miss_handler.sv 33 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Florian Zaruba, ETH Zurich
// Date: 12.11.2017
// Description: Handles cache misses.

// --------------
// MISS Handler
// --------------
import ariane_pkg::*;
import std_cache_pkg::*;

module miss_handler #(
    parameter int unsigned NR_PORTS         = 3
)(
    input  logic                                        clk_i,
    input  logic                                        rst_ni,
    input  logic                                        flush_i,      // flush request
    output logic                                        flush_ack_o,  // acknowledge successful flush
    output logic                                        miss_o,
    input  logic                                        busy_i,       // dcache is busy with something
    // Bypass or miss
    input  logic [NR_PORTS-1:0][$bits(miss_req_t)-1:0]  miss_req_i,
    // Bypass handling
    output logic [NR_PORTS-1:0]                         bypass_gnt_o,
    output logic [NR_PORTS-1:0]                         bypass_valid_o,
    output logic [NR_PORTS-1:0][63:0]                   bypass_data_o,

    // AXI port
    output ariane_axi::req_t                            axi_bypass_o,
    input  ariane_axi::resp_t                           axi_bypass_i,

    // Miss handling (~> cacheline refill)
    output logic [NR_PORTS-1:0]                         miss_gnt_o,
    output logic [NR_PORTS-1:0]                         active_serving_o,

    output logic [63:0]                                 critical_word_o,
    output logic                                        critical_word_valid_o,
    output ariane_axi::req_t                            axi_data_o,
    input  ariane_axi::resp_t                           axi_data_i,

    input  logic [NR_PORTS-1:0][55:0]                   mshr_addr_i,
    output logic [NR_PORTS-1:0]                         mshr_addr_matches_o,
    output logic [NR_PORTS-1:0]                         mshr_index_matches_o,
    // AMO
    input  amo_req_t                                    amo_req_i,
    output amo_resp_t                                   amo_resp_o,
    // Port to SRAMs, for refill and eviction
    output logic  [DCACHE_SET_ASSOC-1:0]                req_o,
    output logic  [DCACHE_INDEX_WIDTH-1:0]              addr_o, // address into cache array
    output cache_line_t                                 data_o,
    output cl_be_t                                      be_o,
    input  cache_line_t [DCACHE_SET_ASSOC-1:0]          data_i,
    output logic                                        we_o
);

    // FSM states
    enum logic [3:0] {
        IDLE,               // 0
        FLUSHING,           // 1
        FLUSH,              // 2
        WB_CACHELINE_FLUSH, // 3
        FLUSH_REQ_STATUS,   // 4
        WB_CACHELINE_MISS,  // 5
        WAIT_GNT_SRAM,      // 6
        MISS,               // 7
        REQ_CACHELINE,      // 8
        MISS_REPL,          // 9
        SAVE_CACHELINE,     // A
        INIT,               // B
        AMO_LOAD,           // C
        AMO_SAVE_LOAD,      // D
        AMO_STORE           // E
    } state_d, state_q;

    // Registers
    mshr_t                                  mshr_d, mshr_q;
    logic [DCACHE_INDEX_WIDTH-1:0]          cnt_d, cnt_q;
    logic [DCACHE_SET_ASSOC-1:0]            evict_way_d, evict_way_q;
    // cache line to evict
    cache_line_t                            evict_cl_d, evict_cl_q;

    logic serve_amo_d, serve_amo_q;
    // Request from one FSM
    logic [NR_PORTS-1:0]                    miss_req_valid;
    logic [NR_PORTS-1:0]                    miss_req_bypass;
    logic [NR_PORTS-1:0][63:0]              miss_req_addr;
    logic [NR_PORTS-1:0][63:0]              miss_req_wdata;
    logic [NR_PORTS-1:0]                    miss_req_we;
    logic [NR_PORTS-1:0][7:0]               miss_req_be;
    logic [NR_PORTS-1:0][1:0]               miss_req_size;

