xpatience.c 10.6 KB
Newer Older
1 2
/*
 *  LibXDiff by Davide Libenzi ( File Differential Library )
3
 *  Copyright (C) 2003-2016 Davide Libenzi, Johannes E. Schindelin
4 5 6 7 8 9 10 11 12 13 14 15
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
16 17
 *  License along with this library; if not, see
 *  <http://www.gnu.org/licenses/>.
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *
 *  Davide Libenzi <davidel@xmailserver.org>
 *
 */
#include "xinclude.h"
#include "xtypes.h"
#include "xdiff.h"

/*
 * The basic idea of patience diff is to find lines that are unique in
 * both files.  These are intuitively the ones that we want to see as
 * common lines.
 *
 * The maximal ordered sequence of such line pairs (where ordered means
 * that the order in the sequence agrees with the order of the lines in
 * both files) naturally defines an initial set of common lines.
 *
 * Now, the algorithm tries to extend the set of common lines by growing
 * the line ranges where the files have identical lines.
 *
 * Between those common lines, the patience diff algorithm is applied
 * recursively, until no unique line pairs can be found; these line ranges
 * are handled by the well-known Myers algorithm.
 */

#define NON_UNIQUE ULONG_MAX

/*
 * This is a hash mapping from line hash to line numbers in the first and
 * second file.
 */
struct hashmap {
	int nr, alloc;
	struct entry {
		unsigned long hash;
		/*
		 * 0 = unused entry, 1 = first line, 2 = second, etc.
		 * line2 is NON_UNIQUE if the line is not unique
		 * in either the first or the second file.
		 */
		unsigned long line1, line2;
		/*
		 * "next" & "previous" are used for the longest common
		 * sequence;
		 * initially, "next" reflects only the order in file1.
		 */
		struct entry *next, *previous;
65 66 67 68 69 70

		/*
		 * If 1, this entry can serve as an anchor. See
		 * Documentation/diff-options.txt for more information.
		 */
		unsigned anchor : 1;
71 72 73 74 75 76 77 78
	} *entries, *first, *last;
	/* were common records found? */
	unsigned long has_matches;
	mmfile_t *file1, *file2;
	xdfenv_t *env;
	xpparam_t const *xpp;
};

79 80 81 82 83 84 85 86 87 88
static int is_anchor(xpparam_t const *xpp, const char *line)
{
	unsigned long i;
	for (i = 0; i < xpp->anchors_nr; i++) {
		if (!strncmp(line, xpp->anchors[i], strlen(xpp->anchors[i])))
			return 1;
	}
	return 0;
}

89
/* The argument "pass" is 1 for the first file, 2 for the second. */
90 91
static void insert_record(xpparam_t const *xpp, int line, struct hashmap *map,
			  int pass)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
{
	xrecord_t **records = pass == 1 ?
		map->env->xdf1.recs : map->env->xdf2.recs;
	xrecord_t *record = records[line - 1], *other;
	/*
	 * After xdl_prepare_env() (or more precisely, due to
	 * xdl_classify_record()), the "ha" member of the records (AKA lines)
	 * is _not_ the hash anymore, but a linearized version of it.  In
	 * other words, the "ha" member is guaranteed to start with 0 and
	 * the second record's ha can only be 0 or 1, etc.
	 *
	 * So we multiply ha by 2 in the hope that the hashing was
	 * "unique enough".
	 */
	int index = (int)((record->ha << 1) % map->alloc);

	while (map->entries[index].line1) {
		other = map->env->xdf1.recs[map->entries[index].line1 - 1];
		if (map->entries[index].hash != record->ha ||
				!xdl_recmatch(record->ptr, record->size,
					other->ptr, other->size,
					map->xpp->flags)) {
			if (++index >= map->alloc)
				index = 0;
			continue;
		}
		if (pass == 2)
			map->has_matches = 1;
		if (pass == 1 || map->entries[index].line2)
			map->entries[index].line2 = NON_UNIQUE;
		else
			map->entries[index].line2 = line;
		return;
	}
	if (pass == 2)
		return;
	map->entries[index].line1 = line;
	map->entries[index].hash = record->ha;
130
	map->entries[index].anchor = is_anchor(xpp, map->env->xdf1.recs[line - 1]->ptr);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	if (!map->first)
		map->first = map->entries + index;
	if (map->last) {
		map->last->next = map->entries + index;
		map->entries[index].previous = map->last;
	}
	map->last = map->entries + index;
	map->nr++;
}

