Commit fc904409 by Alan Mishchenko

Network interface exploration.

parent ff88edd6
/**CFile****************************************************************
FileName [ndr.h]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Format for word-level design representation.]
Synopsis [External declarations.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - August 22, 2014.]
Revision [$Id: ndr.h,v 1.00 2014/09/12 00:00:00 alanmi Exp $]
***********************************************************************/
#ifndef ABC__base__ndr__ndr_h
#define ABC__base__ndr__ndr_h
////////////////////////////////////////////////////////////////////////
/// INCLUDES ///
////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
//ABC_NAMESPACE_HEADER_START
#ifdef _WIN32
#define inline __inline
#endif
/*
For the lack of a better name, this format is called New Data Representation (NDR).
NDR is based on the following principles:
- complex data is composed of individual records
- a record has one of several known types (module, name, range, fanins, etc)
- a record can be atomic, for example, a name or an operator type
- a record can be composed of other records (for example, a module is composed of objects, etc)
- the stored data should be easy to write into and read from a file, or pass around as a memory buffer
- the format should be simple, easy to use, low-memory, and extensible
- new record types can be added by the user as needed
The implementation is based on the following ideas:
- a record is composed of two parts (the header followed by the body)
- the header contains two items (the record type and the body size, measured in terms of 4-byte integers)
- the body contains as many entries as stated in the record size
- if a record is composed of other records, its body contains these records
As an example, consider a name. It can be a module name, an object name, or a net name.
A record storing one name has a header {NDR_NAME, 1} containing record type (NDR_NAME) and size (1),
The body of the record is composed of one unsigned integer representing the name (say, 357).
So the complete record looks as follows: { <header>, <body> } = { {NDR_NAME, 1}, {357} }.
As another example, consider a two-input AND-gate. In this case, the recent is composed
of a header {NDR_OBJECT, 4} containing record type (NDR_OBJECT) and the body size (4), followed
by an array of records creating the AND-gate: (a) name, (b) operation type, (c) fanins.
The complete record looks as follows: { {NDR_OBJECT, 5}, {{{NDR_NAME, 1}, 357}, {{NDR_OPERTYPE, 1}, WLC_OBJ_LOGIC_AND},
{{NDR_INPUT, 2}, {<id_fanin1>, <id_fanin2>}}} }. Please note that only body entries are counted towards size.
In the case of one name, there is only one body entry. In the case of the AND-gate, there are 4 body entries
(name ID, gate type, first fanin, second fanin).
Headers and bodies of all objects are stored differently. Headers are stored in an array of unsigned chars,
while bodies are stored in the array of 4-byte unsigned integers. This is important for memory efficiency.
However, the user does not see these details.
To estimate memory usage, we can assume that each header takes 1 byte and each body entry contains 4 bytes.
A name takes 5 bytes, and an AND-gate takes 1 * NumHeaders + 4 * NumBodyEntries = 1 * 4 + 4 * 4 = 20 bytes.
Not bad. The same as memory usage in a well-designed AIG package with structural hashing.
Comments:
- it is assumed that all port names, net names, and instance names are hashed into 1-based integer numbers called name IDs
- nets are not explicitly represented but their name ID are used to establish connectivity between the objects
- primary input and primary output objects have to be explicitly created (as shown in the example below)
- object inputs are name IDs of the driving nets; object outputs are name IDs of the driven nets
- objects can be added to a module in any order
- if the ordering of inputs/outputs/flops of a module is not provided as a separate record,
their ordering is determined by the order of their appearance of their records in the body of the module
- if range limits and signedness are all 0, it is assumed that it is a Boolean object
- if left limit and right limit of a range are equal, it is assumed that the range contains one bit
- instances of known operators can have types defined by Wlc_ObjType_t below
- instances of user modules have type equal to the name ID of the module plus 1000
- initial states of the flops are given as char-strings containing 0, 1, and 'x'
(for example, "4'b10XX" is an init state of a 4-bit flop with bit-level init states const1, const0, unknown, unknown)
- word-level constants are represented as char-strings given in the same way as they would appear in a Verilog file
(for example, the 16-bit constant 10 is represented as a string "4'b1010". This string contains 8 bytes,
including the char '\0' to denote the end of the string. It will take 2 unsigned ints, therefore
its record will look as follows { {NDR_FUNCTION, 2}, {"4'b1010"} }, but the user does not see these details.
