serpent_icache.sv 25 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License.  You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Author: Michael Schaffner <schaffner@iis.ee.ethz.ch>, ETH Zurich
// Date: 15.08.2018
// Description: Instruction cache that is compatible with openpiton.
//
// Some notes:
//
// 1) refills always have the size of one cache line, except for accesses to the I/O region, which is mapped
//    to the top half of the physical address space (bit 39 = 1). the data width of the interface has the width
//    of one cache line, and hence the ifills can be transferred in a single cycle. note that the ifills must be
//    consumed unconditionally.
//
// 2) instruction fetches are always assumed to be aligned to 32bit (lower 2 bits are ignored)
//
// 3) NC accesses to I/O space are expected to return 32bit from memory.
//

import ariane_pkg::*;
import serpent_cache_pkg::*;

module serpent_icache  #(
    parameter logic [DCACHE_ID_WIDTH-1:0] RdTxId             = 0,                // ID to be used for read transactions
    parameter bit                         Axi64BitCompliant  = 1'b0,             // set this to 1 when using in conjunction with 64bit AXI bus adapter
    parameter logic [63:0]                CachedAddrBeg      = 64'h00_8000_0000, // begin of cached region
    parameter logic [63:0]                CachedAddrEnd      = 64'h80_0000_0000  // end of cached region
) (
    input  logic                      clk_i,
    input  logic                      rst_ni,

    input  logic                      flush_i,              // flush the icache, flush and kill have to be asserted together
    input  logic                      en_i,                 // enable icache
    output logic                      miss_o,               // to performance counter
    // address translation requests
    input  icache_areq_i_t            areq_i,
    output icache_areq_o_t            areq_o,
    // data requests
    input  icache_dreq_i_t            dreq_i,
    output icache_dreq_o_t            dreq_o,
    // refill port
    input  logic                      mem_rtrn_vld_i,
    input  icache_rtrn_t              mem_rtrn_i,
    output logic                      mem_data_req_o,
    input  logic                      mem_data_ack_i,
    output icache_req_t               mem_data_o
);

    // signals
    logic                                 cache_en_d, cache_en_q;       // cache is enabled
    logic [63:0]                          vaddr_d, vaddr_q;
    logic                                 paddr_is_nc;                  // asserted if physical address is non-cacheable
    logic [ICACHE_SET_ASSOC-1:0]          cl_hit;                       // hit from tag compare
    logic                                 cache_rden;                   // triggers cache lookup
    logic                                 cache_wren;                   // triggers write to cacheline
    logic                                 cmp_en_d, cmp_en_q;           // enable tag comparison in next cycle. used to cut long path due to NC signal.
    logic                                 flush_d, flush_q;             // used to register and signal pending flushes

    // replacement strategy
    logic                                 update_lfsr;                  // shift the LFSR
    logic [$clog2(ICACHE_SET_ASSOC)-1:0]  inv_way;                      // first non-valid encountered
    logic [$clog2(ICACHE_SET_ASSOC)-1:0]  rnd_way;                      // random index for replacement
    logic [$clog2(ICACHE_SET_ASSOC)-1:0]  repl_way;                     // way to replace
    logic [ICACHE_SET_ASSOC-1:0]          repl_way_oh_d, repl_way_oh_q; // way to replace (onehot)
    logic                                 all_ways_valid;               // we need to switch repl strategy since all are valid

    // invalidations / flushing
    logic                                 inv_en;                       // incoming invalidations
    logic                                 flush_en, flush_done;         // used to flush cache entries
    logic [ICACHE_CL_IDX_WIDTH-1:0]       flush_cnt_d, flush_cnt_q;     // used to flush cache entries