    // Cache Line Refill <-> AXI
    logic                                    req_fsm_miss_valid;
    logic [63:0]                             req_fsm_miss_addr;
    logic [DCACHE_LINE_WIDTH-1:0]            req_fsm_miss_wdata;
    logic                                    req_fsm_miss_we;
    logic [(DCACHE_LINE_WIDTH/8)-1:0]        req_fsm_miss_be;
    ariane_axi::ad_req_t                     req_fsm_miss_req;
    logic [1:0]                              req_fsm_miss_size;

    logic                                    gnt_miss_fsm;
    logic                                    valid_miss_fsm;
    logic [(DCACHE_LINE_WIDTH/64)-1:0][63:0] data_miss_fsm;

    // Cache Management <-> LFSR
    logic                                  lfsr_enable;
    logic [DCACHE_SET_ASSOC-1:0]           lfsr_oh;
    logic [$clog2(DCACHE_SET_ASSOC-1)-1:0] lfsr_bin;
    // AMOs
    ariane_pkg::amo_t amo_op;
    logic [63:0] amo_operand_a, amo_operand_b, amo_result_o;

    struct packed {
        logic [63:3] address;
        logic        valid;
    } reservation_d, reservation_q;

    // ------------------------------
    // Cache Management
    // ------------------------------
    always_comb begin : cache_management
        automatic logic [DCACHE_SET_ASSOC-1:0] evict_way, valid_way;

        for (int unsigned i = 0; i < DCACHE_SET_ASSOC; i++) begin
            evict_way[i] = data_i[i].valid & data_i[i].dirty;
            valid_way[i] = data_i[i].valid;
        end
        // ----------------------
        // Default Assignments
        // ----------------------
        // memory array
        req_o  = '0;
        addr_o = '0;
        data_o = '0;
        be_o   = '0;
        we_o   = '0;
        // Cache controller
        miss_gnt_o = '0;
        // LFSR replacement unit
        lfsr_enable = 1'b0;
        // to AXI refill
        req_fsm_miss_valid  = 1'b0;
        req_fsm_miss_addr   = '0;
        req_fsm_miss_wdata  = '0;
        req_fsm_miss_we     = 1'b0;
        req_fsm_miss_be     = '0;
        req_fsm_miss_req    = ariane_axi::CACHE_LINE_REQ;
        req_fsm_miss_size   = 2'b11;
        // core
        flush_ack_o         = 1'b0;
        miss_o              = 1'b0; // to performance counter
        serve_amo_d         = serve_amo_q;
        // --------------------------------
        // Flush and Miss operation
        // --------------------------------
        state_d      = state_q;
        cnt_d        = cnt_q;
        evict_way_d  = evict_way_q;
        evict_cl_d   = evict_cl_q;
        mshr_d       = mshr_q;
        // communicate to the requester which unit we are currently serving
        active_serving_o[mshr_q.id] = mshr_q.valid;
        // AMOs
        amo_resp_o.ack = 1'b0;
        amo_resp_o.result = '0;
        // silence the unit when not used
        amo_op = amo_req_i.amo_op;
        amo_operand_a = '0;
        amo_operand_b = '0;

        reservation_d = reservation_q;
        case (state_q)

            IDLE: begin
                // lowest priority are AMOs, wait until everything else is served before going for the AMOs
                if (amo_req_i.req && !busy_i) begin
                    // 1. Flush the cache
                    if (!serve_amo_q) begin
                        state_d = FLUSH_REQ_STATUS;
                        serve_amo_d = 1'b1;
                    // 2. Do the AMO
                    end else begin
                        state_d = AMO_LOAD;
                        serve_amo_d = 1'b0;
                    end
                end
                // check if we want to flush and can flush e.g.: we are not busy anymore
                // TODO: Check that the busy flag is indeed needed
                if (flush_i && !busy_i) begin
                    state_d = FLUSH_REQ_STATUS;
                    cnt_d = '0;
                end