The user only gives "4'b1010" as an argument (char * pFunction) to the above procedure Ndr_ModuleAddObject().
*/
////////////////////////////////////////////////////////////////////////
/// PARAMETERS ///
////////////////////////////////////////////////////////////////////////
// record types
typedef enum {
NDR_NONE = 0, // 0: unused
NDR_DESIGN, // 1: design (or library of modules)
NDR_MODULE, // 2: one module
NDR_OBJECT, // 3: object
NDR_INPUT, // 4: input
NDR_OUTPUT, // 5: output
NDR_OPERTYPE, // 6: operator type (buffer, shifter, adder, etc)
NDR_NAME, // 7: name
NDR_RANGE, // 8: bit range
NDR_FUNCTION, // 9: specified for some operators (PLAs, etc)
NDR_UNKNOWN // 10: unknown
} Ndr_RecordType_t;
// operator types
typedef enum {
WLC_OBJ_NONE = 0, // 00: unknown
WLC_OBJ_PI, // 01: primary input
WLC_OBJ_PO, // 02: primary output
WLC_OBJ_FO, // 03: flop output (unused)
WLC_OBJ_FI, // 04: flop input (unused)
WLC_OBJ_FF, // 05: flop
WLC_OBJ_CONST, // 06: constant
WLC_OBJ_BUF, // 07: buffer
WLC_OBJ_MUX, // 08: multiplexer
WLC_OBJ_SHIFT_R, // 09: shift right
WLC_OBJ_SHIFT_RA, // 10: shift right (arithmetic)
WLC_OBJ_SHIFT_L, // 11: shift left
WLC_OBJ_SHIFT_LA, // 12: shift left (arithmetic)
WLC_OBJ_ROTATE_R, // 13: rotate right
WLC_OBJ_ROTATE_L, // 14: rotate left
WLC_OBJ_BIT_NOT, // 15: bitwise NOT
WLC_OBJ_BIT_AND, // 16: bitwise AND
WLC_OBJ_BIT_OR, // 17: bitwise OR
WLC_OBJ_BIT_XOR, // 18: bitwise XOR
WLC_OBJ_BIT_NAND, // 19: bitwise AND
WLC_OBJ_BIT_NOR, // 20: bitwise OR
WLC_OBJ_BIT_NXOR, // 21: bitwise NXOR
WLC_OBJ_BIT_SELECT, // 22: bit selection
WLC_OBJ_BIT_CONCAT, // 23: bit concatenation
WLC_OBJ_BIT_ZEROPAD, // 24: zero padding
WLC_OBJ_BIT_SIGNEXT, // 25: sign extension
WLC_OBJ_LOGIC_NOT, // 26: logic NOT
WLC_OBJ_LOGIC_IMPL, // 27: logic implication
WLC_OBJ_LOGIC_AND, // 28: logic AND
WLC_OBJ_LOGIC_OR, // 29: logic OR
WLC_OBJ_LOGIC_XOR, // 30: logic XOR
WLC_OBJ_COMP_EQU, // 31: compare equal
WLC_OBJ_COMP_NOTEQU, // 32: compare not equal
WLC_OBJ_COMP_LESS, // 33: compare less
WLC_OBJ_COMP_MORE, // 34: compare more
WLC_OBJ_COMP_LESSEQU, // 35: compare less or equal
WLC_OBJ_COMP_MOREEQU, // 36: compare more or equal
WLC_OBJ_REDUCT_AND, // 37: reduction AND
WLC_OBJ_REDUCT_OR, // 38: reduction OR
WLC_OBJ_REDUCT_XOR, // 39: reduction XOR
WLC_OBJ_REDUCT_NAND, // 40: reduction NAND
WLC_OBJ_REDUCT_NOR, // 41: reduction NOR
WLC_OBJ_REDUCT_NXOR, // 42: reduction NXOR
WLC_OBJ_ARI_ADD, // 43: arithmetic addition
WLC_OBJ_ARI_SUB, // 44: arithmetic subtraction
WLC_OBJ_ARI_MULTI, // 45: arithmetic multiplier
WLC_OBJ_ARI_DIVIDE, // 46: arithmetic division
WLC_OBJ_ARI_REM, // 47: arithmetic remainder
WLC_OBJ_ARI_MODULUS, // 48: arithmetic modulus
WLC_OBJ_ARI_POWER, // 49: arithmetic power
WLC_OBJ_ARI_MINUS, // 50: arithmetic minus
WLC_OBJ_ARI_SQRT, // 51: integer square root
WLC_OBJ_ARI_SQUARE, // 52: integer square
WLC_OBJ_TABLE, // 53: bit table
WLC_OBJ_NUMBER // 54: unused
} Wlc_ObjType_t;
// printing operator types
static inline char * Ndr_OperName( int Type )
{
if ( Type == WLC_OBJ_NONE ) return NULL;
if ( Type == WLC_OBJ_PI ) return "pi"; // 01: primary input
