axi2mem.sv 21.6 KB
Newer Older
sakundu committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
// Copyright 2021 ETH Zurich and University of Bologna.
// Solderpad Hardware License, Version 0.51, see LICENSE for details.
// SPDX-License-Identifier: SHL-0.51

// Andreas Kurth <akurth@iis.ee.ethz.ch>

module axi2mem #(
  parameter type axi_req_t = logic,     // AXI request type
  parameter type axi_resp_t = logic,    // AXI response type
  parameter int unsigned AddrWidth = 0, // address width
  parameter int unsigned DataWidth = 0, // AXI data width
  parameter int unsigned IdWidth = 0,   // AXI ID width
  parameter int unsigned NumBanks = 0,  // number of banks at output
  parameter int unsigned BufDepth = 1,  // depth of memory response buffer
  // Dependent parameters, do not override.
  localparam type addr_t = logic [AddrWidth-1:0],
  localparam type mem_atop_t = logic [5:0],
  localparam type mem_data_t = logic [DataWidth/NumBanks-1:0],
  localparam type mem_strb_t = logic [DataWidth/NumBanks/8-1:0]
) (
  input  logic                      clk_i,
  input  logic                      rst_ni,

  output logic                      busy_o,

  input  axi_req_t                  axi_req_i,
  output axi_resp_t                 axi_resp_o,

  output logic      [NumBanks-1:0]  mem_req_o,
  input  logic      [NumBanks-1:0]  mem_gnt_i,
  output addr_t     [NumBanks-1:0]  mem_addr_o,   // byte address
  output mem_data_t [NumBanks-1:0]  mem_wdata_o,  // write data
  output mem_strb_t [NumBanks-1:0]  mem_strb_o,   // byte-wise strobe
  output mem_atop_t [NumBanks-1:0]  mem_atop_o,   // atomic operation
  output logic      [NumBanks-1:0]  mem_we_o,     // write enable
  input  logic      [NumBanks-1:0]  mem_rvalid_i, // response valid
  input  mem_data_t [NumBanks-1:0]  mem_rdata_i   // read data
);

  typedef logic [DataWidth-1:0]   axi_data_t;
  typedef logic [DataWidth/8-1:0] axi_strb_t;
  typedef logic [IdWidth-1:0]     axi_id_t;

  typedef struct packed {
    addr_t      addr;
    mem_atop_t  atop;
    axi_strb_t  strb;
    axi_data_t  wdata;
    logic       we;
  } mem_req_t;

  typedef struct packed {
    addr_t          addr;
    axi_pkg::atop_t atop;
    axi_id_t        id;
    logic           last;
    axi_pkg::qos_t  qos;
    axi_pkg::size_t size;
    logic           write;
  } meta_t;

  axi_data_t      mem_rdata,
                  m2s_resp;
  axi_pkg::len_t  r_cnt_d,        r_cnt_q,
                  w_cnt_d,        w_cnt_q;
  logic           arb_valid,      arb_ready,
                  rd_valid,       rd_ready,
                  wr_valid,       wr_ready,
                  sel_b,          sel_buf_b,
                  sel_r,          sel_buf_r,
                  sel_valid,      sel_ready,
                  sel_buf_valid,  sel_buf_ready,
                  sel_lock_d,     sel_lock_q,
                  meta_valid,     meta_ready,
                  meta_buf_valid, meta_buf_ready,
                  meta_sel_d,     meta_sel_q,
                  m2s_req_valid,  m2s_req_ready,
                  m2s_resp_valid, m2s_resp_ready,
                  mem_req_valid,  mem_req_ready,
                  mem_rvalid;
  mem_req_t       m2s_req,
                  mem_req;
  meta_t          rd_meta,
                  rd_meta_d,      rd_meta_q,
                  wr_meta,
                  wr_meta_d,      wr_meta_q,
                  meta,           meta_buf;

  assign busy_o = axi_req_i.aw_valid | axi_req_i.ar_valid | axi_req_i.w_valid |
                    axi_resp_o.b_valid | axi_resp_o.r_valid |
                    (r_cnt_q > 0) | (w_cnt_q > 0);

