csr_regfile.sv 49.7 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Florian Zaruba, ETH Zurich
// Date: 05.05.2017
// Description: CSR Register File as specified by RISC-V

import ariane_pkg::*;

module csr_regfile #(
    parameter logic [63:0] DmBaseAddress   = 64'h0, // debug module base address
    parameter int          AsidWidth       = 1,
    parameter int unsigned NrCommitPorts   = 2
) (
    input  logic                  clk_i,                      // Clock
    input  logic                  rst_ni,                     // Asynchronous reset active low
    input  logic                  time_irq_i,                 // Timer threw a interrupt
    // send a flush request out if a CSR with a side effect has changed (e.g. written)
    output logic                  flush_o,
    output logic                  halt_csr_o,                 // halt requested
    // commit acknowledge
    input  scoreboard_entry_t [NrCommitPorts-1:0] commit_instr_i, // the instruction we want to commit
    input  logic [NrCommitPorts-1:0]              commit_ack_i,   // Commit acknowledged a instruction -> increase instret CSR
    // Core and Cluster ID
    input  logic  [63:0]          boot_addr_i,                // Address from which to start booting, mtvec is set to the same address
    input  logic  [63:0]          hart_id_i,                  // Hart id in a multicore environment (reflected in a CSR)
    // we are taking an exception
    input exception_t             ex_i,                       // We've got an exception from the commit stage, take its

    input  fu_op                  csr_op_i,                   // Operation to perform on the CSR file
    input  logic  [11:0]          csr_addr_i,                 // Address of the register to read/write
    input  logic  [63:0]          csr_wdata_i,                // Write data in
    output logic  [63:0]          csr_rdata_o,                // Read data out
    input  logic                  dirty_fp_state_i,           // Mark the FP sate as dirty
    input  logic                  csr_write_fflags_i,         // Write fflags register e.g.: we are retiring a floating point instruction
    input  logic  [63:0]          pc_i,                       // PC of instruction accessing the CSR
    output exception_t            csr_exception_o,            // attempts to access a CSR without appropriate privilege
                                                              // level or to write  a read-only register also
                                                              // raises illegal instruction exceptions.
    // Interrupts/Exceptions
    output logic  [63:0]          epc_o,                      // Output the exception PC to PC Gen, the correct CSR (mepc, sepc) is set accordingly
    output logic                  eret_o,                     // Return from exception, set the PC of epc_o
    output logic  [63:0]          trap_vector_base_o,         // Output base of exception vector, correct CSR is output (mtvec, stvec)
    output riscv::priv_lvl_t      priv_lvl_o,                 // Current privilege level the CPU is in
    // FPU
    output riscv::xs_t            fs_o,                       // Floating point extension status
    output logic [4:0]            fflags_o,                   // Floating-Point Accured Exceptions
    output logic [2:0]            frm_o,                      // Floating-Point Dynamic Rounding Mode
    output logic [6:0]            fprec_o,                    // Floating-Point Precision Control
    // MMU
    output logic                  en_translation_o,           // enable VA translation
    output logic                  en_ld_st_translation_o,     // enable VA translation for load and stores
    output riscv::priv_lvl_t      ld_st_priv_lvl_o,           // Privilege level at which load and stores should happen
    output logic                  sum_o,
    output logic                  mxr_o,
    output logic [43:0]           satp_ppn_o,
    output logic [AsidWidth-1:0] asid_o,
    // external interrupts
    input  logic [1:0]            irq_i,                      // external interrupt in
    input  logic                  ipi_i,                      // inter processor interrupt -> connected to machine mode sw
    input  logic                  debug_req_i,                // debug request in
    output logic                  set_debug_pc_o,
    // Virtualization Support
    output logic                  tvm_o,                      // trap virtual memory
    output logic                  tw_o,                       // timeout wait
    output logic                  tsr_o,                      // trap sret
    output logic                  debug_mode_o,               // we are in debug mode -> that will change some decoding
    output logic                  single_step_o,              // we are in single-step mode
    // Caches
    output logic                  icache_en_o,                // L1 ICache Enable
    output logic                  dcache_en_o,                // L1 DCache Enable
    // Performance Counter
    output logic  [4:0]           perf_addr_o,                // read/write address to performance counter module (up to 29 aux counters possible in riscv encoding.h)
    output logic  [63:0]          perf_data_o,                // write data to performance counter module
    input  logic  [63:0]          perf_data_i,                // read data from performance counter module
    output logic                  perf_we_o
);
    // internal signal to keep track of access exceptions
    logic        read_access_exception, update_access_exception;
    logic        csr_we, csr_read;
    logic [63:0] csr_wdata, csr_rdata;
    riscv::priv_lvl_t   trap_to_priv_lvl;
    // register for enabling load store address translation, this is critical, hence the register
    logic        en_ld_st_translation_d, en_ld_st_translation_q;
    logic  mprv;
    logic  mret;  // return from M-mode exception
    logic  sret;  // return from S-mode exception
    logic  dret;  // return from debug mode
    // CSR write causes us to mark the FPU state as dirty
    logic  dirty_fp_state_csr;
    riscv::csr_t  csr_addr;
    // ----------------
    // Assignments
    // ----------------
    assign csr_addr = riscv::csr_t'(csr_addr_i);
    assign fs_o = mstatus_q.fs;
    // ----------------
    // CSR Registers
    // ----------------
    // privilege level register
    riscv::priv_lvl_t   priv_lvl_d, priv_lvl_q;
    // we are in debug
    logic        debug_mode_q, debug_mode_d;

    riscv::status_rv64_t  mstatus_q,  mstatus_d;
    riscv::satp_t         satp_q, satp_d;
    riscv::dcsr_t         dcsr_q,     dcsr_d;