if ( Type == WLC_OBJ_PO ) return "po"; // 02: primary output (unused)
if ( Type == WLC_OBJ_FO ) return "ff"; // 03: flop output
if ( Type == WLC_OBJ_FI ) return "bi"; // 04: flop input (unused)
if ( Type == WLC_OBJ_FF ) return "ff"; // 05: flop (unused)
if ( Type == WLC_OBJ_CONST ) return "const"; // 06: constant
if ( Type == WLC_OBJ_BUF ) return "buf"; // 07: buffer
if ( Type == WLC_OBJ_MUX ) return "mux"; // 08: multiplexer
if ( Type == WLC_OBJ_SHIFT_R ) return ">>"; // 09: shift right
if ( Type == WLC_OBJ_SHIFT_RA ) return ">>>"; // 10: shift right (arithmetic)
if ( Type == WLC_OBJ_SHIFT_L ) return "<<"; // 11: shift left
if ( Type == WLC_OBJ_SHIFT_LA ) return "<<<"; // 12: shift left (arithmetic)
if ( Type == WLC_OBJ_ROTATE_R ) return "rotR"; // 13: rotate right
if ( Type == WLC_OBJ_ROTATE_L ) return "rotL"; // 14: rotate left
if ( Type == WLC_OBJ_BIT_NOT ) return "~"; // 15: bitwise NOT
if ( Type == WLC_OBJ_BIT_AND ) return "&"; // 16: bitwise AND
if ( Type == WLC_OBJ_BIT_OR ) return "|"; // 17: bitwise OR
if ( Type == WLC_OBJ_BIT_XOR ) return "^"; // 18: bitwise XOR
if ( Type == WLC_OBJ_BIT_NAND ) return "~&"; // 19: bitwise NAND
if ( Type == WLC_OBJ_BIT_NOR ) return "~|"; // 20: bitwise NOR
if ( Type == WLC_OBJ_BIT_NXOR ) return "~^"; // 21: bitwise NXOR
if ( Type == WLC_OBJ_BIT_SELECT ) return "[:]"; // 22: bit selection
if ( Type == WLC_OBJ_BIT_CONCAT ) return "{}"; // 23: bit concatenation
if ( Type == WLC_OBJ_BIT_ZEROPAD ) return "zPad"; // 24: zero padding
if ( Type == WLC_OBJ_BIT_SIGNEXT ) return "sExt"; // 25: sign extension
if ( Type == WLC_OBJ_LOGIC_NOT ) return "!"; // 26: logic NOT
if ( Type == WLC_OBJ_LOGIC_IMPL ) return "=>"; // 27: logic implication
if ( Type == WLC_OBJ_LOGIC_AND ) return "&&"; // 28: logic AND
if ( Type == WLC_OBJ_LOGIC_OR ) return "||"; // 29: logic OR
if ( Type == WLC_OBJ_LOGIC_XOR ) return "^^"; // 30: logic XOR
if ( Type == WLC_OBJ_COMP_EQU ) return "=="; // 31: compare equal
if ( Type == WLC_OBJ_COMP_NOTEQU ) return "!="; // 32: compare not equal
if ( Type == WLC_OBJ_COMP_LESS ) return "<"; // 33: compare less
if ( Type == WLC_OBJ_COMP_MORE ) return ">"; // 34: compare more
if ( Type == WLC_OBJ_COMP_LESSEQU ) return "<="; // 35: compare less or equal
if ( Type == WLC_OBJ_COMP_MOREEQU ) return ">="; // 36: compare more or equal
if ( Type == WLC_OBJ_REDUCT_AND ) return "&"; // 37: reduction AND
if ( Type == WLC_OBJ_REDUCT_OR ) return "|"; // 38: reduction OR
if ( Type == WLC_OBJ_REDUCT_XOR ) return "^"; // 39: reduction XOR
if ( Type == WLC_OBJ_REDUCT_NAND ) return "~&"; // 40: reduction NAND
if ( Type == WLC_OBJ_REDUCT_NOR ) return "~|"; // 41: reduction NOR
if ( Type == WLC_OBJ_REDUCT_NXOR ) return "~^"; // 42: reduction NXOR
if ( Type == WLC_OBJ_ARI_ADD ) return "+"; // 43: arithmetic addition
if ( Type == WLC_OBJ_ARI_SUB ) return "-"; // 44: arithmetic subtraction
if ( Type == WLC_OBJ_ARI_MULTI ) return "*"; // 45: arithmetic multiplier
if ( Type == WLC_OBJ_ARI_DIVIDE ) return "/"; // 46: arithmetic division
if ( Type == WLC_OBJ_ARI_REM ) return "%"; // 47: arithmetic reminder
if ( Type == WLC_OBJ_ARI_MODULUS ) return "mod"; // 48: arithmetic modulus