  // Handle reads.
  always_comb begin
    // Default assignments
    axi_resp_o.ar_ready = 1'b0;
    rd_meta_d = rd_meta_q;
    rd_meta = 'x;
    rd_valid = 1'b0;
    r_cnt_d = r_cnt_q;
    // Handle R burst in progress.
    if (r_cnt_q > '0) begin
      rd_meta_d.last = (r_cnt_q == 8'd1);
      rd_meta = rd_meta_d;
      rd_meta.addr = rd_meta_q.addr + axi_pkg::num_bytes(rd_meta_q.size);
      rd_valid = 1'b1;
      if (rd_ready) begin
        r_cnt_d--;
        rd_meta_d.addr = rd_meta.addr;
      end
    // Handle new AR if there is one.
    end else if (axi_req_i.ar_valid) begin
      rd_meta_d = '{
        addr:   axi_pkg::aligned_addr(axi_req_i.ar.addr, axi_req_i.ar.size),
        atop:   '0,
        id:     axi_req_i.ar.id,
        last:   (axi_req_i.ar.len == '0),
        qos:    axi_req_i.ar.qos,
        size:   axi_req_i.ar.size,
        write:  1'b0
      };
      rd_meta = rd_meta_d;
      rd_meta.addr = axi_req_i.ar.addr;
      rd_valid = 1'b1;
      if (rd_ready) begin
        r_cnt_d = axi_req_i.ar.len;
        axi_resp_o.ar_ready = 1'b1;
      end
    end
  end

  // Handle writes.
  always_comb begin
    // Default assignments
    axi_resp_o.aw_ready = 1'b0;
    axi_resp_o.w_ready = 1'b0;
    wr_meta_d = wr_meta_q;
    wr_meta = 'x;
    wr_valid = 1'b0;
    w_cnt_d = w_cnt_q;
    // Handle W bursts in progress.
    if (w_cnt_q > '0) begin
      wr_meta_d.last = (w_cnt_q == 8'd1);
      wr_meta = wr_meta_d;
      wr_meta.addr = wr_meta_q.addr + axi_pkg::num_bytes(wr_meta_q.size);
      if (axi_req_i.w_valid) begin
        wr_valid = 1'b1;
        if (wr_ready) begin
          axi_resp_o.w_ready = 1'b1;
          w_cnt_d--;
          wr_meta_d.addr = wr_meta.addr;
        end
      end
    // Handle new AW if there is one.
    end else if (axi_req_i.aw_valid && axi_req_i.w_valid) begin
      wr_meta_d = '{
        addr:   axi_pkg::aligned_addr(axi_req_i.aw.addr, axi_req_i.aw.size),
        atop:   axi_req_i.aw.atop,
        id:     axi_req_i.aw.id,
        last:   (axi_req_i.aw.len == '0),
        qos:    axi_req_i.aw.qos,
        size:   axi_req_i.aw.size,
        write:  1'b1
      };
      wr_meta = wr_meta_d;
      wr_meta.addr = axi_req_i.aw.addr;
      wr_valid = 1'b1;
      if (wr_ready) begin
        w_cnt_d = axi_req_i.aw.len;
        axi_resp_o.aw_ready = 1'b1;
        axi_resp_o.w_ready = 1'b1;
      end
    end
  end