                // check if one of the state machines missed
                for (int unsigned i = 0; i < NR_PORTS; i++) begin
                    // here comes the refill portion of code
                    if (miss_req_valid[i] && !miss_req_bypass[i]) begin
                        state_d      = MISS;
                        // we are taking another request so don't take the AMO
                        serve_amo_d  = 1'b0;
                        // save to MSHR
                        mshr_d.valid = 1'b1;
                        mshr_d.we    = miss_req_we[i];
                        mshr_d.id    = i;
                        mshr_d.addr  = miss_req_addr[i][DCACHE_TAG_WIDTH+DCACHE_INDEX_WIDTH-1:0];
                        mshr_d.wdata = miss_req_wdata[i];
                        mshr_d.be    = miss_req_be[i];
                        break;
                    end
                end
            end

            //  ~> we missed on the cache
            MISS: begin
                // 1. Check if there is an empty cache-line
                // 2. If not -> evict one
                req_o = '1;
                addr_o = mshr_q.addr[DCACHE_INDEX_WIDTH-1:0];
                state_d = MISS_REPL;
                miss_o = 1'b1;
            end

            // ~> second miss cycle
            MISS_REPL: begin
                // if all are valid we need to evict one, pseudo random from LFSR
                if (&valid_way) begin
                    lfsr_enable = 1'b1;
                    evict_way_d = lfsr_oh;
                    // do we need to write back the cache line?
                    if (data_i[lfsr_bin].dirty) begin
                        state_d = WB_CACHELINE_MISS;
                        evict_cl_d.tag = data_i[lfsr_bin].tag;
                        evict_cl_d.data = data_i[lfsr_bin].data;
                        cnt_d = mshr_q.addr[DCACHE_INDEX_WIDTH-1:0];
                    // no - we can request a cache line now
                    end else
                        state_d = REQ_CACHELINE;
                // we have at least one free way
                end else begin
                    // get victim cache-line by looking for the first non-valid bit
                    evict_way_d = get_victim_cl(~valid_way);
                    state_d = REQ_CACHELINE;
                end
            end

            // ~> we can just load the cache-line, the way is store in evict_way_q
            REQ_CACHELINE: begin
                req_fsm_miss_valid  = 1'b1;
                req_fsm_miss_addr   = mshr_q.addr;

                if (gnt_miss_fsm) begin
                    state_d = SAVE_CACHELINE;
                    miss_gnt_o[mshr_q.id] = 1'b1;
                end
            end

            // ~> replace the cacheline
            SAVE_CACHELINE: begin
                // calculate cacheline offset
                automatic logic [$clog2(DCACHE_LINE_WIDTH)-1:0] cl_offset;
                cl_offset = mshr_q.addr[DCACHE_BYTE_OFFSET-1:3] << 6;
                // we've got a valid response from refill unit
                if (valid_miss_fsm) begin

                    addr_o       = mshr_q.addr[DCACHE_INDEX_WIDTH-1:0];
                    req_o        = evict_way_q;
                    we_o         = 1'b1;
                    be_o         = '1;
                    be_o.vldrty  = evict_way_q;
                    data_o.tag   = mshr_q.addr[DCACHE_TAG_WIDTH+DCACHE_INDEX_WIDTH-1:DCACHE_INDEX_WIDTH];
                    data_o.data  = data_miss_fsm;
                    data_o.valid = 1'b1;
                    data_o.dirty = 1'b0;

                    // is this a write?
                    if (mshr_q.we) begin
                        // Yes, so safe the updated data now
                        for (int i = 0; i < 8; i++) begin
                            // check if we really want to write the corresponding byte
                            if (mshr_q.be[i])
                                data_o.data[(cl_offset + i*8) +: 8] = mshr_q.wdata[i];
                        end
                        // its immediately dirty if we write
                        data_o.dirty = 1'b1;
                    end
                    // reset MSHR
                    mshr_d.valid = 1'b0;
                    // go back to idle
                    state_d = IDLE;
                end
            end