/*
 * This function has to be called for each recursion into the inter-hunk
 * parts, as previously non-unique lines can become unique when being
 * restricted to a smaller part of the files.
 *
 * It is assumed that env has been prepared using xdl_prepare().
 */
static int fill_hashmap(mmfile_t *file1, mmfile_t *file2,
		xpparam_t const *xpp, xdfenv_t *env,
		struct hashmap *result,
		int line1, int count1, int line2, int count2)
{
	result->file1 = file1;
	result->file2 = file2;
	result->xpp = xpp;
	result->env = env;

	/* We know exactly how large we want the hash map */
	result->alloc = count1 * 2;
	result->entries = (struct entry *)
		xdl_malloc(result->alloc * sizeof(struct entry));
	if (!result->entries)
		return -1;
	memset(result->entries, 0, result->alloc * sizeof(struct entry));

	/* First, fill with entries from the first file */
	while (count1--)
168
		insert_record(xpp, line1++, result, 1);
169 170 171

	/* Then search for matches in the second file */
	while (count2--)
172
		insert_record(xpp, line2++, result, 2);
173 174 175 176 177 178 179 180 181 182 183 184 185 186

	return 0;
}

/*
 * Find the longest sequence with a smaller last element (meaning a smaller
 * line2, as we construct the sequence with entries ordered by line1).
 */
static int binary_search(struct entry **sequence, int longest,
		struct entry *entry)
{
	int left = -1, right = longest;

	while (left + 1 < right) {
187
		int middle = left + (right - left) / 2;
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
		/* by construction, no two entries can be equal */
		if (sequence[middle]->line2 > entry->line2)
			right = middle;
		else
			left = middle;
	}
	/* return the index in "sequence", _not_ the sequence length */
	return left;
}

/*
 * The idea is to start with the list of common unique lines sorted by
 * the order in file1.  For each of these pairs, the longest (partial)
 * sequence whose last element's line2 is smaller is determined.
 *
 * For efficiency, the sequences are kept in a list containing exactly one
 * item per sequence length: the sequence with the smallest last
 * element (in terms of line2).
 */
static struct entry *find_longest_common_sequence(struct hashmap *map)
{
	struct entry **sequence = xdl_malloc(map->nr * sizeof(struct entry *));
	int longest = 0, i;
	struct entry *entry;

213 214 215 216 217 218 219
	/*
	 * If not -1, this entry in sequence must never be overridden.
	 * Therefore, overriding entries before this has no effect, so
	 * do not do that either.
	 */
	int anchor_i = -1;

220 221 222 223 224
	for (entry = map->first; entry; entry = entry->next) {
		if (!entry->line2 || entry->line2 == NON_UNIQUE)
			continue;
		i = binary_search(sequence, longest, entry);
		entry->previous = i < 0 ? NULL : sequence[i];
225 226 227 228 229 230 231 232
		++i;
		if (i <= anchor_i)
			continue;
		sequence[i] = entry;
		if (entry->anchor) {
			anchor_i = i;
			longest = anchor_i + 1;
		} else if (i == longest) {
233
			longest++;
234
		}
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	}

	/* No common unique lines were found */
	if (!longest) {
		xdl_free(sequence);
		return NULL;
	}

	/* Iterate starting at the last element, adjusting the "next" members */
	entry = sequence[longest - 1];
	entry->next = NULL;
	while (entry->previous) {
		entry->previous->next = entry;
		entry = entry->previous;
	}
	xdl_free(sequence);
	return entry;
}

static int match(struct hashmap *map, int line1, int line2)
{
	xrecord_t *record1 = map->env->xdf1.recs[line1 - 1];
	xrecord_t *record2 = map->env->xdf2.recs[line2 - 1];
	return xdl_recmatch(record1->ptr, record1->size,
		record2->ptr, record2->size, map->xpp->flags);
}

static int patience_diff(mmfile_t *file1, mmfile_t *file2,
		xpparam_t const *xpp, xdfenv_t *env,
		int line1, int count1, int line2, int count2);

static int walk_common_sequence(struct hashmap *map, struct entry *first,
		int line1, int count1, int line2, int count2)
{
	int end1 = line1 + count1, end2 = line2 + count2;
	int next1, next2;

	for (;;) {
		/* Try to grow the line ranges of common lines */
		if (first) {
			next1 = first->line1;
			next2 = first->line2;
			while (next1 > line1 && next2 > line2 &&
					match(map, next1 - 1, next2 - 1)) {
				next1--;
				next2--;
			}
		} else {
			next1 = end1;
			next2 = end2;
		}
		while (line1 < next1 && line2 < next2 &&
				match(map, line1, line2)) {
			line1++;
			line2++;
		}

		/* Recurse */
		if (next1 > line1 || next2 > line2) {
			struct hashmap submap;

			memset(&submap, 0, sizeof(submap));
			if (patience_diff(map->file1, map->file2,
					map->xpp, map->env,
					line1, next1 - line1,
					line2, next2 - line2))
				return -1;
		}

		if (!first)
			return 0;

		while (first->next &&
				first->next->line1 == first->line1 + 1 &&
				first->next->line2 == first->line2 + 1)
			first = first->next;

		line1 = first->line1 + 1;
		line2 = first->line2 + 1;

		first = first->next;
	}
}

static int fall_back_to_classic_diff(struct hashmap *map,
		int line1, int count1, int line2, int count2)
{
	xpparam_t xpp;
323
	xpp.flags = map->xpp->flags & ~XDF_DIFF_ALGORITHM_MASK;
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

	return xdl_fall_back_diff(map->env, &xpp,
				  line1, count1, line2, count2);
}

/*
 * Recursively find the longest common sequence of unique lines,
 * and if none was found, ask xdl_do_diff() to do the job.
 *
 * This function assumes that env was prepared with xdl_prepare_env().
 */
static int patience_diff(mmfile_t *file1, mmfile_t *file2,
		xpparam_t const *xpp, xdfenv_t *env,
		int line1, int count1, int line2, int count2)
{
	struct hashmap map;
	struct entry *first;
	int result = 0;

	/* trivial case: one side is empty */
	if (!count1) {
		while(count2--)
			env->xdf2.rchg[line2++ - 1] = 1;
		return 0;
	} else if (!count2) {
		while(count1--)
			env->xdf1.rchg[line1++ - 1] = 1;
		return 0;
	}

	memset(&map, 0, sizeof(map));
	if (fill_hashmap(file1, file2, xpp, env, &map,
			line1, count1, line2, count2))
		return -1;

	/* are there any matching lines at all? */
	if (!map.has_matches) {
		while(count1--)
			env->xdf1.rchg[line1++ - 1] = 1;
		while(count2--)
			env->xdf2.rchg[line2++ - 1] = 1;
		xdl_free(map.entries);
		return 0;
	}

	first = find_longest_common_sequence(&map);
	if (first)
		result = walk_common_sequence(&map, first,
			line1, count1, line2, count2);
	else
		result = fall_back_to_classic_diff(&map,
			line1, count1, line2, count2);

	xdl_free(map.entries);
	return result;
}

int xdl_do_patience_diff(mmfile_t *file1, mmfile_t *file2,
		xpparam_t const *xpp, xdfenv_t *env)
{
	if (xdl_prepare_env(file1, file2, xpp, env) < 0)
		return -1;

	/* environment is cleaned up in xdl_diff() */
	return patience_diff(file1, file2, xpp, env,
			1, env->xdf1.nrec, 1, env->xdf2.nrec);
}