    // mem arrays
    logic                                 cl_we;                        // write enable to memory array
    logic [ICACHE_SET_ASSOC-1:0]          cl_req;                       // request to memory array
    logic [ICACHE_CL_IDX_WIDTH-1:0]       cl_index;                     // this is a cache-line index, to memory array
    logic [ICACHE_OFFSET_WIDTH-1:0]       cl_offset_d, cl_offset_q;     // offset in cache line
    logic [ICACHE_TAG_WIDTH-1:0]          cl_tag_d, cl_tag_q;           // this is the cache tag
    logic [ICACHE_TAG_WIDTH-1:0]          cl_tag_rdata [ICACHE_SET_ASSOC-1:0]; // these are the tags coming from the tagmem
    logic [ICACHE_LINE_WIDTH-1:0]         cl_rdata     [ICACHE_SET_ASSOC-1:0]; // these are the cachelines coming from the cache
    logic [ICACHE_SET_ASSOC-1:0][FETCH_WIDTH-1:0]cl_sel;                // selected word from each cacheline
    logic [ICACHE_SET_ASSOC-1:0]          vld_req;                      // bit enable for valid regs
    logic                                 vld_we;                       // valid bits write enable
    logic [ICACHE_SET_ASSOC-1:0]          vld_wdata;                    // valid bits to write
    logic [ICACHE_SET_ASSOC-1:0]          vld_rdata;                    // valid bits coming from valid regs
    logic [ICACHE_CL_IDX_WIDTH-1:0]       vld_addr;                     // valid bit

    // cpmtroller FSM
    typedef enum logic[2:0] {FLUSH, IDLE, READ, MISS, TLB_MISS, KILL_ATRANS, KILL_MISS} state_t;
    state_t state_d, state_q;

///////////////////////////////////////////////////////
// address -> cl_index mapping, interface plumbing
///////////////////////////////////////////////////////

    // extract tag from physical address, check if NC
    assign cl_tag_d  = (areq_i.fetch_valid) ? areq_i.fetch_paddr[ICACHE_TAG_WIDTH+ICACHE_INDEX_WIDTH-1:ICACHE_INDEX_WIDTH] : cl_tag_q;

    // noncacheable if request goes to I/O space, or if cache is disabled
    assign paddr_is_nc = (cl_tag_d <  (CachedAddrBeg>>ICACHE_INDEX_WIDTH)) ||
                         (cl_tag_d >= (CachedAddrEnd>>ICACHE_INDEX_WIDTH)) ||
                         (!cache_en_q);

    // pass exception through
    assign dreq_o.ex = areq_i.fetch_exception;

    // latch this in case we have to stall later on
    // make sure this is 32bit aligned
    assign vaddr_d = (dreq_o.ready & dreq_i.req) ? dreq_i.vaddr : vaddr_q;
    assign areq_o.fetch_vaddr = {vaddr_q>>2, 2'b0};

    // split virtual address into index and offset to address cache arrays
    assign cl_index    = vaddr_d[ICACHE_INDEX_WIDTH-1:ICACHE_OFFSET_WIDTH];

    generate
        if(Axi64BitCompliant)begin
            // if we generate a noncacheable access, the word will be at offset 0 or 4 in the cl coming from memory
            assign cl_offset_d = ( dreq_o.ready & dreq_i.req)      ? {dreq_i.vaddr>>2, 2'b0} :
                                 ( paddr_is_nc  & mem_data_req_o ) ? cl_offset_q[2]<<2 : // needed since we transfer 32bit over a 64bit AXI bus in this case
                                                                     cl_offset_q;
            // request word address instead of cl address in case of NC access
            assign mem_data_o.paddr = (paddr_is_nc) ? {cl_tag_d, vaddr_q[ICACHE_INDEX_WIDTH-1:3], 3'b0} :                                         // align to 32bit
                                                      {cl_tag_d, vaddr_q[ICACHE_INDEX_WIDTH-1:ICACHE_OFFSET_WIDTH], {ICACHE_OFFSET_WIDTH{1'b0}}}; // align to cl
        end
        if(!Axi64BitCompliant)begin
            // icache fills are either cachelines or 4byte fills, depending on whether they go to the Piton I/O space or not.
            // since the piton cache system replicates the data, we can always index the full CL
            assign cl_offset_d = ( dreq_o.ready & dreq_i.req)      ? {dreq_i.vaddr>>2, 2'b0} :
                                                                     cl_offset_q;

