environment_os.py 17.9 KB
Newer Older
Dinple committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# coding=utf-8
# Copyright 2021 The Circuit Training Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Circuit training Environmnet with gin config."""

import datetime
import math
import os
from typing import Any, Callable, Dict, Text, Tuple, Optional

from absl import logging
from Plc_client import coordinate_descent_placer as cd_placer
from Plc_client import observation_config
from Plc_client import observation_extractor_os as observation_extractor
from Plc_client import placement_util_os as placement_util
from Plc_client import plc_client as plc_client
from Plc_client import plc_client_os as plc_client_os
import gin
import gym
import numpy as np
import tensorflow as tf
Dinple committed
33
from inspect import currentframe, getframeinfo
Dinple committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
# from tf_agents.environments import suite_gym
# from tf_agents.environments import wrappers

ObsType = Dict[Text, np.ndarray]
InfoType = Dict[Text, float]

class InfeasibleActionError(ValueError):
  """An infeasible action were passed to the env."""

  def __init__(self, action, mask):
    """Initialize an infeasible action error.

    Args:
      action: Infeasible action that was performed.
      mask: The mask associated with the current observation. mask[action] is
        `0` for infeasible actions.
    """
    ValueError.__init__(self, action, mask)
    self.action = action
    self.mask = mask

  def __str__(self):
    return 'Infeasible action (%s) when the mask is (%s)' % (self.action,
                                                             self.mask)


@gin.configurable
def cost_info_function(
    plc: plc_client.PlacementCost,
    done: bool,
    wirelength_weight: float = 1.0,
    density_weight: float = 0.5,
    congestion_weight: float = 0.5) -> Tuple[float, Dict[Text, float]]:
  """Returns the RL cost and info.

  Args:
    plc: Placement cost object.
    done: Set if it is the terminal step.
    wirelength_weight:  Weight of wirelength in the reward function.
    density_weight: Weight of density in the reward function.
    congestion_weight: Weight of congestion in the reward function used only for
      legalizing the placement in greedy std cell placer.

  Returns:
    The RL cost.

  Raises:
    ValueError: When the cost mode is not supported.

  Notes: we found the default congestion and density weights more stable.
  """
  proxy_cost = 0.0

  if not done:
    return proxy_cost, {
        'wirelength': -1.0,
        'congestion': -1.0,
        'density': -1.0,
    }

  wirelength = -1.0
  congestion = -1.0
  density = -1.0

  if wirelength_weight > 0.0:
    wirelength = plc.get_cost()
    proxy_cost += wirelength_weight * wirelength

  if congestion_weight > 0.0:
    congestion = plc.get_congestion_cost()
    proxy_cost += congestion_weight * congestion

  if density_weight > 0.0:
    density = plc.get_density_cost()
    proxy_cost += density_weight * density

  info = {
      'wirelength': wirelength,
      'congestion': congestion,
      'density': density,
  }

  return proxy_cost, info


@gin.configurable
class CircuitEnv(object):
  """Defines the CircuitEnv class."""

  INFEASIBLE_REWARD = -1.0

  def __init__(
      self,
Dinple committed
127
      _plc_client = None,
Dinple committed
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
      netlist_file: Text = '',
      init_placement: Text = '',
      _plc = None,
      create_placement_cost_fn: Callable[
          ..., plc_client.PlacementCost] = placement_util.create_placement_cost,
      std_cell_placer_mode: Text = 'fd',
      cost_info_fn: Callable[[plc_client.PlacementCost, bool],
                             Tuple[float, Dict[Text,
                                               float]]] = cost_info_function,
      global_seed: int = 0,
      is_eval: bool = False,
      save_best_cost: bool = False,
      output_plc_file: Text = '',
      make_soft_macros_square: bool = True,
      cd_finetune: bool = False,
      cd_plc_file: Text = 'ppo_cd_placement.plc',
      train_step: Optional[tf.Variable] = None,
      unplace_all_nodes_in_init: bool = True):
    """Creates a CircuitEnv.