    logic        mtvec_rst_load_q;// used to determine whether we came out of reset

    logic [63:0] dpc_q,       dpc_d;
    logic [63:0] dscratch0_q, dscratch0_d;
    logic [63:0] dscratch1_q, dscratch1_d;
    logic [63:0] mtvec_q,     mtvec_d;
    logic [63:0] medeleg_q,   medeleg_d;
    logic [63:0] mideleg_q,   mideleg_d;
    logic [63:0] mip_q,       mip_d;
    logic [63:0] mie_q,       mie_d;
    logic [63:0] mscratch_q,  mscratch_d;
    logic [63:0] mepc_q,      mepc_d;
    logic [63:0] mcause_q,    mcause_d;
    logic [63:0] mtval_q,     mtval_d;

    logic [63:0] stvec_q,     stvec_d;
    logic [63:0] sscratch_q,  sscratch_d;
    logic [63:0] sepc_q,      sepc_d;
    logic [63:0] scause_q,    scause_d;
    logic [63:0] stval_q,     stval_d;
    logic [63:0] dcache_q,    dcache_d;
    logic [63:0] icache_q,    icache_d;

    logic        wfi_d,       wfi_q;

    logic [63:0] cycle_q,     cycle_d;
    logic [63:0] instret_q,   instret_d;

    riscv::fcsr_t fcsr_q, fcsr_d;

    // ----------------
    // CSR Read logic
    // ----------------
    always_comb begin : csr_read_process
        // a read access exception can only occur if we attempt to read a CSR which does not exist
        read_access_exception = 1'b0;
        csr_rdata = 64'b0;
        perf_addr_o = csr_addr.address[4:0];;

        if (csr_read) begin
            unique case (csr_addr.address)
                riscv::CSR_FFLAGS: begin
                    if (mstatus_q.fs == riscv::Off) begin
                        read_access_exception = 1'b1;
                    end else begin
                        csr_rdata = {59'b0, fcsr_q.fflags};
                    end
                end
                riscv::CSR_FRM: begin
                    if (mstatus_q.fs == riscv::Off) begin
                        read_access_exception = 1'b1;
                    end else begin
                        csr_rdata = {61'b0, fcsr_q.frm};
                    end
                end
                riscv::CSR_FCSR: begin
                    if (mstatus_q.fs == riscv::Off) begin
                        read_access_exception = 1'b1;
                    end else begin
                        csr_rdata = {56'b0, fcsr_q.frm, fcsr_q.fflags};
                    end
                end
                // non-standard extension
                riscv::CSR_FTRAN: begin
                    if (mstatus_q.fs == riscv::Off) begin
                        read_access_exception = 1'b1;
                    end else begin
                        csr_rdata = {57'b0, fcsr_q.fprec};
                    end
                end
                // debug registers
                riscv::CSR_DCSR:               csr_rdata = {32'b0, dcsr_q};
                riscv::CSR_DPC:                csr_rdata = dpc_q;
                riscv::CSR_DSCRATCH0:          csr_rdata = dscratch0_q;
                riscv::CSR_DSCRATCH1:          csr_rdata = dscratch1_q;
                // trigger module registers
                riscv::CSR_TSELECT:; // not implemented
                riscv::CSR_TDATA1:;  // not implemented
                riscv::CSR_TDATA2:;  // not implemented
                riscv::CSR_TDATA3:;  // not implemented
                // supervisor registers
                riscv::CSR_SSTATUS: begin
                    csr_rdata = mstatus_q & ariane_pkg::SMODE_STATUS_READ_MASK;
                end
                riscv::CSR_SIE:                csr_rdata = mie_q & mideleg_q;
                riscv::CSR_SIP:                csr_rdata = mip_q & mideleg_q;
                riscv::CSR_STVEC:              csr_rdata = stvec_q;
                riscv::CSR_SCOUNTEREN:         csr_rdata = 64'b0; // not implemented
                riscv::CSR_SSCRATCH:           csr_rdata = sscratch_q;
                riscv::CSR_SEPC:               csr_rdata = sepc_q;
                riscv::CSR_SCAUSE:             csr_rdata = scause_q;
                riscv::CSR_STVAL:              csr_rdata = stval_q;
                riscv::CSR_SATP: begin
                    // intercept reads to SATP if in S-Mode and TVM is enabled
                    if (priv_lvl_o == riscv::PRIV_LVL_S && mstatus_q.tvm) begin
                        read_access_exception = 1'b1;
                    end else begin
                        csr_rdata = satp_q;
                    end
                end
                // machine mode registers
                riscv::CSR_MSTATUS:            csr_rdata = mstatus_q;
                riscv::CSR_MISA:               csr_rdata = ISA_CODE;
                riscv::CSR_MEDELEG:            csr_rdata = medeleg_q;
                riscv::CSR_MIDELEG:            csr_rdata = mideleg_q;
                riscv::CSR_MIE:                csr_rdata = mie_q;
                riscv::CSR_MTVEC:              csr_rdata = mtvec_q;
                riscv::CSR_MCOUNTEREN:         csr_rdata = 64'b0; // not implemented
                riscv::CSR_MSCRATCH:           csr_rdata = mscratch_q;
                riscv::CSR_MEPC:               csr_rdata = mepc_q;
                riscv::CSR_MCAUSE:             csr_rdata = mcause_q;
                riscv::CSR_MTVAL:              csr_rdata = mtval_q;
                riscv::CSR_MIP:                csr_rdata = mip_q;
                riscv::CSR_MVENDORID:          csr_rdata = 64'b0; // not implemented
                riscv::CSR_MARCHID:            csr_rdata = ARIANE_MARCHID;
                riscv::CSR_MIMPID:             csr_rdata = 64'b0; // not implemented
                riscv::CSR_MHARTID:            csr_rdata = hart_id_i;
                riscv::CSR_MCYCLE:             csr_rdata = cycle_q;
                riscv::CSR_MINSTRET:           csr_rdata = instret_q;
                // custom (non RISC-V) cache control
                riscv::CSR_DCACHE:             csr_rdata = dcache_q;
                riscv::CSR_ICACHE:             csr_rdata = icache_q;
                // Counters and Timers
                riscv::CSR_CYCLE:              csr_rdata = cycle_q;
                riscv::CSR_INSTRET:            csr_rdata = instret_q;
                riscv::CSR_L1_ICACHE_MISS,
                riscv::CSR_L1_DCACHE_MISS,
                riscv::CSR_ITLB_MISS,
                riscv::CSR_DTLB_MISS,
                riscv::CSR_LOAD,
                riscv::CSR_STORE,
                riscv::CSR_EXCEPTION,
                riscv::CSR_EXCEPTION_RET,
                riscv::CSR_BRANCH_JUMP,
                riscv::CSR_CALL,
                riscv::CSR_RET,
                riscv::CSR_MIS_PREDICT,
                riscv::CSR_SB_FULL,
                riscv::CSR_IF_EMPTY:           csr_rdata   = perf_data_i;
                default: read_access_exception = 1'b1;
            endcase
        end
    end
    // ---------------------------
    // CSR Write and update logic
    // ---------------------------
    logic [63:0] mask;
    always_comb begin : csr_update
        automatic riscv::satp_t sapt;
        automatic logic [63:0] instret;