if ( Type == WLC_OBJ_ARI_POWER ) return "**"; // 49: arithmetic power
if ( Type == WLC_OBJ_ARI_MINUS ) return "-"; // 50: arithmetic minus
if ( Type == WLC_OBJ_ARI_SQRT ) return "sqrt"; // 51: integer square root
if ( Type == WLC_OBJ_ARI_SQUARE ) return "squar"; // 52: integer square
if ( Type == WLC_OBJ_TABLE ) return "table"; // 53: bit table
if ( Type == WLC_OBJ_NUMBER ) return NULL; // 54: unused
return NULL;
}
////////////////////////////////////////////////////////////////////////
/// BASIC TYPES ///
////////////////////////////////////////////////////////////////////////
// this is an internal procedure, which is not seen by the user
typedef struct Ndr_Data_t_ Ndr_Data_t;
struct Ndr_Data_t_
{
int nSize;
int nCap;
unsigned char * pHead;
unsigned int * pBody;
};
static inline int Ndr_DataType( Ndr_Data_t * p, int i ) { assert( p->pHead[i] ); return (int)p->pHead[i]; }
static inline int Ndr_DataSize( Ndr_Data_t * p, int i ) { return Ndr_DataType(p, i) > NDR_OBJECT ? 1 : p->pBody[i]; }
static inline int Ndr_DataEntry( Ndr_Data_t * p, int i ) { return (int)p->pBody[i]; }
static inline int * Ndr_DataEntryP( Ndr_Data_t * p, int i ) { return (int *)p->pBody + i; }
static inline int Ndr_DataEnd( Ndr_Data_t * p, int i ) { return i + p->pBody[i]; }
static inline void Ndr_DataAddTo( Ndr_Data_t * p, int i, int Add ) { assert(Ndr_DataType(p, i) <= NDR_OBJECT); p->pBody[i] += Add; }
static inline void Ndr_DataPush( Ndr_Data_t * p, int Type, int Entry ) { p->pHead[p->nSize] = Type; p->pBody[p->nSize++] = Entry; }
////////////////////////////////////////////////////////////////////////
/// ITERATORS ///
////////////////////////////////////////////////////////////////////////
// iterates over modules in the design
#define Ndr_DesForEachMod( p, Mod ) \
for ( Mod = 1; Mod < Ndr_DataEntry(p, 0); Mod += Ndr_DataSize(p, Mod) ) if (Ndr_DataType(p, Mod) != NDR_MODULE) {} else
// iterates over objects in a module
#define Ndr_ModForEachObj( p, Mod, Obj ) \
for ( Obj = Mod + 1; Obj < Ndr_DataEnd(p, Mod); Obj += Ndr_DataSize(p, Obj) ) if (Ndr_DataType(p, Obj) != NDR_OBJECT) {} else
// iterates over records in an object
#define Ndr_ObjForEachEntry( p, Obj, Ent ) \
for ( Ent = Obj + 1; Ent < Ndr_DataEnd(p, Obj); Ent += Ndr_DataSize(p, Ent) )
// iterates over primary inputs of a module
#define Ndr_ModForEachPi( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( !Ndr_ObjIsType(p, Obj, WLC_OBJ_PI) ) {} else
// iteraots over primary outputs of a module
#define Ndr_ModForEachPo( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( !Ndr_ObjIsType(p, Obj, WLC_OBJ_PO) ) {} else
// iterates over internal nodes of a module
#define Ndr_ModForEachNode( p, Mod, Obj ) \
Ndr_ModForEachObj( p, 0, Obj ) if ( Ndr_ObjIsType(p, Obj, WLC_OBJ_PI) || Ndr_ObjIsType(p, Obj, WLC_OBJ_PO) ) {} else
////////////////////////////////////////////////////////////////////////
/// INTERNAL PROCEDURES ///
////////////////////////////////////////////////////////////////////////
static inline void Ndr_DataResize( Ndr_Data_t * p, int Add )
{
if ( p->nSize + Add <= p->nCap )
return;
p->nCap *= 2;