            // request word address instead of cl address in case of NC access
            assign mem_data_o.paddr = (paddr_is_nc) ? {cl_tag_d, vaddr_q[ICACHE_INDEX_WIDTH-1:2], 2'b0} :                                         // align to 32bit
                                                      {cl_tag_d, vaddr_q[ICACHE_INDEX_WIDTH-1:ICACHE_OFFSET_WIDTH], {ICACHE_OFFSET_WIDTH{1'b0}}}; // align to cl
        end
    endgenerate

    assign mem_data_o.tid   = RdTxId;

    assign mem_data_o.nc    = paddr_is_nc;
    // way that is being replaced
    assign mem_data_o.way   = repl_way;
    assign dreq_o.vaddr     = vaddr_q;

///////////////////////////////////////////////////////
// main control logic
///////////////////////////////////////////////////////

    always_comb begin : p_fsm
        // default assignment
        state_d      = state_q;
        cache_en_d   = cache_en_q & en_i;// disabling the cache is always possible, enable needs to go via flush
        flush_en     = 1'b0;
        cmp_en_d     = 1'b0;
        cache_rden   = 1'b0;
        cache_wren   = 1'b0;
        inv_en       = 1'b0;
        flush_d      = flush_q | flush_i; // register incoming flush

        // interfaces
        dreq_o.ready     = 1'b0;
        areq_o.fetch_req = 1'b0;
        dreq_o.valid     = 1'b0;
        mem_data_req_o   = 1'b0;
        // performance counter
        miss_o           = 1'b0;

        // handle invalidations unconditionally
        // note: invald are mutually exclusive with
        // ifills, since both arrive over the same IF
        // however, we need to make sure below that we
        // do not trigger a cache readout at the same time...
        if (mem_rtrn_vld_i && mem_rtrn_i.rtype == ICACHE_INV_REQ) begin
            inv_en = 1'b1;
        end

        unique case (state_q)
            //////////////////////////////////
            // this clears all valid bits
            FLUSH: begin
                flush_en = 1'b1;
                if (flush_done) begin
                    state_d = IDLE;
                    flush_d = 1'b0;
                    // if the cache was not enabled set this
                    cache_en_d = en_i;
                end
            end
            //////////////////////////////////
            // wait for an incoming request
            IDLE: begin
                // only enable tag comparison if cache is enabled
                cmp_en_d = cache_en_q;

                // handle pending flushes, or perform cache clear upon enable
                if (flush_d | (en_i & ~cache_en_q)) begin
                    state_d    = FLUSH;
                // wait for incoming requests
                end else begin
                    // mem requests are for sure invals here
                    if (~mem_rtrn_vld_i) begin
                        dreq_o.ready = 1'b1;
                        // we have a new request
                        if (dreq_i.req) begin
                            cache_rden       = 1'b1;
                            state_d          = READ;
                        end
                    end
                    if (dreq_i.kill_s1) begin
                        state_d = IDLE;
                    end
                end
            end
            //////////////////////////////////
            // check whether we have a hit
            // in case the cache is disabled,
            // or in case the address is NC, we
            // reuse the miss mechanism to handle
            // the request
            READ: begin
                state_d          = TLB_MISS;
                areq_o.fetch_req = '1;
                // only enable tag comparison if cache is enabled
                cmp_en_d    = cache_en_q;
                // readout speculatively
                cache_rden  = cache_en_q;

                if (areq_i.fetch_valid) begin
                    // check if we have to flush
                    if (flush_d) begin
                        state_d  = IDLE;
                    // we have a hit or an exception output valid result
                    end else if ((|cl_hit & cache_en_q) | areq_i.fetch_exception.valid) begin
                        dreq_o.valid     = ~dreq_i.kill_s2;// just don't output in this case
                        state_d          = IDLE;