    Args:
      netlist_file: Path to the input netlist file.
      init_placement: Path to the input inital placement file, used to read grid
        and canas size.
      create_placement_cost_fn: A function that given the netlist and initial
        placement file create the placement_cost object.
      std_cell_placer_mode: Options for fast std cells placement: `fd` (uses the
        force-directed algorithm).
      cost_info_fn: The cost function that given the plc object returns the RL
        cost.
      global_seed: Global seed for initializing env features. This seed should
        be the same across actors. Not used currently.
      is_eval: If set, save the final placement in output_dir.
      save_best_cost: Boolean, if set, saves the palcement if its cost is better
        than the previously saved palcement.
      output_plc_file: The path to save the final placement.
      make_soft_macros_square: If True, make the shape of soft macros square
        before using analytical std cell placers like FD.
      cd_finetune: If True, runs coordinate descent to finetune macro
        orientations. Supposed to run in eval only, not training.
      cd_plc_file: Name of the CD fine-tuned plc file, the file will be save in
        the same dir as output_plc_file
      train_step: A tf.Variable indicating the training step, only used for
        saving plc files in the evaluation.
      unplace_all_nodes_in_init: Unplace all nodes after initialization.
    """
    del global_seed
    if not netlist_file:
      raise ValueError('netlist_file must be provided.')

    self.netlist_file = netlist_file
    self._std_cell_placer_mode = std_cell_placer_mode
    self._cost_info_fn = cost_info_fn
    self._is_eval = is_eval
    self._save_best_cost = save_best_cost
    self._output_plc_file = output_plc_file
    self._output_plc_dir = os.path.dirname(output_plc_file)
    self._make_soft_macros_square = make_soft_macros_square
    self._cd_finetune = cd_finetune
    self._cd_plc_file = cd_plc_file
    self._train_step = train_step

    self._plc = create_placement_cost_fn(plc_client=_plc,
        netlist_file=netlist_file, init_placement=init_placement)

    # We call ObservationExtractor before unplace_all_nodes, so we use the
    # inital placement in the static features (location_x and location_y).
    # This results in better placements.
    self._observation_config = observation_config.ObservationConfig()
    self._observation_extractor = observation_extractor.ObservationExtractor(
        plc=self._plc)

Dinple committed
200
    # print(getframeinfo(currentframe()).lineno, '\n', np.array(self._plc.get_node_mask(13333)).reshape(35,33))
Dinple committed
201 202 203 204 205 206 207 208 209 210 211 212 213
    if self._make_soft_macros_square:
      # It is better to make the shape of soft macros square before using
      # analytical std cell placers like FD.
      self._plc.make_soft_macros_square()

    self._grid_cols, self._grid_rows = self._plc.get_grid_num_columns_rows()
    self._canvas_width, self._canvas_height = self._plc.get_canvas_width_height(
    )

    self._hard_macro_indices = [
        m for m in self._plc.get_macro_indices()
        if not self._plc.is_node_soft_macro(m)
    ]
Dinple committed
214

Dinple committed
215 216
    self._num_hard_macros = len(self._hard_macro_indices)

Dinple committed
217
    # sorted by size
Dinple committed
218 219 220
    self._sorted_node_indices = placement_util.get_ordered_node_indices(
        mode='descending_size_macro_first', plc=self._plc)

Dinple committed
221
    # print(len(self._sorted_node_indices))
Dinple committed
222 223
    self._sorted_soft_macros = self._sorted_node_indices[self._num_hard_macros:]

Dinple committed
224
    # print(len(self._sorted_soft_macros))
Dinple committed
225

Dinple committed
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    # Generate a map from actual macro_index to its position in
    # self.macro_indices. Needed because node adjacency matrix is in the same
    # node order of plc.get_macro_indices.
    self._macro_index_to_pos = {}
    for i, macro_index in enumerate(self._plc.get_macro_indices()):
      self._macro_index_to_pos[macro_index] = i

    # Padding for mapping the placement canvas on the agent canvas.
    rows_pad = self._observation_config.max_grid_size - self._grid_rows
    cols_pad = self._observation_config.max_grid_size - self._grid_cols
    self._up_pad = rows_pad // 2
    self._right_pad = cols_pad // 2
    self._low_pad = rows_pad - self._up_pad
    self._left_pad = cols_pad - self._right_pad

    self._saved_cost = np.inf
    self._current_actions = []
    self._current_node = 0
    self._done = False
    self._current_mask = self._get_mask()
Dinple committed
246 247

    # print(getframeinfo(currentframe()).lineno, '\n', np.array(self._plc.get_node_mask(0)).reshape(35,33))
Dinple committed
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    self._infeasible_state = False

    if unplace_all_nodes_in_init:
      # TODO(b/223026568) Remove unplace_all_nodes from init
      self._plc.unplace_all_nodes()
      logging.warning('* Unplaced all Nodes in init *')
    logging.info('***Num node to place***:%s', self._num_hard_macros)

  @property
  def observation_space(self) -> gym.spaces.Space:
    """Env Observation space."""
    return self._observation_config.observation_space

  @property
  def action_space(self) -> gym.spaces.Space:
    return gym.spaces.Discrete(self._observation_config.max_grid_size**2)

  @property
  def environment_name(self) -> Text:
    return self.netlist_file

  def get_static_obs(self):
    """Get the static observation for the environment.