p->pHead = (unsigned char*)realloc( p->pHead, p->nCap );
p->pBody = (unsigned int *)realloc( p->pBody, 4*p->nCap );
}
static inline void Ndr_DataPushRange( Ndr_Data_t * p, int RangeLeft, int RangeRight, int fSignedness )
{
if ( fSignedness )
{
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
Ndr_DataPush( p, NDR_RANGE, RangeRight );
Ndr_DataPush( p, NDR_RANGE, fSignedness );
return;
}
if ( !RangeLeft && !RangeRight )
return;
if ( RangeLeft == RangeRight )
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
else
{
Ndr_DataPush( p, NDR_RANGE, RangeLeft );
Ndr_DataPush( p, NDR_RANGE, RangeRight );
}
}
static inline void Ndr_DataPushArray( Ndr_Data_t * p, int Type, int nArray, int * pArray )
{
if ( !nArray )
return;
assert( nArray > 0 );
Ndr_DataResize( p, nArray );
memset( p->pHead + p->nSize, Type, nArray );
memcpy( p->pBody + p->nSize, pArray, 4*nArray );
p->nSize += nArray;
}
static inline void Ndr_DataPushString( Ndr_Data_t * p, int Type, char * pFunc )
{
if ( !pFunc )
return;
Ndr_DataPushArray( p, Type, (strlen(pFunc) + 4) / 4, (int *)pFunc );
}
////////////////////////////////////////////////////////////////////////
/// VERILOG WRITING ///
////////////////////////////////////////////////////////////////////////
static inline int Ndr_ObjReadEntry( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntry(p, Ent);
return -1;
}
static inline int Ndr_ObjReadArray( Ndr_Data_t * p, int Obj, int Type, int ** ppStart )
{
int Ent, Counter = 0; *ppStart = NULL;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
{
Counter++;
if ( *ppStart == NULL )
*ppStart = (int *)p->pBody + Ent;
}
else if ( *ppStart )
return Counter;
return Counter;
}
static inline int Ndr_ObjIsType( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == NDR_OPERTYPE )
return (int)(Ndr_DataEntry(p, Ent) == Type);
return -1;
}
static inline int Ndr_ObjReadBody( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntry(p, Ent);
return -1;
}
static inline int * Ndr_ObjReadBodyP( Ndr_Data_t * p, int Obj, int Type )
{
int Ent;
Ndr_ObjForEachEntry( p, Obj, Ent )
if ( Ndr_DataType(p, Ent) == Type )
return Ndr_DataEntryP(p, Ent);
return NULL;
}
static inline void Ndr_ObjWriteRange( Ndr_Data_t * p, int Obj, FILE * pFile )
{
int * pArray, nArray = Ndr_ObjReadArray( p, Obj, NDR_RANGE, &pArray );
if ( nArray == 0 )
return;
if ( nArray == 3 )
fprintf( pFile, "signed " );
if ( nArray == 1 )
fprintf( pFile, "[%d] ", pArray[0] );
else
fprintf( pFile, "[%d:%d] ", pArray[0], pArray[1] );
}
static inline char * Ndr_ObjReadOutName( Ndr_Data_t * p, int Obj, char ** pNames )
{
return pNames[Ndr_ObjReadBody(p, Obj, NDR_OUTPUT)];
}
static inline char * Ndr_ObjReadInName( Ndr_Data_t * p, int Obj, char ** pNames )
{
return pNames[Ndr_ObjReadBody(p, Obj, NDR_INPUT)];
}
// to write signal names, this procedure takes a mapping of name IDs into actual char-strings (pNames)
static inline void Ndr_ModuleWriteVerilog( char * pFileName, void * pModule, char ** pNames )
{
Ndr_Data_t * p = (Ndr_Data_t *)pModule;
int Mod = 0, Obj, nArray, * pArray, fFirst = 1;
FILE * pFile = pFileName ? fopen( pFileName, "wb" ) : stdout;