                        // we can accept another request
                        // and stay here, but only if no inval is coming in
                        // note: we are not expecting ifill return packets here...
                        if (~mem_rtrn_vld_i) begin
                            dreq_o.ready     = 1'b1;
                            if (dreq_i.req) begin
                                state_d          = READ;
                            end
                        end
                        // if a request is being killed at this stage,
                        // we have to bail out and wait for the address translation to complete
                        if (dreq_i.kill_s1) begin
                            state_d = IDLE;
                        end
                    // we have a miss / NC transaction
                    end else if (dreq_i.kill_s2) begin
                        state_d = IDLE;
                    end else begin
                        cmp_en_d = 1'b0;
                        // only count this as a miss if the cache is enabled, and
                        // the address is cacheable
                        // send out ifill request
                        mem_data_req_o = 1'b1;
                        if (mem_data_ack_i) begin
                            miss_o         = (~paddr_is_nc);
                            state_d        = MISS;
                        end
                    end
                // bail out if this request is being killed (and we missed on the TLB)
                end else if (dreq_i.kill_s2 | flush_d) begin
                    state_d  = KILL_ATRANS;
                end
            end
            //////////////////////////////////
            // wait until the memory transaction
            // returns. do not write to memory
            // if the nc bit is set.
            TLB_MISS: begin
                areq_o.fetch_req = '1;
                // only enable tag comparison if cache is enabled
                cmp_en_d = cache_en_q;
                // readout speculatively
                cache_rden = cache_en_q;

                if (areq_i.fetch_valid) begin
                    // check if we have to kill this request
                    if (dreq_i.kill_s2 | flush_d) begin
                        state_d  = IDLE;
                    // check whether we got an exception
                    end else if (areq_i.fetch_exception.valid) begin
                        dreq_o.valid = 1'b1;
                        state_d      = IDLE;
                    // re-trigger cache readout for tag comparison and cache line selection
                    // but if we got an invalidation, we have to wait another cycle
                    end else if (~mem_rtrn_vld_i) begin
                        state_d          = READ;
                    end
                // bail out if this request is being killed
                end else if (dreq_i.kill_s2 | flush_d) begin
                    state_d  = KILL_ATRANS;
                end
            end
            //////////////////////////////////
            // wait until the memory transaction
            // returns. do not write to memory
            // if the nc bit is set.
            MISS: begin
                // note: this is mutually exclusive with ICACHE_INV_REQ,
                // so we do not have to check for invals here
                if (mem_rtrn_vld_i && mem_rtrn_i.rtype == ICACHE_IFILL_ACK) begin
                    state_d      = IDLE;
                    // only return data if request is not being killed
                    if (~(dreq_i.kill_s2 | flush_d)) begin
                        dreq_o.valid = 1'b1;
                        // only write to cache if this address is cacheable
                        cache_wren   = ~paddr_is_nc;
                    end
                // bail out if this request is being killed
                end else if (dreq_i.kill_s2 | flush_d) begin
                    state_d  = KILL_MISS;
                end
            end
            //////////////////////////////////
            // killed address translation,
            // wait until paddr is valid, and go
            // back to idle
            KILL_ATRANS: begin
                areq_o.fetch_req = '1;
                if (areq_i.fetch_valid) begin
                    state_d      = IDLE;
                end
            end
            //////////////////////////////////
            // killed miss,
            // wait until memory responds and
            // go back to idle
            KILL_MISS: begin
                if (mem_rtrn_vld_i && mem_rtrn_i.rtype == ICACHE_IFILL_ACK) begin
                    state_d      = IDLE;
                end
            end
            default: begin
                // we should never get here
                state_d = FLUSH;
            end
        endcase // state_q
    end

///////////////////////////////////////////////////////
// valid bit invalidation and replacement strategy
///////////////////////////////////////////////////////

    // note: it cannot happen that we get an invalidation + a cl replacement
    // in the same cycle as these requests arrive via the same interface
    // flushes take precedence over invalidations (it is ok if we ignore
    // the inval since the cache is cleared anyway)

    assign flush_cnt_d = (flush_done) ? '0               :
                         (flush_en)   ?  flush_cnt_q + 1 :
                                         flush_cnt_q;

    assign flush_done  = (flush_cnt_q==(ICACHE_NUM_WORDS-1));