        sapt = satp_q;
        instret = instret_q;

        // --------------------
        // Counters
        // --------------------
        cycle_d = cycle_q;
        instret_d = instret_q;
        if (!debug_mode_q) begin
            // increase instruction retired counter
            for (int i = 0; i < NrCommitPorts; i++) begin
                if (commit_ack_i[i] && !ex_i.valid) instret++;
            end
            instret_d = instret;
            // increment the cycle count
            if (ENABLE_CYCLE_COUNT) cycle_d = cycle_q + 1'b1;
            else cycle_d = instret;
        end

        eret_o                  = 1'b0;
        flush_o                 = 1'b0;
        update_access_exception = 1'b0;

        set_debug_pc_o          = 1'b0;

        perf_we_o               = 1'b0;
        perf_data_o             = 'b0;

        fcsr_d                  = fcsr_q;

        priv_lvl_d              = priv_lvl_q;
        debug_mode_d            = debug_mode_q;
        dcsr_d                  = dcsr_q;
        dpc_d                   = dpc_q;
        dscratch0_d             = dscratch0_q;
        dscratch1_d             = dscratch1_q;
        mstatus_d               = mstatus_q;

        // check whether we come out of reset
        // this is a workaround. some tools have issues
        // having boot_addr_i in the asynchronous
        // reset assignment to mtvec_d, even though
        // boot_addr_i will be assigned a constant
        // on the top-level.
        if (mtvec_rst_load_q) begin
            mtvec_d             = boot_addr_i + 'h40;
        end else begin
            mtvec_d             = mtvec_q;
        end

        medeleg_d               = medeleg_q;
        mideleg_d               = mideleg_q;
        mip_d                   = mip_q;
        mie_d                   = mie_q;
        mepc_d                  = mepc_q;
        mcause_d                = mcause_q;
        mscratch_d              = mscratch_q;
        mtval_d                 = mtval_q;
        dcache_d                = dcache_q;
        icache_d                = icache_q;

        sepc_d                  = sepc_q;
        scause_d                = scause_q;
        stvec_d                 = stvec_q;
        sscratch_d              = sscratch_q;
        stval_d                 = stval_q;
        satp_d                  = satp_q;

        en_ld_st_translation_d  = en_ld_st_translation_q;
        dirty_fp_state_csr      = 1'b0;

        // check for correct access rights and that we are writing
        if (csr_we) begin
            unique case (csr_addr.address)
                // Floating-Point
                riscv::CSR_FFLAGS: begin
                    if (mstatus_q.fs == riscv::Off) begin
                        update_access_exception = 1'b1;
                    end else begin
                        dirty_fp_state_csr = 1'b1;
                        fcsr_d.fflags = csr_wdata[4:0];
                        // this instruction has side-effects
                        flush_o = 1'b1;
                    end
                end
                riscv::CSR_FRM: begin
                    if (mstatus_q.fs == riscv::Off) begin
                        update_access_exception = 1'b1;
                    end else begin
                        dirty_fp_state_csr = 1'b1;
                        fcsr_d.frm    = csr_wdata[2:0];
                        // this instruction has side-effects
                        flush_o = 1'b1;
                    end
                end
                riscv::CSR_FCSR: begin
                    if (mstatus_q.fs == riscv::Off) begin
                        update_access_exception = 1'b1;
                    end else begin
                        dirty_fp_state_csr = 1'b1;
                        fcsr_d[7:0] = csr_wdata[7:0]; // ignore writes to reserved space
                        // this instruction has side-effects
                        flush_o = 1'b1;
                    end
                end
                riscv::CSR_FTRAN: begin
                    if (mstatus_q.fs == riscv::Off) begin
                        update_access_exception = 1'b1;
                    end else begin
                        dirty_fp_state_csr = 1'b1;
                        fcsr_d.fprec = csr_wdata[6:0]; // ignore writes to reserved space
                        // this instruction has side-effects
                        flush_o = 1'b1;
                    end
                end
                // debug CSR
                riscv::CSR_DCSR: begin
                    dcsr_d = csr_wdata[31:0];
                    // debug is implemented
                    dcsr_d.xdebugver = 4'h4;
                    // privilege level
                    dcsr_d.prv = priv_lvl_q;
                    // currently not supported
                    dcsr_d.nmip      = 1'b0;
                    dcsr_d.stopcount = 1'b0;
                    dcsr_d.stoptime  = 1'b0;
                end
                riscv::CSR_DPC:                dpc_d = csr_wdata;
                riscv::CSR_DSCRATCH0:          dscratch0_d = csr_wdata;
                riscv::CSR_DSCRATCH1:          dscratch1_d = csr_wdata;
                // trigger module CSRs
                riscv::CSR_TSELECT:; // not implemented
                riscv::CSR_TDATA1:;  // not implemented
                riscv::CSR_TDATA2:;  // not implemented
                riscv::CSR_TDATA3:;  // not implemented
                // sstatus is a subset of mstatus - mask it accordingly
                riscv::CSR_SSTATUS: begin
                    mask = ariane_pkg::SMODE_STATUS_WRITE_MASK;
                    mstatus_d = (mstatus_q & ~mask) | (csr_wdata & mask);
                    // hardwire to zero if floating point extension is not present
                    if (!FP_PRESENT) begin
                        mstatus_d.fs = riscv::Off;
                    end
                    // hardwired extension registers
                    mstatus_d.sd   = (&mstatus_q.xs) | (&mstatus_q.fs);
                    // this instruction has side-effects
                    flush_o = 1'b1;
                end
                // even machine mode interrupts can be visible and set-able to supervisor
                // if the corresponding bit in mideleg is set
                riscv::CSR_SIE: begin
                    // the mideleg makes sure only delegate-able register (and therefore also only implemented registers) are written
                    mie_d = (mie_q & ~mideleg_q) | (csr_wdata & mideleg_q);
                end