  // Arbitrate between reads and writes.
  stream_mux #(
    .DATA_T (meta_t),
    .N_INP  (2)
  ) i_ax_mux (
    .inp_data_i   ({wr_meta, rd_meta}),
    .inp_valid_i  ({wr_valid, rd_valid}),
    .inp_ready_o  ({wr_ready, rd_ready}),
    .inp_sel_i    (meta_sel_d),
    .oup_data_o   (meta),
    .oup_valid_o  (arb_valid),
    .oup_ready_i  (arb_ready)
  );
  always_comb begin
    meta_sel_d = meta_sel_q;
    sel_lock_d = sel_lock_q;
    if (sel_lock_q) begin
      meta_sel_d = meta_sel_q;
      if (arb_valid && arb_ready) begin
        sel_lock_d = 1'b0;
      end
    end else begin
      if (wr_valid ^ rd_valid) begin
        // If either write or read is valid but not both, select the valid one.
        meta_sel_d = wr_valid;
      end else if (wr_valid && rd_valid) begin
        // If both write and read are valid, decide according to QoS then burst properties.
        // Priorize higher QoS.
        if (wr_meta.qos > rd_meta.qos) begin
          meta_sel_d = 1'b1;
        end else if (rd_meta.qos > wr_meta.qos) begin
          meta_sel_d = 1'b0;
        // Decide requests with identical QoS.
        end else if (wr_meta.qos == rd_meta.qos) begin
          // 1. Priorize individual writes over read bursts.
          // Rationale: Read bursts can be interleaved on AXI but write bursts cannot.
          if (wr_meta.last && !rd_meta.last) begin
            meta_sel_d = 1'b1;
          // 2. Prioritize ongoing burst.
          // Rationale: Stalled bursts create backpressure or require costly buffers.
          end else if (w_cnt_q > '0) begin
            meta_sel_d = 1'b1;
          end else if (r_cnt_q > '0) begin
            meta_sel_d = 1'b0;
          // 3. Otherwise arbitrate round robin to prevent starvation.
          end else begin
            meta_sel_d = ~meta_sel_q;
          end
        end
      end
      // Lock arbitration if valid but not yet ready.
      if (arb_valid && !arb_ready) begin
        sel_lock_d = 1'b1;
      end
    end
  end

  // Fork arbitrated stream to meta data, memory requests, and R/B channel selection.
  stream_fork #(
    .N_OUP (3)
  ) i_fork (
    .clk_i,
    .rst_ni,
    .valid_i  (arb_valid),
    .ready_o  (arb_ready),
    .valid_o  ({sel_valid, meta_valid, m2s_req_valid}),
    .ready_i  ({sel_ready, meta_ready, m2s_req_ready})
  );

  assign sel_b = meta.write & meta.last;
  assign sel_r = ~meta.write | meta.atop[5];

  stream_fifo #(
    .FALL_THROUGH (1'b1),
    .DEPTH        (1 + BufDepth),
    .T            (logic[1:0])
  ) i_sel_buf (
    .clk_i,
    .rst_ni,
    .flush_i    (1'b0),
    .testmode_i (1'b0),
    .data_i     ({sel_b, sel_r}),
    .valid_i    (sel_valid),
    .ready_o    (sel_ready),
    .data_o     ({sel_buf_b, sel_buf_r}),
    .valid_o    (sel_buf_valid),
    .ready_i    (sel_buf_ready),
    .usage_o    (/* unused */)
  );

  stream_fifo #(
    .FALL_THROUGH (1'b1),
    .DEPTH        (1 + BufDepth),
    .T            (meta_t)
  ) i_meta_buf (
    .clk_i,
    .rst_ni,
    .flush_i    (1'b0),
    .testmode_i (1'b0),
    .data_i     (meta),
    .valid_i    (meta_valid),
    .ready_o    (meta_ready),
    .data_o     (meta_buf),
    .valid_o    (meta_buf_valid),
    .ready_i    (meta_buf_ready),
    .usage_o    (/* unused */)
  );