            // ------------------------------
            // Write Back Operation
            // ------------------------------
            // ~> evict a cache line from way saved in evict_way_q
            WB_CACHELINE_FLUSH, WB_CACHELINE_MISS: begin

                req_fsm_miss_valid  = 1'b1;
                req_fsm_miss_addr   = {evict_cl_q.tag, cnt_q[DCACHE_INDEX_WIDTH-1:DCACHE_BYTE_OFFSET], {{DCACHE_BYTE_OFFSET}{1'b0}}};
                req_fsm_miss_be     = '1;
                req_fsm_miss_we     = 1'b1;
                req_fsm_miss_wdata  = evict_cl_q.data;

                // we've got a grant --> this is timing critical, think about it
                if (gnt_miss_fsm) begin
                    // write status array
                    addr_o     = cnt_q;
                    req_o      = 1'b1;
                    we_o       = 1'b1;
                    data_o.valid = INVALIDATE_ON_FLUSH ? 1'b0 : 1'b1;
                    // invalidate
                    be_o.vldrty = evict_way_q;
                    // go back to handling the miss or flushing, depending on where we came from
                    state_d = (state_q == WB_CACHELINE_MISS) ? MISS : FLUSH_REQ_STATUS;
                end
            end

            // ------------------------------
            // Flushing & Initialization
            // ------------------------------
            // ~> make another request to check the same cache-line if there are still some valid entries
            FLUSH_REQ_STATUS: begin
                req_o   = '1;
                addr_o  = cnt_q;
                state_d = FLUSHING;
            end

            FLUSHING: begin
                // this has priority
                // at least one of the cache lines is dirty
                if (|evict_way) begin
                    // evict cache line, look for the first cache-line which is dirty
                    evict_way_d = get_victim_cl(evict_way);
                    evict_cl_d  = data_i[one_hot_to_bin(evict_way)];
                    state_d     = WB_CACHELINE_FLUSH;
                // not dirty ~> increment and continue
                end else begin
                    // increment and re-request
                    cnt_d       = cnt_q + (1'b1 << DCACHE_BYTE_OFFSET);
                    state_d     = FLUSH_REQ_STATUS;
                    addr_o      = cnt_q;
                    req_o       = 1'b1;
                    be_o.vldrty = INVALIDATE_ON_FLUSH ? '1 : '0;
                    we_o        = 1'b1;
                    // finished with flushing operation, go back to idle
                    if (cnt_q[DCACHE_INDEX_WIDTH-1:DCACHE_BYTE_OFFSET] == DCACHE_NUM_WORDS-1) begin
                        // only acknowledge if the flush wasn't triggered by an atomic
                        flush_ack_o = ~serve_amo_q;
                        state_d     = IDLE;
                    end
                end
            end

            // ~> only called after reset
            INIT: begin
                // initialize status array
                addr_o = cnt_q;
                req_o  = 1'b1;
                we_o   = 1'b1;
                // only write the dirty array
                be_o.vldrty = '1;
                cnt_d       = cnt_q + (1'b1 << DCACHE_BYTE_OFFSET);
                // finished initialization
                if (cnt_q[DCACHE_INDEX_WIDTH-1:DCACHE_BYTE_OFFSET] == DCACHE_NUM_WORDS-1)
                    state_d = IDLE;
            end
            // ----------------------
            // AMOs
            // ----------------------
            // TODO(zarubaf) Move this closer to memory
            // ~> we are here because we need to do the AMO, the cache is clean at this point
            // start by executing the load
            AMO_LOAD: begin
                req_fsm_miss_valid = 1'b1;
                // address is in operand a
                req_fsm_miss_addr = amo_req_i.operand_a;
                req_fsm_miss_req = ariane_axi::SINGLE_REQ;
                req_fsm_miss_size = amo_req_i.size;
                // the request has been granted
                if (gnt_miss_fsm) begin
                    state_d = AMO_SAVE_LOAD;
                end
            end
            // save the load value
            AMO_SAVE_LOAD: begin
                if (valid_miss_fsm) begin
                    // we are only concerned about the lower 64-bit
                    mshr_d.wdata = data_miss_fsm[0];
                    state_d = AMO_STORE;
                end
            end
            // and do the store
            AMO_STORE: begin
                automatic logic [63:0] load_data;
                // re-align load data
                load_data = data_align(amo_req_i.operand_a[2:0], mshr_q.wdata);
                // Sign-extend for word operation
                if (amo_req_i.size == 2'b10) begin
                    amo_operand_a = sext32(load_data[31:0]);
                    amo_operand_b = sext32(amo_req_i.operand_b[31:0]);
                end else begin
                    amo_operand_a = load_data;
                    amo_operand_b = amo_req_i.operand_b;
                end