                riscv::CSR_SIP: begin
                    // only the supervisor software interrupt is write-able, iff delegated
                    mask = riscv::MIP_SSIP & mideleg_q;
                    mip_d = (mip_q & ~mask) | (csr_wdata & mask);
                end

                riscv::CSR_SCOUNTEREN:;
                riscv::CSR_STVEC:              stvec_d     = {csr_wdata[63:2], 1'b0, csr_wdata[0]};
                riscv::CSR_SSCRATCH:           sscratch_d  = csr_wdata;
                riscv::CSR_SEPC:               sepc_d      = {csr_wdata[63:1], 1'b0};
                riscv::CSR_SCAUSE:             scause_d    = csr_wdata;
                riscv::CSR_STVAL:              stval_d     = csr_wdata;
                // supervisor address translation and protection
                riscv::CSR_SATP: begin
                    // intercept SATP writes if in S-Mode and TVM is enabled
                    if (priv_lvl_o == riscv::PRIV_LVL_S && mstatus_q.tvm)
                        update_access_exception = 1'b1;
                    else begin
                        sapt      = riscv::satp_t'(csr_wdata);
                        // only make ASID_LEN - 1 bit stick, that way software can figure out how many ASID bits are supported
                        sapt.asid = sapt.asid & {{(16-AsidWidth){1'b0}}, {AsidWidth{1'b1}}};
                        // only update if we actually support this mode
                        if (sapt.mode == MODE_OFF || sapt.mode == MODE_SV39) satp_d = sapt;
                    end
                    // changing the mode can have side-effects on address translation (e.g.: other instructions), re-fetch
                    // the next instruction by executing a flush
                    flush_o = 1'b1;
                end

                riscv::CSR_MSTATUS: begin
                    mstatus_d      = csr_wdata;
                    // hardwired zero registers
                    mstatus_d.sd   = (&mstatus_q.xs) | (&mstatus_q.fs);
                    mstatus_d.xs   = riscv::Off;
                    if (!FP_PRESENT) begin
                        mstatus_d.fs = riscv::Off;
                    end
                    mstatus_d.upie = 1'b0;
                    mstatus_d.uie  = 1'b0;
                    // this register has side-effects on other registers, flush the pipeline
                    flush_o        = 1'b1;
                end
                // MISA is WARL (Write Any Value, Reads Legal Value)
                riscv::CSR_MISA:;
                // machine exception delegation register
                // 0 - 15 exceptions supported
                riscv::CSR_MEDELEG: begin
                    mask = (1 << riscv::INSTR_ADDR_MISALIGNED) |
                           (1 << riscv::BREAKPOINT) |
                           (1 << riscv::ENV_CALL_UMODE) |
                           (1 << riscv::INSTR_PAGE_FAULT) |
                           (1 << riscv::LOAD_PAGE_FAULT) |
                           (1 << riscv::STORE_PAGE_FAULT);
                    medeleg_d = (medeleg_q & ~mask) | (csr_wdata & mask);
                end
                // machine interrupt delegation register
                // we do not support user interrupt delegation
                riscv::CSR_MIDELEG: begin
                    mask = riscv::MIP_SSIP | riscv::MIP_STIP | riscv::MIP_SEIP;
                    mideleg_d = (mideleg_q & ~mask) | (csr_wdata & mask);
                end
                // mask the register so that unsupported interrupts can never be set
                riscv::CSR_MIE: begin
                    mask = riscv::MIP_SSIP | riscv::MIP_STIP | riscv::MIP_SEIP | riscv::MIP_MSIP | riscv::MIP_MTIP;
                    mie_d = (mie_q & ~mask) | (csr_wdata & mask); // we only support supervisor and M-mode interrupts
                end

                riscv::CSR_MTVEC: begin
                    mtvec_d = {csr_wdata[63:2], 1'b0, csr_wdata[0]};
                    // we are in vector mode, this implementation requires the additional
                    // alignment constraint of 64 * 4 bytes
                    if (csr_wdata[0]) mtvec_d = {csr_wdata[63:8], 7'b0, csr_wdata[0]};
                end
                riscv::CSR_MCOUNTEREN:;

                riscv::CSR_MSCRATCH:           mscratch_d  = csr_wdata;
                riscv::CSR_MEPC:               mepc_d      = {csr_wdata[63:1], 1'b0};
                riscv::CSR_MCAUSE:             mcause_d    = csr_wdata;
                riscv::CSR_MTVAL:              mtval_d     = csr_wdata;
                riscv::CSR_MIP: begin
                    mask = riscv::MIP_SSIP | riscv::MIP_STIP | riscv::MIP_SEIP;
                    mip_d = (mip_q & ~mask) | (csr_wdata & mask);
                end
                // performance counters
                riscv::CSR_MCYCLE:             cycle_d     = csr_wdata;
                riscv::CSR_MINSTRET:           instret     = csr_wdata;
                riscv::CSR_DCACHE:             dcache_d    = csr_wdata[0]; // enable bit
                riscv::CSR_ICACHE:             icache_d    = csr_wdata[0]; // enable bit
                riscv::CSR_L1_ICACHE_MISS,
                riscv::CSR_L1_DCACHE_MISS,
                riscv::CSR_ITLB_MISS,
                riscv::CSR_DTLB_MISS,
                riscv::CSR_LOAD,
                riscv::CSR_STORE,
                riscv::CSR_EXCEPTION,
                riscv::CSR_EXCEPTION_RET,
                riscv::CSR_BRANCH_JUMP,
                riscv::CSR_CALL,
                riscv::CSR_RET,
                riscv::CSR_MIS_PREDICT: begin
                                        perf_data_o = csr_wdata;
                                        perf_we_o   = 1'b1;
                end
                default: update_access_exception = 1'b1;
            endcase
        end

        mstatus_d.sxl  = riscv::XLEN_64;
        mstatus_d.uxl  = riscv::XLEN_64;