  // Map AXI ATOPs to RI5CY AMOs.
  always_comb begin
    m2s_req.atop = '0;
    m2s_req.wdata = axi_req_i.w.data;
    // if (meta_valid && meta.atop[5:4] != axi_pkg::ATOP_NONE) begin
    //   m2s_req.atop[5] = 1'b1;
    //   if (meta.atop == axi_pkg::ATOP_ATOMICSWAP) begin
    //     m2s_req.atop[4:0] = riscv_defines::AMO_SWAP;
    //   end else begin
    //     case (meta.atop[2:0])
    //       axi_pkg::ATOP_ADD:  m2s_req.atop[4:0] = riscv_defines::AMO_ADD;
    //       axi_pkg::ATOP_CLR: begin
    //         m2s_req.atop[4:0] = riscv_defines::AMO_AND;
    //         m2s_req.wdata = ~axi_req_i.w.data;
    //       end
    //       axi_pkg::ATOP_EOR:  m2s_req.atop[4:0] = riscv_defines::AMO_XOR;
    //       axi_pkg::ATOP_SET:  m2s_req.atop[4:0] = riscv_defines::AMO_OR;
    //       axi_pkg::ATOP_SMAX: m2s_req.atop[4:0] = riscv_defines::AMO_MAX;
    //       axi_pkg::ATOP_SMIN: m2s_req.atop[4:0] = riscv_defines::AMO_MIN;
    //       axi_pkg::ATOP_UMAX: m2s_req.atop[4:0] = riscv_defines::AMO_MAXU;
    //       axi_pkg::ATOP_UMIN: m2s_req.atop[4:0] = riscv_defines::AMO_MINU;
    //     endcase
    //   end
    // end
  end
  assign m2s_req.addr = meta.addr;
  assign m2s_req.strb = axi_req_i.w.strb;
  assign m2s_req.we = meta.write;

  // Interface memory as stream.
  stream_to_mem #(
    .mem_req_t  (mem_req_t),
    .mem_resp_t (axi_data_t),
    .BufDepth   (BufDepth)
  ) i_mem2stream (
    .clk_i,
    .rst_ni,
    .req_i            (m2s_req),
    .req_valid_i      (m2s_req_valid),
    .req_ready_o      (m2s_req_ready),
    .resp_o           (m2s_resp),
    .resp_valid_o     (m2s_resp_valid),
    .resp_ready_i     (m2s_resp_ready),
    .mem_req_o        (mem_req),
    .mem_req_valid_o  (mem_req_valid),
    .mem_req_ready_i  (mem_req_ready),
    .mem_resp_i       (mem_rdata),
    .mem_resp_valid_i (mem_rvalid)
  );

  // Split single memory request to desired number of banks.
  mem2banks #(
    .AddrWidth  (AddrWidth),
    .DataWidth  (DataWidth),
    .NumBanks   (NumBanks)
  ) i_mem2banks (
    .clk_i,
    .rst_ni,
    .req_i          (mem_req_valid),
    .gnt_o          (mem_req_ready),
    .addr_i         (mem_req.addr),
    .wdata_i        (mem_req.wdata),
    .strb_i         (mem_req.strb),
    .atop_i         (mem_req.atop),
    .we_i           (mem_req.we),
    .rvalid_o       (mem_rvalid),
    .rdata_o        (mem_rdata),
    .bank_req_o     (mem_req_o),
    .bank_gnt_i     (mem_gnt_i),
    .bank_addr_o    (mem_addr_o),
    .bank_wdata_o   (mem_wdata_o),
    .bank_strb_o    (mem_strb_o),
    .bank_atop_o    (mem_atop_o),
    .bank_we_o      (mem_we_o),
    .bank_rvalid_i  (mem_rvalid_i),
    .bank_rdata_i   (mem_rdata_i)
  );

  // Join memory read data and meta data stream.
  logic mem_join_valid, mem_join_ready;
  stream_join #(
    .N_INP (2)
  ) i_join (
    .inp_valid_i  ({m2s_resp_valid, meta_buf_valid}),
    .inp_ready_o  ({m2s_resp_ready, meta_buf_ready}),
    .oup_valid_o  (mem_join_valid),
    .oup_ready_i  (mem_join_ready)
  );

  // Dynamically fork the joined stream to B and R channels.
  stream_fork_dynamic #(
    .N_OUP  (2)
  ) i_fork_dynamic (
    .clk_i,
    .rst_ni,
    .valid_i      (mem_join_valid),
    .ready_o      (mem_join_ready),
    .sel_i        ({sel_buf_b, sel_buf_r}),
    .sel_valid_i  (sel_buf_valid),
    .sel_ready_o  (sel_buf_ready),
    .valid_o      ({axi_resp_o.b_valid, axi_resp_o.r_valid}),
    .ready_i      ({axi_req_i.b_ready, axi_req_i.r_ready})
  );