                //  we do not need a store request for load reserved or a failing store conditional
                //  we can bail-out without making any further requests
                if (amo_req_i.amo_op == AMO_LR ||
                   (amo_req_i.amo_op == AMO_SC &&
                   ((reservation_q.valid && reservation_q.address != amo_req_i.operand_a[63:3]) || !reservation_q.valid))) begin
                    req_fsm_miss_valid = 1'b0;
                    state_d = IDLE;
                    amo_resp_o.ack = 1'b1;
                    // write-back the result
                    amo_resp_o.result = amo_operand_a;
                    // we know that the SC failed
                    if (amo_req_i.amo_op == AMO_SC) begin
                        amo_resp_o.result = 1'b1;
                        // also clear the reservation
                        reservation_d.valid = 1'b0;
                    end
                end else begin
                    req_fsm_miss_valid = 1'b1;
                end

                req_fsm_miss_we   = 1'b1;
                req_fsm_miss_req  = ariane_axi::SINGLE_REQ;
                req_fsm_miss_size = amo_req_i.size;
                req_fsm_miss_addr = amo_req_i.operand_a;

                req_fsm_miss_wdata = data_align(amo_req_i.operand_a[2:0], amo_result_o);
                req_fsm_miss_be = be_gen(amo_req_i.operand_a[2:0], amo_req_i.size);

                // place a reservation on the memory
                if (amo_req_i.amo_op == AMO_LR) begin
                    reservation_d.address = amo_req_i.operand_a[63:3];
                    reservation_d.valid = 1'b1;
                end

                // the request is valid or we didn't need to go for another store
                if (valid_miss_fsm) begin
                    state_d = IDLE;
                    amo_resp_o.ack = 1'b1;
                    // write-back the result
                    amo_resp_o.result = amo_operand_a;

                    if (amo_req_i.amo_op == AMO_SC) begin
                        amo_resp_o.result = 1'b0;
                        // An SC must fail if there is a nother SC (to any address) between the LR and the SC in program
                        // order (even to the same address).
                        // in any case destory the reservation
                        reservation_d.valid = 1'b0;
                    end
                end
            end
        endcase
    end

    // check MSHR for aliasing
    always_comb begin

        mshr_addr_matches_o  = 'b0;
        mshr_index_matches_o = 'b0;

        for (int i = 0; i < NR_PORTS; i++) begin
            // check mshr for potential matching of other units, exclude the unit currently being served
            if (mshr_q.valid && mshr_addr_i[i][55:DCACHE_BYTE_OFFSET] == mshr_q.addr[55:DCACHE_BYTE_OFFSET]) begin
                mshr_addr_matches_o[i] = 1'b1;
            end

            // same as previous, but checking only the index
            if (mshr_q.valid && mshr_addr_i[i][DCACHE_INDEX_WIDTH-1:DCACHE_BYTE_OFFSET] == mshr_q.addr[DCACHE_INDEX_WIDTH-1:DCACHE_BYTE_OFFSET]) begin
                mshr_index_matches_o[i] = 1'b1;
            end
        end
    end
    // --------------------
    // Sequential Process
    // --------------------
    always_ff @(posedge clk_i or negedge rst_ni) begin
        if (~rst_ni) begin
            mshr_q        <= '0;
            state_q       <= INIT;
            cnt_q         <= '0;
            evict_way_q   <= '0;
            evict_cl_q    <= '0;
            serve_amo_q   <= 1'b0;
            reservation_q <= '0;
        end else begin
            mshr_q        <= mshr_d;
            state_q       <= state_d;
            cnt_q         <= cnt_d;
            evict_way_q   <= evict_way_d;
            evict_cl_q    <= evict_cl_d;
            serve_amo_q   <= serve_amo_d;
            reservation_q <= reservation_d;
        end
    end