        // mark the floating point extension register as dirty
        if (FP_PRESENT && (dirty_fp_state_csr || dirty_fp_state_i)) begin
            mstatus_d.fs = riscv::Dirty;
        end

        // write the floating point status register
        if (csr_write_fflags_i) begin
            fcsr_d.fflags = csr_wdata_i[4:0] | fcsr_q.fflags;
        end
        // ---------------------
        // External Interrupts
        // ---------------------
        // Machine Mode External Interrupt Pending
        mip_d[riscv::IRQ_M_EXT] = irq_i[0];
        // Machine software interrupt
        mip_d[riscv::IRQ_M_SOFT] = ipi_i;
        // Timer interrupt pending, coming from platform timer
        mip_d[riscv::IRQ_M_TIMER] = time_irq_i;

        // -----------------------
        // Manage Exception Stack
        // -----------------------
        // update exception CSRs
        // we got an exception update cause, pc and stval register
        trap_to_priv_lvl = riscv::PRIV_LVL_M;
        // Exception is taken and we are not in debug mode
        // exceptions in debug mode don't update any fields
        if (!debug_mode_q && ex_i.valid) begin
            // do not flush, flush is reserved for CSR writes with side effects
            flush_o   = 1'b0;
            // figure out where to trap to
            // a m-mode trap might be delegated if we are taking it in S mode
            // first figure out if this was an exception or an interrupt e.g.: look at bit 63
            // the cause register can only be 6 bits long (as we only support 64 exceptions)
            if ((ex_i.cause[63] && mideleg_q[ex_i.cause[5:0]]) ||
                (~ex_i.cause[63] && medeleg_q[ex_i.cause[5:0]])) begin
                // traps never transition from a more-privileged mode to a less privileged mode
                // so if we are already in M mode, stay there
                trap_to_priv_lvl = (priv_lvl_o == riscv::PRIV_LVL_M) ? riscv::PRIV_LVL_M : riscv::PRIV_LVL_S;
            end

            // trap to supervisor mode
            if (trap_to_priv_lvl == riscv::PRIV_LVL_S) begin
                // update sstatus
                mstatus_d.sie  = 1'b0;
                mstatus_d.spie = mstatus_q.sie;
                // this can either be user or supervisor mode
                mstatus_d.spp  = priv_lvl_q[0];
                // set cause
                scause_d       = ex_i.cause;
                // set epc
                sepc_d         = pc_i;
                // set mtval or stval
                stval_d        = (ariane_pkg::ZERO_TVAL
                                  && (ex_i.cause inside {
                                    riscv::ILLEGAL_INSTR,
                                    riscv::BREAKPOINT,
                                    riscv::ENV_CALL_UMODE,
                                    riscv::ENV_CALL_SMODE,
                                    riscv::ENV_CALL_MMODE
                                  } || ex_i.cause[63])) ? '0 : ex_i.tval;
            // trap to machine mode
            end else begin
                // update mstatus
                mstatus_d.mie  = 1'b0;
                mstatus_d.mpie = mstatus_q.mie;
                // save the previous privilege mode
                mstatus_d.mpp  = priv_lvl_q;
                mcause_d       = ex_i.cause;
                // set epc
                mepc_d         = pc_i;
                // set mtval or stval
                mtval_d        = (ariane_pkg::ZERO_TVAL
                                  && (ex_i.cause inside {
                                    riscv::ILLEGAL_INSTR,
                                    riscv::BREAKPOINT,
                                    riscv::ENV_CALL_UMODE,
                                    riscv::ENV_CALL_SMODE,
                                    riscv::ENV_CALL_MMODE
                                  } || ex_i.cause[63])) ? '0 : ex_i.tval;
            end

            priv_lvl_d = trap_to_priv_lvl;
        end

        // ------------------------------
        // Debug
        // ------------------------------
        // Explains why Debug Mode was entered.
        // When there are multiple reasons to enter Debug Mode in a single cycle, hardware should set cause to the cause with the highest priority.
        // 1: An ebreak instruction was executed. (priority 3)
        // 2: The Trigger Module caused a breakpoint exception. (priority 4)
        // 3: The debugger requested entry to Debug Mode. (priority 2)
        // 4: The hart single stepped because step was set. (priority 1)
        // we are currently not in debug mode and could potentially enter
        if (!debug_mode_q) begin
            dcsr_d.prv = priv_lvl_o;
            // trigger module fired

            // caused by a breakpoint
            if (ex_i.valid && ex_i.cause == riscv::BREAKPOINT) begin
                // check that we actually want to enter debug depending on the privilege level we are currently in
                unique case (priv_lvl_o)
                    riscv::PRIV_LVL_M: begin
                        debug_mode_d = dcsr_q.ebreakm;
                        set_debug_pc_o = dcsr_q.ebreakm;
                    end
                    riscv::PRIV_LVL_S: begin
                        debug_mode_d = dcsr_q.ebreaks;
                        set_debug_pc_o = dcsr_q.ebreaks;
                    end
                    riscv::PRIV_LVL_U: begin
                        debug_mode_d = dcsr_q.ebreaku;
                        set_debug_pc_o = dcsr_q.ebreaku;
                    end
                    default:;
                endcase
                // save PC of next this instruction e.g.: the next one to be executed
                dpc_d = pc_i;
                dcsr_d.cause = dm::CauseBreakpoint;
            end