  // Compose B responses.
  assign axi_resp_o.b = '{
    id: meta_buf.id,
    resp: axi_pkg::RESP_OKAY,
    user: '0
  };

  // Compose R responses.
  assign axi_resp_o.r = '{
    data: m2s_resp,
    id: meta_buf.id,
    last: meta_buf.last,
    resp: axi_pkg::RESP_OKAY,
    user: '0
  };

  // Registers
  always_ff @(posedge clk_i, negedge rst_ni) begin
    if (!rst_ni) begin
      meta_sel_q  <= 1'b0;
      sel_lock_q  <= 1'b0;
      rd_meta_q   <= '{default: '0};
      wr_meta_q   <= '{default: '0};
      r_cnt_q     <= '0;
      w_cnt_q     <= '0;
    end else begin
      meta_sel_q  <= meta_sel_d;
      sel_lock_q  <= sel_lock_d;
      rd_meta_q   <= rd_meta_d;
      wr_meta_q   <= wr_meta_d;
      r_cnt_q     <= r_cnt_d;
      w_cnt_q     <= w_cnt_d;
    end
  end

  // Assertions
  `ifndef VERILATOR
  `ifndef TARGET_SYNTHESIS
    default disable iff (!rst_ni);
    assume property (@(posedge clk_i)
        axi_req_i.ar_valid && !axi_resp_o.ar_ready |=> $stable(axi_req_i.ar))
      else $error("AR must remain stable until handshake has happened!");
    assert property (@(posedge clk_i)
        axi_resp_o.r_valid && !axi_req_i.r_ready |=> $stable(axi_resp_o.r))
      else $error("R must remain stable until handshake has happened!");
    assume property (@(posedge clk_i)
        axi_req_i.aw_valid && !axi_resp_o.aw_ready |=> $stable(axi_req_i.aw))
      else $error("AW must remain stable until handshake has happened!");
    assume property (@(posedge clk_i)
        axi_req_i.w_valid && !axi_resp_o.w_ready |=> $stable(axi_req_i.w))
      else $error("W must remain stable until handshake has happened!");
    assert property (@(posedge clk_i)
        axi_resp_o.b_valid && !axi_req_i.b_ready |=> $stable(axi_resp_o.b))
      else $error("B must remain stable until handshake has happened!");
    assert property (@(posedge clk_i) axi_req_i.ar_valid && axi_req_i.ar.len > 0 |->
        axi_req_i.ar.burst == axi_pkg::BURST_INCR)
      else $error("Non-incrementing bursts are not supported!");
    assert property (@(posedge clk_i) axi_req_i.aw_valid && axi_req_i.aw.len > 0 |->
        axi_req_i.aw.burst == axi_pkg::BURST_INCR)
      else $error("Non-incrementing bursts are not supported!");
    assert property (@(posedge clk_i) meta_valid && meta.atop != '0 |-> meta.write)
      else $warning("Unexpected atomic operation on read.");
  `endif
  `endif

endmodule

/*verilator lint_off DECLFILENAME*/

`include "axi/assign.svh"
`include "axi/typedef.svh"
// Interface wrapper for axi2mem
module axi2mem_wrap #(
  parameter int unsigned AddrWidth = 0,
  parameter int unsigned DataWidth = 0,
  parameter int unsigned IdWidth = 0,
  parameter int unsigned UserWidth = 0,
  parameter int unsigned NumBanks = 0,
  parameter int unsigned BufDepth = 1,  // depth of memory response buffer
  // Dependent parameters, do not override.
  localparam type addr_t = logic [AddrWidth-1:0],
  localparam type mem_atop_t = logic [5:0],
  localparam type mem_data_t = logic [DataWidth/NumBanks-1:0],
  localparam type mem_strb_t = logic [DataWidth/NumBanks/8-1:0]
) (
  input  logic                      clk_i,
  input  logic                      rst_ni,