    //pragma translate_off
    `ifndef VERILATOR
    // assert that cache only hits on one way
    assert property (
      @(posedge clk_i) $onehot0(evict_way_q)) else $warning("Evict-way should be one-hot encoded");
    `endif
    //pragma translate_on
    // ----------------------
    // Bypass Arbiter
    // ----------------------
    // Connection Arbiter <-> AXI
    logic                        req_fsm_bypass_valid;
    logic [63:0]                 req_fsm_bypass_addr;
    logic [63:0]                 req_fsm_bypass_wdata;
    logic                        req_fsm_bypass_we;
    logic [7:0]                  req_fsm_bypass_be;
    logic [1:0]                  req_fsm_bypass_size;
    logic                        gnt_bypass_fsm;
    logic                        valid_bypass_fsm;
    logic [63:0]                 data_bypass_fsm;
    logic [$clog2(NR_PORTS)-1:0] id_fsm_bypass;
    logic [3:0]                  id_bypass_fsm;
    logic [3:0]                  gnt_id_bypass_fsm;

    arbiter #(
        .NR_PORTS       ( NR_PORTS                                 ),
        .DATA_WIDTH     ( 64                                       )
    ) i_bypass_arbiter (
        // Master Side
        .data_req_i     ( miss_req_valid & miss_req_bypass         ),
        .address_i      ( miss_req_addr                            ),
        .data_wdata_i   ( miss_req_wdata                           ),
        .data_we_i      ( miss_req_we                              ),
        .data_be_i      ( miss_req_be                              ),
        .data_size_i    ( miss_req_size                            ),
        .data_gnt_o     ( bypass_gnt_o                             ),
        .data_rvalid_o  ( bypass_valid_o                           ),
        .data_rdata_o   ( bypass_data_o                            ),
        // Slave Sid
        .id_i           ( id_bypass_fsm[$clog2(NR_PORTS)-1:0]      ),
        .id_o           ( id_fsm_bypass                            ),
        .gnt_id_i       ( gnt_id_bypass_fsm[$clog2(NR_PORTS)-1:0]  ),
        .address_o      ( req_fsm_bypass_addr                      ),
        .data_wdata_o   ( req_fsm_bypass_wdata                     ),
        .data_req_o     ( req_fsm_bypass_valid                     ),
        .data_we_o      ( req_fsm_bypass_we                        ),
        .data_be_o      ( req_fsm_bypass_be                        ),
        .data_size_o    ( req_fsm_bypass_size                      ),
        .data_gnt_i     ( gnt_bypass_fsm                           ),
        .data_rvalid_i  ( valid_bypass_fsm                         ),
        .data_rdata_i   ( data_bypass_fsm                          ),
        .*
    );

    axi_adapter #(
        .DATA_WIDTH            ( 64                 ),
        .AXI_ID_WIDTH          ( 4                  ),
        .CACHELINE_BYTE_OFFSET ( DCACHE_BYTE_OFFSET )
    ) i_bypass_axi_adapter (
        .clk_i,
        .rst_ni,
        .req_i                 ( req_fsm_bypass_valid   ),
        .type_i                ( ariane_axi::SINGLE_REQ ),
        .gnt_o                 ( gnt_bypass_fsm         ),
        .addr_i                ( req_fsm_bypass_addr    ),
        .we_i                  ( req_fsm_bypass_we      ),
        .wdata_i               ( req_fsm_bypass_wdata   ),
        .be_i                  ( req_fsm_bypass_be      ),
        .size_i                ( req_fsm_bypass_size    ),
        .id_i                  ( {2'b10, id_fsm_bypass} ),
        .valid_o               ( valid_bypass_fsm       ),
        .rdata_o               ( data_bypass_fsm        ),
        .gnt_id_o              ( gnt_id_bypass_fsm      ),
        .id_o                  ( id_bypass_fsm          ),
        .critical_word_o       (                        ), // not used for single requests
        .critical_word_valid_o (                        ), // not used for single requests
        .axi_req_o             ( axi_bypass_o           ),
        .axi_resp_i            ( axi_bypass_i           )
    );