    Static observations are invariant across steps on the same netlist, such as
    netlist metadata and the adj graphs. This should only be used for
    generalized RL.

    Returns:
      Numpy array representing the observation
    """
    return self._observation_extractor.get_static_features()

  def get_cost_info(self,
                    done: bool = False) -> Tuple[float, Dict[Text, float]]:
    return self._cost_info_fn(plc=self._plc, done=done)  # pytype: disable=wrong-keyword-args  # trace-all-classes

  def _get_mask(self) -> np.ndarray:
    """Gets the node mask for the current node.

    Returns:
      List of 0s and 1s indicating if action is feasible or not.
    """
    if self._done:
Dinple committed
292
      # reset the board
Dinple committed
293 294 295 296
      mask = np.zeros(self._observation_config.max_grid_size**2, dtype=np.int32)
    else:
      node_index = self._sorted_node_indices[self._current_node]
      mask = np.asarray(self._plc.get_node_mask(node_index), dtype=np.int32)
Dinple committed
297
      # print("current node mask: \n", mask.reshape(35, 33))
Dinple committed
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
      mask = np.reshape(mask, [self._grid_rows, self._grid_cols])
      pad = ((self._up_pad, self._low_pad), (self._right_pad, self._left_pad))
      mask = np.pad(mask, pad, mode='constant', constant_values=0)
    return np.reshape(
        mask, (self._observation_config.max_grid_size**2,)).astype(np.int32)

  def _get_obs(self) -> ObsType:
    """Returns the observation."""
    if self._current_node > 0:
      previous_node_sorted = self._sorted_node_indices[self._current_node - 1]
      previous_node_index = self._macro_index_to_pos[previous_node_sorted]
    else:
      previous_node_index = -1

    if self._current_node < self._num_hard_macros:
      current_node_sorted = self._sorted_node_indices[self._current_node]
      current_node_index = self._macro_index_to_pos[current_node_sorted]
    else:
      current_node_index = 0

    # YW EDIT: get observation
    res = self._observation_extractor.get_all_features(
        previous_node_index=previous_node_index,
        current_node_index=current_node_index,
        mask=self._current_mask)
    # self._plc.set_routes_per_micron(44, 44) Does not do anything
    # logging.info("####### Observation Extractor #######")
    # print(res)
    # logging.info("####### End #######")
    
    return res

  def _run_cd(self):
    """Runs coordinate descent to finetune the current placement."""

    # CD only modifies macro orientation.
    # Plc modified by CD will be reset at the end of the episode.

    def cost_fn(plc):
      return self._cost_info_fn(plc=plc, done=True)  # pytype: disable=wrong-keyword-args  # trace-all-classes

    cd = cd_placer.CoordinateDescentPlacer(
        plc=self._plc,
        cost_fn=cost_fn,
        use_stdcell_placer=True,
        optimize_only_orientation=True)
    cd.place()

  def _save_placement(self, cost: float) -> None:
    """Saves the current placement.

    Args:
      cost: the current placement cost.

    Raises:
      IOError: If we cannot write the placement to file.
    """
    if not self._save_best_cost or (cost < self._saved_cost and
                                    (math.fabs(cost - self._saved_cost) /
                                     (cost) > 5e-3)):
      user_comments = ''
      if self._train_step:
        user_comments = f'Train step : {self._train_step.numpy()}'

      placement_util.save_placement(self._plc, self._output_plc_file,
                                    user_comments)
      ts = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
      ppo_snapshot_file = os.path.join(
          self._output_plc_dir,
          f'snapshot_ppo_opt_placement_timestamp_{ts}_cost_{cost:.4f}.plc')
      placement_util.save_placement(self._plc, ppo_snapshot_file, user_comments)
      self._saved_cost = cost

      # Only runs CD if this is the best RL placement seen so far.
      if self._cd_finetune:
        self._run_cd()
        cost = self._cost_info_fn(plc=self._plc, done=True)[0]  # pytype: disable=wrong-keyword-args  # trace-all-classes
        cd_plc_file = os.path.join(self._output_plc_dir, self._cd_plc_file)
        placement_util.save_placement(self._plc, cd_plc_file, user_comments)
        cd_snapshot_file = os.path.join(
            self._output_plc_dir,
            f'snapshot_ppo_cd_placement_timestamp_{ts}_cost_{cost:.4f}.plc')
        placement_util.save_placement(self._plc, cd_snapshot_file,
                                      user_comments)

  def call_analytical_placer_and_get_cost(self):
    """Calls analytical placer.