            // we've got a debug request (and we have an instruction which we can associate it to)
            // don't interrupt the AMO
            if (debug_req_i && commit_instr_i[0].valid) begin
                // save the PC
                dpc_d = pc_i;
                // enter debug mode
                debug_mode_d = 1'b1;
                // jump to the base address
                set_debug_pc_o = 1'b1;
                // save the cause as external debug request
                dcsr_d.cause = dm::CauseRequest;
            end

            // single step enable and we just retired an instruction
            if (dcsr_q.step && commit_ack_i[0]) begin
                // valid CTRL flow change
                if (commit_instr_i[0].fu == CTRL_FLOW) begin
                    // we saved the correct target address during execute
                    dpc_d = commit_instr_i[0].bp.predict_address;
                // exception valid
                end else if (ex_i.valid) begin
                    dpc_d = trap_vector_base_o;
                // return from environment
                end else if (eret_o) begin
                    dpc_d = epc_o;
                // consecutive PC
                end else begin
                    dpc_d = commit_instr_i[0].pc + (commit_instr_i[0].is_compressed ? 'h2 : 'h4);
                end
                debug_mode_d = 1'b1;
                set_debug_pc_o = 1'b1;
                dcsr_d.cause = dm::CauseSingleStep;
            end
        end
        // go in halt-state again when we encounter an exception
        if (debug_mode_q && ex_i.valid && ex_i.cause == riscv::BREAKPOINT) begin
            set_debug_pc_o = 1'b1;
        end

        // ------------------------------
        // MPRV - Modify Privilege Level
        // ------------------------------
        // Set the address translation at which the load and stores should occur
        // we can use the previous values since changing the address translation will always involve a pipeline flush
        if (mprv && satp_q.mode == MODE_SV39 && (mstatus_q.mpp != riscv::PRIV_LVL_M))
            en_ld_st_translation_d = 1'b1;
        else // otherwise we go with the regular settings
            en_ld_st_translation_d = en_translation_o;

        ld_st_priv_lvl_o = (mprv) ? mstatus_q.mpp : priv_lvl_o;
        en_ld_st_translation_o = en_ld_st_translation_q;
        // ------------------------------
        // Return from Environment
        // ------------------------------
        // When executing an xRET instruction, supposing xPP holds the value y, xIE is set to xPIE; the privilege
        // mode is changed to y; xPIE is set to 1; and xPP is set to U
        if (mret) begin
            // return from exception, IF doesn't care from where we are returning
            eret_o = 1'b1;
            // return to the previous privilege level and restore all enable flags
            // get the previous machine interrupt enable flag
            mstatus_d.mie  = mstatus_q.mpie;
            // restore the previous privilege level
            priv_lvl_d     = mstatus_q.mpp;
            // set mpp to user mode
            mstatus_d.mpp  = riscv::PRIV_LVL_U;
            // set mpie to 1
            mstatus_d.mpie = 1'b1;
        end

        if (sret) begin
            // return from exception, IF doesn't care from where we are returning
            eret_o = 1'b1;
            // return the previous supervisor interrupt enable flag
            mstatus_d.sie  = mstatus_q.spie;
            // restore the previous privilege level
            priv_lvl_d     = riscv::priv_lvl_t'({1'b0, mstatus_q.spp});
            // set spp to user mode
            mstatus_d.spp  = 1'b0;
            // set spie to 1
            mstatus_d.spie = 1'b1;
        end

        // return from debug mode
        if (dret) begin
            // return from exception, IF doesn't care from where we are returning
            eret_o = 1'b1;
            // restore the previous privilege level
            priv_lvl_d     = riscv::priv_lvl_t'(dcsr_q.prv);
            // actually return from debug mode
            debug_mode_d = 1'b0;
        end
    end

    // ---------------------------
    // CSR OP Select Logic
    // ---------------------------
    always_comb begin : csr_op_logic
        csr_wdata = csr_wdata_i;
        csr_we    = 1'b1;
        csr_read  = 1'b1;
        mret      = 1'b0;
        sret      = 1'b0;
        dret      = 1'b0;

        unique case (csr_op_i)
            CSR_WRITE: csr_wdata = csr_wdata_i;
            CSR_SET:   csr_wdata = csr_wdata_i | csr_rdata;
            CSR_CLEAR: csr_wdata = (~csr_wdata_i) & csr_rdata;
            CSR_READ:  csr_we    = 1'b0;
            SRET: begin
                // the return should not have any write or read side-effects
                csr_we   = 1'b0;
                csr_read = 1'b0;
                sret     = 1'b1; // signal a return from supervisor mode
            end
            MRET: begin
                // the return should not have any write or read side-effects
                csr_we   = 1'b0;
                csr_read = 1'b0;
                mret     = 1'b1; // signal a return from machine mode
            end
            DRET: begin
                // the return should not have any write or read side-effects
                csr_we   = 1'b0;
                csr_read = 1'b0;
                dret     = 1'b1; // signal a return from debug mode
            end
            default: begin
                csr_we   = 1'b0;
                csr_read = 1'b0;
            end
        endcase
        // if we are retiring an exception do not return from exception
        if (ex_i.valid) begin
            mret = 1'b0;
            sret = 1'b0;
            dret = 1'b0;
        end
    end

    logic interrupt_global_enable;
    // --------------------------------------
    // Exception Control & Interrupt Control
    // --------------------------------------
    always_comb begin : exception_ctrl
        automatic logic [63:0] interrupt_cause;
        interrupt_cause = '0;
        // wait for interrupt register
        wfi_d = wfi_q;