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; }
fprintf( pFile, "\nmodule %s (\n ", pNames[Ndr_ObjReadEntry(p, 0, NDR_NAME)] );
Ndr_ModForEachPi( p, Mod, Obj )
fprintf( pFile, "%s, ", Ndr_ObjReadOutName(p, Obj, pNames) );
fprintf( pFile, "\n " );
Ndr_ModForEachPo( p, Mod, Obj )
fprintf( pFile, "%s%s", fFirst ? "":", ", Ndr_ObjReadInName(p, Obj, pNames) ), fFirst = 0;
fprintf( pFile, "\n);\n\n" );
Ndr_ModForEachPi( p, Mod, Obj )
{
fprintf( pFile, " input " );
Ndr_ObjWriteRange( p, Obj, pFile );
fprintf( pFile, "%s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
}
Ndr_ModForEachPo( p, Mod, Obj )
{
fprintf( pFile, " output " );
Ndr_ObjWriteRange( p, Obj, pFile );
fprintf( pFile, "%s;\n", Ndr_ObjReadInName(p, Obj, pNames) );
}
Ndr_ModForEachNode( p, Mod, Obj )
{
fprintf( pFile, " wire " );
Ndr_ObjWriteRange( p, Obj, pFile );
fprintf( pFile, "%s;\n", Ndr_ObjReadOutName(p, Obj, pNames) );
}
fprintf( pFile, "\n" );
Ndr_ModForEachNode( p, Mod, Obj )
{
fprintf( pFile, " assign %s = ", Ndr_ObjReadOutName(p, Obj, pNames) );
nArray = Ndr_ObjReadArray( p, Obj, NDR_INPUT, &pArray );
if ( nArray == 0 )
fprintf( pFile, "%s;\n", (char *)Ndr_ObjReadBodyP(p, Obj, NDR_FUNCTION) );
else if ( nArray == 1 && Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == WLC_OBJ_BUF )
fprintf( pFile, "%s;\n", pNames[pArray[0]] );
else if ( nArray == 1 )
fprintf( pFile, "%s %s;\n", Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[0]] );
else if ( nArray == 2 )
fprintf( pFile, "%s %s %s;\n", pNames[pArray[0]], Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)), pNames[pArray[1]] );
else if ( Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE) == WLC_OBJ_MUX )
fprintf( pFile, "%s ? %s : %s;\n", pNames[pArray[0]], pNames[pArray[1]], pNames[pArray[2]] );
else
fprintf( pFile, "<cannot write operation %s>;\n", Ndr_OperName(Ndr_ObjReadBody(p, Obj, NDR_OPERTYPE)) );
}
fprintf( pFile, "\nendmodule\n\n" );
fclose( pFile );
}
////////////////////////////////////////////////////////////////////////
/// EXTERNAL PROCEDURES ///
////////////////////////////////////////////////////////////////////////
// creating a new module (returns pointer to the memory buffer storing the module info)
static inline void * Ndr_ModuleCreate( int Name )
{
Ndr_Data_t * p = malloc( sizeof(Ndr_Data_t) );
p->nSize = 0;
p->nCap = 16;
p->pHead = malloc( p->nCap );
p->pBody = malloc( p->nCap * 4 );
Ndr_DataPush( p, NDR_MODULE, 0 );
Ndr_DataPush( p, NDR_NAME, Name );
Ndr_DataAddTo( p, 0, p->nSize );
assert( p->nSize == 2 );
assert( Name );
return p;
}
// adding a new object (input/output/flop/intenal node) to an already module module
static inline void Ndr_ModuleAddObject( void * pModule, int Type, int InstName,
int RangeLeft, int RangeRight, int fSignedness,
int nInputs, int * pInputs,
int nOutputs, int * pOutputs,
char * pFunction )
{
Ndr_Data_t * p = (Ndr_Data_t *)pModule;
int Obj = p->nSize; assert( Type != 0 );
Ndr_DataResize( p, 6 );
Ndr_DataPush( p, NDR_OBJECT, 0 );
Ndr_DataPush( p, NDR_OPERTYPE, Type );
Ndr_DataPushRange( p, RangeLeft, RangeRight, fSignedness );
if ( InstName )
Ndr_DataPush( p, NDR_NAME, InstName );