    // ----------------------
    // Cache Line AXI Refill
    // ----------------------
    axi_adapter  #(
        .DATA_WIDTH            ( DCACHE_LINE_WIDTH  ),
        .AXI_ID_WIDTH          ( 4                  ),
        .CACHELINE_BYTE_OFFSET ( DCACHE_BYTE_OFFSET )
    ) i_miss_axi_adapter (
        .clk_i,
        .rst_ni,
        .req_i               ( req_fsm_miss_valid ),
        .type_i              ( req_fsm_miss_req   ),
        .gnt_o               ( gnt_miss_fsm       ),
        .addr_i              ( req_fsm_miss_addr  ),
        .we_i                ( req_fsm_miss_we    ),
        .wdata_i             ( req_fsm_miss_wdata ),
        .be_i                ( req_fsm_miss_be    ),
        .size_i              ( req_fsm_miss_size  ),
        .id_i                ( 4'b1100            ),
        .gnt_id_o            (                    ), // open
        .valid_o             ( valid_miss_fsm     ),
        .rdata_o             ( data_miss_fsm      ),
        .id_o                (                    ),
        .critical_word_o,
        .critical_word_valid_o,
        .axi_req_o           ( axi_data_o         ),
        .axi_resp_i          ( axi_data_i         )
    );

    // -----------------
    // Replacement LFSR
    // -----------------
    lfsr_8bit #(.WIDTH (DCACHE_SET_ASSOC)) i_lfsr (
        .en_i           ( lfsr_enable ),
        .refill_way_oh  ( lfsr_oh     ),
        .refill_way_bin ( lfsr_bin    ),
        .*
    );

    // -----------------
    // AMO ALU
    // -----------------
    amo_alu i_amo_alu (
        .amo_op_i        ( amo_op        ),
        .amo_operand_a_i ( amo_operand_a ),
        .amo_operand_b_i ( amo_operand_b ),
        .amo_result_o    ( amo_result_o  )
    );

    // -----------------
    // Struct Split
    // -----------------
    // Hack as system verilog support in modelsim seems to be buggy here
    always_comb begin
        automatic miss_req_t miss_req;

        for (int unsigned i = 0; i < NR_PORTS; i++) begin
            miss_req =  miss_req_t'(miss_req_i[i]);
            miss_req_valid  [i]  = miss_req.valid;
            miss_req_bypass [i]  = miss_req.bypass;
            miss_req_addr   [i]  = miss_req.addr;
            miss_req_wdata  [i]  = miss_req.wdata;
            miss_req_we     [i]  = miss_req.we;
            miss_req_be     [i]  = miss_req.be;
            miss_req_size   [i]  = miss_req.size;
        end
    end
endmodule

// --------------
// AXI Arbiter
// --------------s
//
// Description: Arbitrates access to AXI refill/bypass
//
module arbiter #(
        parameter int unsigned NR_PORTS   = 3,
        parameter int unsigned DATA_WIDTH = 64
)(
    input  logic                                   clk_i,          // Clock
    input  logic                                   rst_ni,         // Asynchronous reset active low
    // master ports
    input  logic [NR_PORTS-1:0]                    data_req_i,
    input  logic [NR_PORTS-1:0][63:0]              address_i,
    input  logic [NR_PORTS-1:0][DATA_WIDTH-1:0]    data_wdata_i,
    input  logic [NR_PORTS-1:0]                    data_we_i,
    input  logic [NR_PORTS-1:0][DATA_WIDTH/8-1:0]  data_be_i,
    input  logic [NR_PORTS-1:0][1:0]               data_size_i,
    output logic [NR_PORTS-1:0]                    data_gnt_o,
    output logic [NR_PORTS-1:0]                    data_rvalid_o,
    output logic [NR_PORTS-1:0][DATA_WIDTH-1:0]    data_rdata_o,
    // slave port
    input  logic [$clog2(NR_PORTS)-1:0]            id_i,
    output logic [$clog2(NR_PORTS)-1:0]            id_o,
    input  logic [$clog2(NR_PORTS)-1:0]            gnt_id_i,
    output logic                                   data_req_o,
    output logic [63:0]                            address_o,
    output logic [DATA_WIDTH-1:0]                  data_wdata_o,
    output logic                                   data_we_o,
    output logic [DATA_WIDTH/8-1:0]                data_be_o,
    output logic [1:0]                             data_size_o,
    input  logic                                   data_gnt_i,
    input  logic                                   data_rvalid_i,
    input  logic [DATA_WIDTH-1:0]                  data_rdata_i
);