        csr_exception_o = {
            64'b0, 64'b0, 1'b0
        };
        // -----------------
        // Interrupt Control
        // -----------------
        // TODO(zarubaf): Move interrupt handling to commit stage.
        // we decode an interrupt the same as an exception, hence it will be taken if the instruction did not
        // throw any previous exception.
        // we have three interrupt sources: external interrupts, software interrupts, timer interrupts (order of precedence)
        // for two privilege levels: Supervisor and Machine Mode
        // Supervisor Timer Interrupt
        if (mie_q[riscv::S_TIMER_INTERRUPT[5:0]] && mip_q[riscv::S_TIMER_INTERRUPT[5:0]])
            interrupt_cause = riscv::S_TIMER_INTERRUPT;
        // Supervisor Software Interrupt
        if (mie_q[riscv::S_SW_INTERRUPT[5:0]] && mip_q[riscv::S_SW_INTERRUPT[5:0]])
            interrupt_cause = riscv::S_SW_INTERRUPT;
        // Supervisor External Interrupt
        // The logical-OR of the software-writable bit and the signal from the external interrupt controller is
        // used to generate external interrupts to the supervisor
        if (mie_q[riscv::S_EXT_INTERRUPT[5:0]] && (mip_q[riscv::S_EXT_INTERRUPT[5:0]] | irq_i[1]))
            interrupt_cause = riscv::S_EXT_INTERRUPT;
        // Machine Timer Interrupt
        if (mip_q[riscv::M_TIMER_INTERRUPT[5:0]] && mie_q[riscv::M_TIMER_INTERRUPT[5:0]])
            interrupt_cause = riscv::M_TIMER_INTERRUPT;
        // Machine Mode Software Interrupt
        if (mip_q[riscv::M_SW_INTERRUPT[5:0]] && mie_q[riscv::M_SW_INTERRUPT[5:0]])
            interrupt_cause = riscv::M_SW_INTERRUPT;
        // Machine Mode External Interrupt
        if (mip_q[riscv::M_EXT_INTERRUPT[5:0]] && mie_q[riscv::M_EXT_INTERRUPT[5:0]])
            interrupt_cause = riscv::M_EXT_INTERRUPT;

        // An interrupt i will be taken if bit i is set in both mip and mie, and if interrupts are globally enabled.
        // By default, M-mode interrupts are globally enabled if the hart’s current privilege mode  is less
        // than M, or if the current privilege mode is M and the MIE bit in the mstatus register is set.
        // All interrupts are masked in debug mode
        interrupt_global_enable = (~debug_mode_q)
                                // interrupts are enabled during single step or we are not stepping
                                & (~dcsr_q.step | dcsr_q.stepie)
                                & ((mstatus_q.mie & (priv_lvl_o == riscv::PRIV_LVL_M))
                                | (priv_lvl_o != riscv::PRIV_LVL_M));

        if (interrupt_cause[63] && interrupt_global_enable) begin
            // we can set the cause here
            csr_exception_o.cause = interrupt_cause;
            // However, if bit i in mideleg is set, interrupts are considered to be globally enabled if the hart’s current privilege
            // mode equals the delegated privilege mode (S or U) and that mode’s interrupt enable bit
            // (SIE or UIE in mstatus) is set, or if the current privilege mode is less than the delegated privilege mode.
            if (mideleg_q[interrupt_cause[5:0]]) begin
                if ((mstatus_q.sie && priv_lvl_o == riscv::PRIV_LVL_S) || priv_lvl_o == riscv::PRIV_LVL_U)
                    csr_exception_o.valid = 1'b1;
            end else begin
                csr_exception_o.valid = 1'b1;
            end
        end

        // -----------------
        // Privilege Check
        // -----------------
        // if we are reading or writing, check for the correct privilege level this has
        // precedence over interrupts
        if (csr_we || csr_read) begin
            if ((riscv::priv_lvl_t'(priv_lvl_o & csr_addr.csr_decode.priv_lvl) != csr_addr.csr_decode.priv_lvl)) begin
                csr_exception_o.cause = riscv::ILLEGAL_INSTR;
                csr_exception_o.valid = 1'b1;
            end
            // check access to debug mode only CSRs
            if (csr_addr_i[11:4] == 8'h7b && !debug_mode_q) begin
                csr_exception_o.cause = riscv::ILLEGAL_INSTR;
                csr_exception_o.valid = 1'b1;
            end
        end
        // we got an exception in one of the processes above
        // throw an illegal instruction exception
        if (update_access_exception || read_access_exception) begin
            csr_exception_o.cause = riscv::ILLEGAL_INSTR;
            // we don't set the tval field as this will be set by the commit stage
            // this spares the extra wiring from commit to CSR and back to commit
            csr_exception_o.valid = 1'b1;
        end
        // -------------------
        // Wait for Interrupt
        // -------------------
        // if there is any interrupt pending un-stall the core
        // also un-stall if we want to enter debug mode
        if (|mip_q || debug_req_i || irq_i[1]) begin
            wfi_d = 1'b0;
        // or alternatively if there is no exception pending and we are not in debug mode wait here
        // for the interrupt
        end else if (!debug_mode_q && csr_op_i == WFI && !ex_i.valid) begin
            wfi_d = 1'b1;
        end
    end

    // output assignments dependent on privilege mode
    always_comb begin : priv_output
        trap_vector_base_o = {mtvec_q[63:2], 2'b0};
        // output user mode stvec
        if (trap_to_priv_lvl == riscv::PRIV_LVL_S) begin
            trap_vector_base_o = {stvec_q[63:2], 2'b0};
        end

        // if we are in debug mode jump to a specific address
        if (debug_mode_q) begin
            trap_vector_base_o = DmBaseAddress + dm::ExceptionAddress;
        end

        // check if we are in vectored mode, if yes then do BASE + 4 * cause
        // we are imposing an additional alignment-constraint of 64 * 4 bytes since
        // we want to spare the costly addition
        if ((mtvec_q[0] || stvec_q[0]) && csr_exception_o.cause[63]) begin
            trap_vector_base_o[7:2] = csr_exception_o.cause[5:0];
        end

        epc_o = mepc_q;
        // we are returning from supervisor mode, so take the sepc register
        if (sret) begin
            epc_o = sepc_q;
        end
        // we are returning from debug mode, to take the dpc register
        if (dret) begin
            epc_o = dpc_q;
        end
    end