Ndr_DataPushArray( p, NDR_INPUT, nInputs, pInputs );
Ndr_DataPushArray( p, NDR_OUTPUT, nOutputs, pOutputs );
Ndr_DataPushString( p, NDR_FUNCTION, pFunction );
Ndr_DataAddTo( p, Obj, p->nSize - Obj );
Ndr_DataAddTo( p, 0, p->nSize - Obj );
assert( (int)p->pBody[0] == p->nSize );
}
// deallocate the memory buffer
static inline void Ndr_ModuleDelete( void * pModule )
{
Ndr_Data_t * p = (Ndr_Data_t *)pModule;
if ( !p ) return;
free( p->pHead );
free( p->pBody );
free( p );
}
////////////////////////////////////////////////////////////////////////
/// FILE READING AND WRITING ///
////////////////////////////////////////////////////////////////////////
// file reading/writing
static inline void * Ndr_ModuleRead( char * pFileName )
{
Ndr_Data_t * p; int nFileSize, RetValue;
FILE * pFile = fopen( pFileName, "rb" );
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for reading.\n", pFileName ); return NULL; }
// check file size
fseek( pFile, 0, SEEK_END );
nFileSize = ftell( pFile );
assert( nFileSize % 5 == 0 );
rewind( pFile );
// create structure
p = malloc( sizeof(Ndr_Data_t) );
p->nSize = p->nCap = nFileSize / 5;
p->pHead = malloc( p->nCap );
p->pBody = malloc( p->nCap * 4 );
RetValue = fread( p->pBody, 4, p->nCap, pFile );
RetValue = fread( p->pHead, 1, p->nCap, pFile );
assert( p->nSize == (int)p->pBody[0] );
fclose( pFile );
return p;
}
static inline void Ndr_ModuleWrite( char * pFileName, void * pModule )
{
Ndr_Data_t * p = (Ndr_Data_t *)pModule; int RetValue;
FILE * pFile = fopen( pFileName, "wb" );
if ( pFile == NULL ) { printf( "Cannot open file \"%s\" for writing.\n", pFileName ); return; }
RetValue = fwrite( p->pBody, 4, p->pBody[0], pFile );
RetValue = fwrite( p->pHead, 1, p->pBody[0], pFile );
fclose( pFile );
}
////////////////////////////////////////////////////////////////////////
/// TESTING PROCEDURE ///
////////////////////////////////////////////////////////////////////////
// This testing procedure creates and writes into a Verilog file the following module
// module add10 ( input [3:0] a, output [3:0] s );
// wire [3:0] const10 = 4'b1010;
// assign s = a + const10;
// endmodule
static inline void Ndr_ModuleTest()
{
// name IDs
int NameIdA = 2;
int NameIdS = 3;
int NameIdC = 4;
// array of fanins of node s
int Fanins[2] = { NameIdA, NameIdC };
// map name IDs into char strings
char * ppNames[5] = { NULL, "add10", "a", "s", "const10" };
// create a new module
void * pModule = Ndr_ModuleCreate( 1 );
// add objects to the modele
Ndr_ModuleAddObject( pModule, WLC_OBJ_PI, 0, 3, 0, 0, 0, NULL, 1, &NameIdA, NULL ); // no fanins
Ndr_ModuleAddObject( pModule, WLC_OBJ_CONST, 0, 3, 0, 0, 0, NULL, 1, &NameIdC, "4'b1010" ); // no fanins
Ndr_ModuleAddObject( pModule, WLC_OBJ_ARI_ADD, 0, 3, 0, 0, 2, Fanins, 1, &NameIdS, NULL ); // fanins are a and const10
Ndr_ModuleAddObject( pModule, WLC_OBJ_PO, 0, 3, 0, 0, 1, &NameIdS, 0, NULL, NULL ); // fanin is a
// write Verilog for verification
Ndr_ModuleWriteVerilog( NULL, pModule, ppNames );
Ndr_ModuleDelete( pModule );
}
//ABC_NAMESPACE_HEADER_END
#endif
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment