adler32.c 4.85 KB
Newer Older
1
/* adler32.c -- compute the Adler-32 checksum of a data stream
2
 * Copyright (C) 1995-2011 Mark Adler
3 4 5 6 7 8 9 10 11
 * For conditions of distribution and use, see copyright notice in zlib.h
 */

/* @(#) $Id$ */

#include "zutil.h"

#define local static

12
local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
13

14
#define BASE 65521      /* largest prime smaller than 65536 */
15 16 17 18 19 20 21 22 23
#define NMAX 5552
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */

#define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
#define DO16(buf)   DO8(buf,0); DO8(buf,8);

24 25
/* use NO_DIVIDE if your processor does not do division in hardware --
   try it both ways to see which is faster */
26
#ifdef NO_DIVIDE
27 28 29 30 31 32 33 34 35
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
   (thank you to John Reiser for pointing this out) */
#  define CHOP(a) \
    do { \
        unsigned long tmp = a >> 16; \
        a &= 0xffffUL; \
        a += (tmp << 4) - tmp; \
    } while (0)
#  define MOD28(a) \
36
    do { \
37
        CHOP(a); \
38 39
        if (a >= BASE) a -= BASE; \
    } while (0)
40
#  define MOD(a) \
41
    do { \
42 43 44 45 46 47 48 49 50 51 52 53 54 55
        CHOP(a); \
        MOD28(a); \
    } while (0)
#  define MOD63(a) \
    do { /* this assumes a is not negative */ \
        z_off64_t tmp = a >> 32; \
        a &= 0xffffffffL; \
        a += (tmp << 8) - (tmp << 5) + tmp; \
        tmp = a >> 16; \
        a &= 0xffffL; \
        a += (tmp << 4) - tmp; \
        tmp = a >> 16; \
        a &= 0xffffL; \
        a += (tmp << 4) - tmp; \
56 57 58 59
        if (a >= BASE) a -= BASE; \
    } while (0)
#else
#  define MOD(a) a %= BASE
60 61
#  define MOD28(a) a %= BASE
#  define MOD63(a) a %= BASE
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#endif

/* ========================================================================= */
uLong ZEXPORT adler32(adler, buf, len)
    uLong adler;
    const Bytef *buf;
    uInt len;
{
    unsigned long sum2;
    unsigned n;

    /* split Adler-32 into component sums */
    sum2 = (adler >> 16) & 0xffff;
    adler &= 0xffff;

    /* in case user likes doing a byte at a time, keep it fast */
    if (len == 1) {
        adler += buf[0];
        if (adler >= BASE)
            adler -= BASE;
        sum2 += adler;
        if (sum2 >= BASE)
            sum2 -= BASE;
        return adler | (sum2 << 16);
    }

    /* initial Adler-32 value (deferred check for len == 1 speed) */
    if (buf == Z_NULL)
        return 1L;

    /* in case short lengths are provided, keep it somewhat fast */
    if (len < 16) {
        while (len--) {
            adler += *buf++;
            sum2 += adler;
        }
        if (adler >= BASE)
            adler -= BASE;
100
        MOD28(sum2);            /* only added so many BASE's */
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        return adler | (sum2 << 16);
    }

    /* do length NMAX blocks -- requires just one modulo operation */
    while (len >= NMAX) {
        len -= NMAX;
        n = NMAX / 16;          /* NMAX is divisible by 16 */
        do {
            DO16(buf);          /* 16 sums unrolled */
            buf += 16;
        } while (--n);
        MOD(adler);
        MOD(sum2);
    }

    /* do remaining bytes (less than NMAX, still just one modulo) */
    if (len) {                  /* avoid modulos if none remaining */
        while (len >= 16) {
            len -= 16;
            DO16(buf);
            buf += 16;
        }
        while (len--) {
            adler += *buf++;
            sum2 += adler;
        }
        MOD(adler);
        MOD(sum2);
    }

    /* return recombined sums */
    return adler | (sum2 << 16);
}

/* ========================================================================= */
local uLong adler32_combine_(adler1, adler2, len2)
    uLong adler1;
    uLong adler2;
    z_off64_t len2;
{
    unsigned long sum1;
    unsigned long sum2;
    unsigned rem;

145 146 147 148
    /* for negative len, return invalid adler32 as a clue for debugging */
    if (len2 < 0)
        return 0xffffffffUL;

149
    /* the derivation of this formula is left as an exercise for the reader */
150 151
    MOD63(len2);                /* assumes len2 >= 0 */
    rem = (unsigned)len2;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    sum1 = adler1 & 0xffff;
    sum2 = rem * sum1;
    MOD(sum2);
    sum1 += (adler2 & 0xffff) + BASE - 1;
    sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
    if (sum1 >= BASE) sum1 -= BASE;
    if (sum1 >= BASE) sum1 -= BASE;
    if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
    if (sum2 >= BASE) sum2 -= BASE;
    return sum1 | (sum2 << 16);
}

/* ========================================================================= */
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
    uLong adler1;
    uLong adler2;
    z_off_t len2;
{
    return adler32_combine_(adler1, adler2, len2);
}

uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
    uLong adler1;
    uLong adler2;
    z_off64_t len2;
{
    return adler32_combine_(adler1, adler2, len2);
}