    // -------------------
    // Output Assignments
    // -------------------
    always_comb begin
        // When the SEIP bit is read with a CSRRW, CSRRS, or CSRRC instruction, the value
        // returned in the rd destination register contains the logical-OR of the software-writable
        // bit and the interrupt signal from the interrupt controller.
        csr_rdata_o = csr_rdata;

        unique case (csr_addr.address)
            riscv::CSR_MIP: csr_rdata_o = csr_rdata | (irq_i[1] << riscv::IRQ_S_EXT);
            // in supervisor mode we also need to check whether we delegated this bit
            riscv::CSR_SIP: begin
                csr_rdata_o = csr_rdata
                            | ((irq_i[1] & mideleg_q[riscv::IRQ_S_EXT]) << riscv::IRQ_S_EXT);
            end
            default:;
        endcase
    end

    // in debug mode we execute with privilege level M
    assign priv_lvl_o       = (debug_mode_q) ? riscv::PRIV_LVL_M : priv_lvl_q;
    // FPU outputs
    assign fflags_o         = fcsr_q.fflags;
    assign frm_o            = fcsr_q.frm;
    assign fprec_o          = fcsr_q.fprec;
    // MMU outputs
    assign satp_ppn_o       = satp_q.ppn;
    assign asid_o           = satp_q.asid[AsidWidth-1:0];
    assign sum_o            = mstatus_q.sum;
    // we support bare memory addressing and SV39
    assign en_translation_o = (satp_q.mode == 4'h8 && priv_lvl_o != riscv::PRIV_LVL_M)
                              ? 1'b1
                              : 1'b0;
    assign mxr_o            = mstatus_q.mxr;
    assign tvm_o            = mstatus_q.tvm;
    assign tw_o             = mstatus_q.tw;
    assign tsr_o            = mstatus_q.tsr;
    assign halt_csr_o       = wfi_q;
    assign icache_en_o      = icache_q[0] & (~debug_mode_q);
    assign dcache_en_o      = dcache_q[0];
    // determine if mprv needs to be considered if in debug mode
    assign mprv             = (debug_mode_q && !dcsr_q.mprven) ? 1'b0 : mstatus_q.mprv;
    assign debug_mode_o     = debug_mode_q;
    assign single_step_o    = dcsr_q.step;

    // sequential process
    always_ff @(posedge clk_i or negedge rst_ni) begin
        if (~rst_ni) begin
            priv_lvl_q             <= riscv::PRIV_LVL_M;
            // floating-point registers
            fcsr_q                 <= 64'b0;
            // debug signals
            debug_mode_q           <= 1'b0;
            dcsr_q                 <= '0;
            dcsr_q.prv             <= riscv::PRIV_LVL_M;
            dpc_q                  <= 64'b0;
            dscratch0_q            <= 64'b0;
            dscratch1_q            <= 64'b0;
            // machine mode registers
            mstatus_q              <= 64'b0;
            // set to boot address + direct mode + 4 byte offset which is the initial trap
            mtvec_rst_load_q       <= 1'b1;
            mtvec_q                <= '0;
            medeleg_q              <= 64'b0;
            mideleg_q              <= 64'b0;
            mip_q                  <= 64'b0;
            mie_q                  <= 64'b0;
            mepc_q                 <= 64'b0;
            mcause_q               <= 64'b0;
            mscratch_q             <= 64'b0;
            mtval_q                <= 64'b0;
            dcache_q               <= 64'b1;
            icache_q               <= 64'b1;
            // supervisor mode registers
            sepc_q                 <= 64'b0;
            scause_q               <= 64'b0;
            stvec_q                <= 64'b0;
            sscratch_q             <= 64'b0;
            stval_q                <= 64'b0;
            satp_q                 <= 64'b0;
            // timer and counters
            cycle_q                <= 64'b0;
            instret_q              <= 64'b0;
            // aux registers
            en_ld_st_translation_q <= 1'b0;
            // wait for interrupt
            wfi_q                  <= 1'b0;
        end else begin
            priv_lvl_q             <= priv_lvl_d;
            // floating-point registers
            fcsr_q                 <= fcsr_d;
            // debug signals
            debug_mode_q           <= debug_mode_d;
            dcsr_q                 <= dcsr_d;
            dpc_q                  <= dpc_d;
            dscratch0_q            <= dscratch0_d;
            dscratch1_q            <= dscratch1_d;
            // machine mode registers
            mstatus_q              <= mstatus_d;
            mtvec_rst_load_q       <= 1'b0;
            mtvec_q                <= mtvec_d;
            medeleg_q              <= medeleg_d;
            mideleg_q              <= mideleg_d;
            mip_q                  <= mip_d;
            mie_q                  <= mie_d;
            mepc_q                 <= mepc_d;
            mcause_q               <= mcause_d;
            mscratch_q             <= mscratch_d;
            mtval_q                <= mtval_d;
            dcache_q               <= dcache_d;
            icache_q               <= icache_d;
            // supervisor mode registers
            sepc_q                 <= sepc_d;
            scause_q               <= scause_d;
            stvec_q                <= stvec_d;
            sscratch_q             <= sscratch_d;
            stval_q                <= stval_d;
            satp_q                 <= satp_d;
            // timer and counters
            cycle_q                <= cycle_d;
            instret_q              <= instret_d;
            // aux registers
            en_ld_st_translation_q <= en_ld_st_translation_d;
            // wait for interrupt
            wfi_q                  <= wfi_d;
        end
    end

    //-------------
    // Assertions
    //-------------
    //pragma translate_off
    `ifndef VERILATOR
        // check that eret and ex are never valid together
        assert property (
          @(posedge clk_i) !(eret_o && ex_i.valid))
        else begin $error("eret and exception should never be valid at the same time"); $stop(); end
    `endif
    //pragma translate_on
endmodule