    Calls analystical placer and evaluates cost when all nodes are placed. Also,
    saves the placement file for eval if all the macros are placed by RL.

    Returns:
      A tuple for placement cost and info.
    """
    if self._done:
      self.analytical_placer()
    # Only evaluates placement cost when all nodes are placed.
    # All samples in the episode receive the same reward equal to final cost.
    # This is realized by setting intermediate steps cost as zero, and
    # propagate the final cost with discount factor set to 1 in replay buffer.
    cost, info = self._cost_info_fn(self._plc, self._done)

    # We only save placement if all nodes by placed RL, because the dreamplace
    # mix-sized placement may not be legal.
    if self._current_node == self._num_hard_macros and self._is_eval:
      self._save_placement(cost)

    return -cost, info

  def reset(self) -> ObsType:
    """Restes the environment.

    Returns:
      An initial observation.
    """
    self._plc.unplace_all_nodes()
    self._current_actions = []
    self._current_node = 0
    self._done = False
    self._current_mask = self._get_mask()
    return self._get_obs()

  def translate_to_original_canvas(self, action: int) -> int:
    """Translates a raw location to real one in the original canvas."""
    up_pad = (self._observation_config.max_grid_size - self._grid_rows) // 2
    right_pad = (self._observation_config.max_grid_size - self._grid_cols) // 2

    a_i = action // self._observation_config.max_grid_size - up_pad
    a_j = action % self._observation_config.max_grid_size - right_pad
    if 0 <= a_i < self._grid_rows or 0 <= a_j < self._grid_cols:
      action = a_i * self._grid_cols + a_j
    else:
      raise InfeasibleActionError(action, self._current_mask)
    return action

  def place_node(self, node_index: int, action: int) -> None:
    self._plc.place_node(node_index, self.translate_to_original_canvas(action))

  def analytical_placer(self) -> None:
    if self._std_cell_placer_mode == 'fd':
      placement_util.fd_placement_schedule(self._plc)
    else:
      raise ValueError('%s is not a supported std_cell_placer_mode.' %
                       (self._std_cell_placer_mode))

  def step(self, action: int) -> Tuple[ObsType, float, bool, Any]:
    """Steps the environment.

    Args:
      action: The action to take (should be a list of size 1).

    Returns:
      observation, reward, done, and info.

    Raises:
      RuntimeError: action taken after episode was done
      InfeasibleActionError: bad action taken (action is not in feasible
        actions)
    """
    if self._done:
      raise RuntimeError('Action taken after episode is done.')

    action = int(action)
    self._current_actions.append(action)
    if self._current_mask[action] == 0:
      raise InfeasibleActionError(action, self._current_mask)

    node_index = self._sorted_node_indices[self._current_node]
    self.place_node(node_index, action)

    self._current_node += 1
    self._done = (self._current_node == self._num_hard_macros)
    self._current_mask = self._get_mask()

    if not self._done and not np.any(self._current_mask):
      # Please note that _infeasible_state is not reset in reset function so,
      # the caller of step() is responsible for resetting it.

      self._infeasible_state = True

      logging.info('Actions took before becoming infeasible: %s',
                    self._current_actions)

      info = {
          'wirelength': -1.0,
          'congestion': -1.0,
          'density': -1.0,
      }
      return self.reset(), self.INFEASIBLE_REWARD, True, info

    cost, info = self.call_analytical_placer_and_get_cost()

    return self._get_obs(), cost, self._done, info

# def create_circuit_environment(*args, **kwarg) -> wrappers.ActionClipWrapper:
#   """Create an `CircuitEnv` wrapped as a Gym environment.

#   Args:
#     *args: Arguments.
#     **kwarg: keyworded Arguments.

#   Returns:
#     PyEnvironment used for training.
#   """
#   env = CircuitEnv(*args, **kwarg)

#   return wrappers.ActionClipWrapper(suite_gym.wrap_env(env))