    enum logic [1:0] { IDLE, REQ, SERVING } state_d, state_q;

    struct packed {
        logic [$clog2(NR_PORTS)-1:0] id;
        logic [63:0]                 address;
        logic [63:0]                 data;
        logic [1:0]                  size;
        logic [DATA_WIDTH/8-1:0]     be;
        logic                        we;
    } req_d, req_q;

    always_comb begin
        automatic logic [$clog2(NR_PORTS)-1:0] request_index;
        request_index = 0;

        state_d = state_q;
        req_d   = req_q;
        // request port
        data_req_o                = 1'b0;
        address_o                 = req_q.address;
        data_wdata_o              = req_q.data;
        data_be_o                 = req_q.be;
        data_size_o               = req_q.size;
        data_we_o                 = req_q.we;
        id_o                      = req_q.id;
        data_gnt_o                = '0;
        // read port
        data_rvalid_o             = '0;
        data_rdata_o              = '0;
        data_rdata_o[req_q.id]    = data_rdata_i;

        case (state_q)

            IDLE: begin
                // wait for incoming requests
                for (int unsigned i = 0; i < NR_PORTS; i++) begin
                    if (data_req_i[i] == 1'b1) begin
                        data_req_o    = data_req_i[i];
                        data_gnt_o[i] = data_req_i[i];
                        request_index = i[$bits(request_index)-1:0];
                        // save the request
                        req_d.address = address_i[i];
                        req_d.id = i[$bits(req_q.id)-1:0];
                        req_d.data = data_wdata_i[i];
                        req_d.size = data_size_i[i];
                        req_d.be = data_be_i[i];
                        req_d.we = data_we_i[i];
                        state_d = SERVING;
                        break; // break here as this is a priority select
                    end
                end

                address_o                 = address_i[request_index];
                data_wdata_o              = data_wdata_i[request_index];
                data_be_o                 = data_be_i[request_index];
                data_size_o               = data_size_i[request_index];
                data_we_o                 = data_we_i[request_index];
                id_o                      = request_index;
            end

            SERVING: begin
                data_req_o = 1'b1;
                if (data_rvalid_i) begin
                    data_rvalid_o[req_q.id] = 1'b1;
                    state_d = IDLE;
                end
            end

            default : /* default */;
        endcase
    end

    always_ff @(posedge clk_i or negedge rst_ni) begin
        if (~rst_ni) begin
            state_q <= IDLE;
            req_q   <= '0;
        end else begin
            state_q <= state_d;
            req_q   <= req_d;
        end
    end
    // ------------
    // Assertions
    // ------------

    //pragma translate_off
    `ifndef VERILATOR
    // make sure that we eventually get an rvalid after we received a grant
    assert property (@(posedge clk_i) data_gnt_i |-> ##[1:$] data_rvalid_i )
        else begin $error("There was a grant without a rvalid"); $stop(); end
    // assert that there is no grant without a request
    assert property (@(negedge clk_i) data_gnt_i |-> data_req_o)
        else begin $error("There was a grant without a request."); $stop(); end
    // assert that the address does not contain X when request is sent
    assert property ( @(posedge clk_i) (data_req_o) |-> (!$isunknown(address_o)) )
      else begin $error("address contains X when request is set"); $stop(); end

    `endif
    //pragma translate_on
endmodule