    // invalidation/clearing address
    // flushing takes precedence over invals
    assign vld_addr = (flush_en)       ? flush_cnt_q        :
                      (inv_en)         ? mem_rtrn_i.inv.idx[ICACHE_INDEX_WIDTH-1:ICACHE_OFFSET_WIDTH] :
                                         cl_index;

    assign vld_req  = (flush_en | cache_rden)         ? '1                                    :
                      (mem_rtrn_i.inv.all & inv_en)   ? '1                                    :
                      (mem_rtrn_i.inv.vld & inv_en)   ? icache_way_bin2oh(mem_rtrn_i.inv.way) :
                                                        repl_way_oh_q;

    assign vld_wdata = (cache_wren) ? '1 : '0;

    assign vld_we    = (cache_wren | inv_en | flush_en);
    // assign vld_req   = (vld_we | cache_rden);


    // chose random replacement if all are valid
    assign update_lfsr   = cache_wren & all_ways_valid;
    assign repl_way      = (all_ways_valid) ? rnd_way : inv_way;
    assign repl_way_oh_d = (cmp_en_q) ? icache_way_bin2oh(repl_way) : repl_way_oh_q;

    // enable signals for memory arrays
    assign cl_req   = (cache_rden) ? '1            :
                      (cache_wren) ? repl_way_oh_q :
                                     '0;
    assign cl_we    = cache_wren;


    // find invalid cache line
    lzc #(
        .WIDTH ( ICACHE_SET_ASSOC )
    ) i_lzc (
        .in_i    ( ~vld_rdata     ),
        .cnt_o   ( inv_way        ),
        .empty_o ( all_ways_valid )
    );

    // generate random cacheline index
    lfsr_8bit #(
        .WIDTH (ICACHE_SET_ASSOC)
    ) i_lfsr (
        .clk_i          ( clk_i       ),
        .rst_ni         ( rst_ni      ),
        .en_i           ( update_lfsr ),
        .refill_way_oh  (             ),
        .refill_way_bin ( rnd_way     )
    );


///////////////////////////////////////////////////////
// tag comparison, hit generation
///////////////////////////////////////////////////////

    logic [$clog2(ICACHE_SET_ASSOC)-1:0] hit_idx;

    generate
        for (genvar i=0;i<ICACHE_SET_ASSOC;i++) begin : g_tag_cmpsel
            assign cl_hit[i] = (cl_tag_rdata[i] == cl_tag_d) & vld_rdata[i];
            assign cl_sel[i] = cl_rdata[i][{cl_offset_q,3'b0} +: FETCH_WIDTH];
        end
    endgenerate

    lzc #(
        .WIDTH ( ICACHE_SET_ASSOC )
    ) i_lzc_hit (
        .in_i    ( cl_hit  ),
        .cnt_o   ( hit_idx ),
        .empty_o (         )
    );

    assign dreq_o.data = ( cmp_en_q ) ? cl_sel[hit_idx] :
                                        mem_rtrn_i.data[{cl_offset_q,3'b0} +: FETCH_WIDTH];

///////////////////////////////////////////////////////
// memory arrays and regs
///////////////////////////////////////////////////////


    logic [ICACHE_TAG_WIDTH:0] cl_tag_valid_rdata [ICACHE_SET_ASSOC-1:0];

    generate
        for (genvar i = 0; i < ICACHE_SET_ASSOC; i++) begin : g_sram
            // Tag RAM
            sram #(
                // tag + valid bit
                .DATA_WIDTH ( ICACHE_TAG_WIDTH+1 ),
                .NUM_WORDS  ( ICACHE_NUM_WORDS   )
            ) tag_sram (
                .clk_i     ( clk_i                    ),
                .rst_ni    ( rst_ni                   ),
                .req_i     ( vld_req[i]               ),
                .we_i      ( vld_we                   ),
                .addr_i    ( vld_addr                 ),
                // we can always use the saved tag here since it takes a
                // couple of cycle until we write to the cache upon a miss
                .wdata_i   ( {vld_wdata[i], cl_tag_q} ),
                .be_i      ( '1                       ),
                .rdata_o   ( cl_tag_valid_rdata[i]    )
            );

            assign cl_tag_rdata[i] = cl_tag_valid_rdata[i][ICACHE_TAG_WIDTH-1:0];
            assign vld_rdata[i]    = cl_tag_valid_rdata[i][ICACHE_TAG_WIDTH];

