
  localparam int unsigned BeWidth   = (DataWidth + ByteWidth - 32'd1) / ByteWidth;

  typedef logic [AddrWidth-1:0] addr_t;
  typedef logic [DataWidth-1:0] data_t;
  typedef logic [BeWidth-1:0]   be_t;

  // signal declarations for each sram
  logic  [NumPorts-1:0] req,   we;
  addr_t [NumPorts-1:0] addr;
  data_t [NumPorts-1:0] wdata, rdata;
  be_t   [NumPorts-1:0] be;

  // golden model
  data_t           memory [NumWords-1:0];
  longint unsigned failed_test;

  // This process drives the requests on the port with random data.
  for (genvar i = 0; i < NumPorts; i++) begin : gen_stimuli
    initial begin : proc_drive_port
      automatic logic  stim_write;
      automatic addr_t stim_addr;
      automatic data_t stim_data;
      automatic be_t   stim_be;

      done[i]  <= 1'b0;
      req[i]   <= 1'b0;
      we[i]    <= 1'b0;
      addr[i]  <= addr_t'(0);
      wdata[i] <= data_t'(0);
      be[i]    <= be_t'(0);

      @(posedge rst_n);
      repeat (10) @(posedge clk);

      for (int unsigned j = 0; j < NoReq; j++) begin
        stim_write = bit'($urandom());
        for (int unsigned k = 0; k < AddrWidth; k++) begin
          stim_addr[k] = bit'($urandom());
        end
        // this statement makes sure that only valid addresses are in a request
        while (stim_addr >= NumWords) begin
          for (int unsigned k = 0; k < AddrWidth; k++) begin
            stim_addr[k] = bit'($urandom());
          end
        end
        for (int unsigned k = 0; k < DataWidth; k++) begin
          stim_data[k] = bit'($urandom());
        end
        for (int unsigned k = 0; k < BeWidth; k++) begin
          stim_be[k] = bit'($urandom());
        end

        req[i]   <= #ApplTime 1'b1;
        we[i]    <= #ApplTime stim_write;
        addr[i]  <= #ApplTime stim_addr;
        wdata[i] <= #ApplTime stim_data;
        be[i]    <= #ApplTime stim_be;
        @(posedge clk);
        req[i]   <= #ApplTime 1'b0;
        we[i]    <= #ApplTime 1'b0;
        addr[i]  <= #ApplTime addr_t'(0);
        wdata[i] <= #ApplTime data_t'(0);
        be[i]    <= #ApplTime be_t'(0);

        repeat ($urandom_range(0,5)) @(posedge clk);
      end
      done[i] <= 1'b1;
    end
  end

  // This process controls the golden model
  // - The memory array is initialized according to the parameter
  // - Data is written exactly at the clock edge, if there is a write request on a port.
  // - At `TestTime` a process is launched on read requests which lives for `Latency` cycles.
  //   This process asserts the expected read output at `TestTime` in the respective cycle.
  initial begin: proc_golden_model
    failed_test = 0;
    for (int unsigned i = 0; i < NumWords; i++) begin
      for (int unsigned j = 0; j < DataWidth; j++) begin
        case (SimInit)
          "zeros": memory[i][j] = 1'b0;
          "ones":  memory[i][j] = 1'b1;
          default: memory[i][j] = 1'bx;
        endcase
      end
    end

    @(posedge rst_n);

    forever begin
      @(posedge clk);
      // writes get latched at clock in golden model array
      for (int unsigned i = 0; i < NumPorts; i++) begin
        if (req[i] && we[i]) begin
          for (int unsigned j = 0; j < DataWidth; j++) begin
            if (be[i][j/ByteWidth]) begin
              memory[addr[i]][j] = wdata[i][j];
            end
          end
        end
      end

      // read test process is launched at `TestTime`
      #TestTime;
      fork
        for (int unsigned i = 0; i < NumPorts; i++) begin
          check_read(i, addr[i]);
        end
      join_none
    end
  end

  // Read test process. This task lives for a number of cycles determined by `Latency`.
  task automatic check_read(input int unsigned port, input addr_t read_addr);
    // only continue if there is a read request at this port
    if (req[port] && !we[port]) begin
      data_t exp_data = memory[read_addr];

      if (Latency > 0) begin
        repeat (Latency) @(posedge clk);
        #TestTime;
      end

      for (int unsigned i = 0; i < DataWidth; i++) begin
        if (!$isunknown(exp_data[i])) begin
          assert(exp_data[i] === rdata[port][i]) else begin
            $warning("Port: %0d unexpected bit[%0h], Addr: %0h expected: %0h, measured: %0h",
                port, i, read_addr, exp_data[i], rdata[port][i]);
            failed_test++;
          end
        end
      end
    end
  endtask : check_read

  // Stop the simulation at the end.
  initial begin : proc_stop
    @(posedge rst_n);
    wait (&done);
    repeat (10) @(posedge clk);
    $info("Simulation done, errors: %0d", failed_test);
    $stop();
  end

  tc_sram #(
    .NumWords    ( NumWords  ), // Number of Words in data array
    .DataWidth   ( DataWidth ), // Data signal width
    .ByteWidth   ( ByteWidth ), // Width of a data byte
    .NumPorts    ( NumPorts  ), // Number of read and write ports
    .Latency     ( Latency   ), // Latency when the read data is available
    .SimInit     ( SimInit   ), // Simulation initialization
    .PrintSimCfg ( 1'b1      )  // Print configuration
  ) i_tc_sram_dut (
    .clk_i   ( clk   ), // Clock
    .rst_ni  ( rst_n ), // Asynchronous reset active low
    .req_i   ( req   ), // request
    .we_i    ( we    ), // write enable
    .addr_i  ( addr  ), // request address
    .wdata_i ( wdata ), // write data
    .be_i    ( be    ), // write byte enable
    .rdata_o ( rdata )  // read data
  );
endmodule