  output logic                      busy_o,

  AXI_BUS.Slave                     slv,

  output logic      [NumBanks-1:0]  mem_req_o,
  input  logic      [NumBanks-1:0]  mem_gnt_i,
  output addr_t     [NumBanks-1:0]  mem_addr_o,   // byte address
  output mem_data_t [NumBanks-1:0]  mem_wdata_o,  // write data
  output mem_strb_t [NumBanks-1:0]  mem_strb_o,   // byte-wise strobe
  output mem_atop_t [NumBanks-1:0]  mem_atop_o,   // atomic operation
  output logic      [NumBanks-1:0]  mem_we_o,     // write enable
  input  logic      [NumBanks-1:0]  mem_rvalid_i, // response valid
  input  mem_data_t [NumBanks-1:0]  mem_rdata_i   // read data
);
  typedef logic [IdWidth-1:0]     id_t;
  typedef logic [DataWidth-1:0]   data_t;
  typedef logic [DataWidth/8-1:0] strb_t;
  typedef logic [UserWidth-1:0]   user_t;
  `AXI_TYPEDEF_AW_CHAN_T ( aw_chan_t, addr_t, id_t,         user_t);
  `AXI_TYPEDEF_W_CHAN_T  (  w_chan_t, data_t,       strb_t, user_t);
  `AXI_TYPEDEF_B_CHAN_T  (  b_chan_t,         id_t,         user_t);
  `AXI_TYPEDEF_AR_CHAN_T ( ar_chan_t, addr_t, id_t,         user_t);
  `AXI_TYPEDEF_R_CHAN_T  (  r_chan_t, data_t, id_t,         user_t);
  `AXI_TYPEDEF_REQ_T     (     req_t, aw_chan_t, w_chan_t, ar_chan_t);
  `AXI_TYPEDEF_RESP_T    (    resp_t,  b_chan_t, r_chan_t);
  req_t   req;
  resp_t  resp;
  `AXI_ASSIGN_TO_REQ    (req, slv);
  `AXI_ASSIGN_FROM_RESP (slv, resp);
  axi2mem #(
    .axi_req_t  (req_t),
    .axi_resp_t (resp_t),
    .AddrWidth  (AddrWidth),
    .DataWidth  (DataWidth),
    .IdWidth    (IdWidth),
    .NumBanks   (NumBanks),
    .BufDepth   (BufDepth)
  ) i_axi2mem (
    .clk_i,
    .rst_ni,
    .busy_o,
    .axi_req_i  (req),
    .axi_resp_o (resp),
    .mem_req_o,
    .mem_gnt_i,
    .mem_addr_o,
    .mem_wdata_o,
    .mem_strb_o,
    .mem_atop_o,
    .mem_we_o,
    .mem_rvalid_i,
    .mem_rdata_i
  );
endmodule


// Split memory access over multiple parallel banks, where each bank has its own req/gnt request and
// valid response direction.
module mem2banks #(
  parameter int unsigned AddrWidth = 0, // input address width
  parameter int unsigned DataWidth = 0, // input data width, must be a power of two
  parameter int unsigned NumBanks = 0,  // number of banks at output, must evenly divide the data
                                        // width
  // Dependent parameters, do not override.
  localparam type addr_t = logic [AddrWidth-1:0],
  localparam type atop_t = logic [5:0],
  localparam type inp_data_t = logic [DataWidth-1:0],
  localparam type inp_strb_t = logic [DataWidth/8-1:0],
  localparam type oup_data_t = logic [DataWidth/NumBanks-1:0],
  localparam type oup_strb_t = logic [DataWidth/NumBanks/8-1:0]
) (
  input  logic                      clk_i,
  input  logic                      rst_ni,

  input  logic                      req_i,
  output logic                      gnt_o,
  input  addr_t                     addr_i,
  input  inp_data_t                 wdata_i,
  input  inp_strb_t                 strb_i,
  input  atop_t                     atop_i,
  input  logic                      we_i,
  output logic                      rvalid_o,
  output inp_data_t                 rdata_o,