            // Data RAM
            sram #(
                .DATA_WIDTH ( ICACHE_LINE_WIDTH ),
                .NUM_WORDS  ( ICACHE_NUM_WORDS  )
            ) data_sram (
                .clk_i     ( clk_i               ),
                .rst_ni    ( rst_ni              ),
                .req_i     ( cl_req[i]           ),
                .we_i      ( cl_we               ),
                .addr_i    ( cl_index            ),
                .wdata_i   ( mem_rtrn_i.data     ),
                .be_i      ( '1                  ),
                .rdata_o   ( cl_rdata[i]         )
            );
        end
    endgenerate

    always_ff @(posedge clk_i or negedge rst_ni) begin : p_regs
        if(~rst_ni) begin
            cl_tag_q      <= '0;
            flush_cnt_q   <= '0;
            vaddr_q       <= '0;
            cmp_en_q      <= '0;
            cache_en_q    <= '0;
            flush_q       <= '0;
            state_q       <= IDLE;
            cl_offset_q   <= '0;
            repl_way_oh_q <= '0;
        end else begin
            cl_tag_q      <= cl_tag_d;
            flush_cnt_q   <= flush_cnt_d;
            vaddr_q       <= vaddr_d;
            cmp_en_q      <= cmp_en_d;
            cache_en_q    <= cache_en_d;
            flush_q       <= flush_d;
            state_q       <= state_d;
            cl_offset_q   <= cl_offset_d;
            repl_way_oh_q <= repl_way_oh_d;
        end
    end

///////////////////////////////////////////////////////
// assertions
///////////////////////////////////////////////////////

//pragma translate_off
`ifndef VERILATOR
  noncacheable0: assert property (
      @(posedge clk_i) disable iff (~rst_ni) paddr_is_nc |-> mem_rtrn_vld_i |-> state_q != KILL_MISS |-> mem_rtrn_i.rtype == ICACHE_IFILL_ACK |-> mem_rtrn_i.nc)
         else $fatal(1,"[l1 icache] NC paddr implies nc ifill");

  noncacheable1: assert property (
      @(posedge clk_i) disable iff (~rst_ni) mem_rtrn_vld_i |-> state_q != KILL_MISS |-> mem_rtrn_i.f4b |-> mem_rtrn_i.nc)
         else $fatal(1,"[l1 icache] 4b ifill implies NC");

  repl_inval0: assert property (
      @(posedge clk_i) disable iff (~rst_ni) cache_wren |-> ~(mem_rtrn_i.inv.all | mem_rtrn_i.inv.vld))
         else $fatal(1,"[l1 icache] cannot replace cacheline and invalidate cacheline simultaneously");

  repl_inval1: assert property (
      @(posedge clk_i) disable iff (~rst_ni) (mem_rtrn_i.inv.all | mem_rtrn_i.inv.vld) |-> ~cache_wren)
         else $fatal(1,"[l1 icache] cannot replace cacheline and invalidate cacheline simultaneously");

  invalid_state: assert property (
      @(posedge clk_i) disable iff (~rst_ni) (state_q inside {FLUSH, IDLE, READ, MISS, TLB_MISS, KILL_ATRANS, KILL_MISS}))
         else $fatal(1,"[l1 icache] fsm reached an invalid state");

  hot1: assert property (
      @(posedge clk_i) disable iff (~rst_ni) (~inv_en) |=> cmp_en_q |-> $onehot0(cl_hit))
         else $fatal(1,"[l1 icache] cl_hit signal must be hot1");

   initial begin
      // assert wrong parameterizations
      assert (ICACHE_INDEX_WIDTH<=12)
        else $fatal(1,"[l1 icache] cache index width can be maximum 12bit since VM uses 4kB pages");
   end
`endif
//pragma translate_on

endmodule // serpent_icache