  output logic      [NumBanks-1:0]  bank_req_o,
  input  logic      [NumBanks-1:0]  bank_gnt_i,
  output addr_t     [NumBanks-1:0]  bank_addr_o,
  output oup_data_t [NumBanks-1:0]  bank_wdata_o,
  output oup_strb_t [NumBanks-1:0]  bank_strb_o,
  output atop_t     [NumBanks-1:0]  bank_atop_o,
  output logic      [NumBanks-1:0]  bank_we_o,
  input  logic      [NumBanks-1:0]  bank_rvalid_i,
  input  oup_data_t [NumBanks-1:0]  bank_rdata_i
);

  localparam DataBytes = $bits(inp_strb_t);
  localparam BitsPerBank  = $bits(oup_data_t);
  localparam BytesPerBank = $bits(oup_strb_t);

  typedef struct packed {
    addr_t      addr;
    oup_data_t  wdata;
    oup_strb_t  strb;
    atop_t      atop;
    logic       we;
  } req_t;

  logic                 req_valid;
  logic [NumBanks-1:0]              req_ready,
                        resp_valid, resp_ready;
  req_t [NumBanks-1:0]  bank_req,
                        bank_oup;

  function automatic addr_t align_addr(input addr_t addr);
    return (addr >> $clog2(DataBytes)) << $clog2(DataBytes);
  endfunction

  // Handle requests.
  assign req_valid = req_i & gnt_o;
  for (genvar i = 0; i < NumBanks; i++) begin : gen_reqs
    assign bank_req[i].addr   = align_addr(addr_i) + i * BytesPerBank;
    assign bank_req[i].wdata  = wdata_i[i*BitsPerBank+:BitsPerBank];
    assign bank_req[i].strb   = strb_i[i*BytesPerBank+:BytesPerBank];
    assign bank_req[i].atop   = atop_i;
    assign bank_req[i].we     = we_i;
    fall_through_register #(
      .T  (req_t)
    ) i_ft_reg (
      .clk_i,
      .rst_ni,
      .clr_i      (1'b0),
      .testmode_i (1'b0),
      .valid_i    (req_valid),
      .ready_o    (req_ready[i]),
      .data_i     (bank_req[i]),
      .valid_o    (bank_req_o[i]),
      .ready_i    (bank_gnt_i[i]),
      .data_o     (bank_oup[i])
    );
    assign bank_addr_o[i]   = bank_oup[i].addr;
    assign bank_wdata_o[i]  = bank_oup[i].wdata;
    assign bank_strb_o[i]   = bank_oup[i].strb;
    assign bank_atop_o[i]   = bank_oup[i].atop;
    assign bank_we_o[i]     = bank_oup[i].we;
  end

  // Grant output if all our requests have been granted.
  assign gnt_o = (&req_ready) & (&resp_ready);

  // Handle responses.
  for (genvar i = 0; i < NumBanks; i++) begin : gen_resp_regs
    fall_through_register #(
      .T  (oup_data_t)
    ) i_ft_reg (
      .clk_i,
      .rst_ni,
      .clr_i      (1'b0),
      .testmode_i (1'b0),
      .valid_i    (bank_rvalid_i[i]),
      .ready_o    (resp_ready[i]),
      .data_i     (bank_rdata_i[i]),
      .data_o     (rdata_o[i*BitsPerBank+:BitsPerBank]),
      .ready_i    (rvalid_o),
      .valid_o    (resp_valid[i])
    );
  end
  assign rvalid_o = &resp_valid;

  // Assertions
  `ifndef VERILATOR
  `ifndef TARGET_SYNTHESIS
    initial begin
      assume (DataWidth != 0 && (DataWidth & (DataWidth - 1)) == 0)
        else $fatal(1, "Data width must be a power of two!");
      assume (DataWidth % NumBanks == 0)
        else $fatal(1, "Data width must be evenly divisible over banks!");
      assume ((DataWidth / NumBanks) % 8 == 0)
        else $fatal(1, "Data width of each bank must be divisible into 8-bit bytes!");
    end
  `endif
  `endif

endmodule