Commit 924dcb4f by Alan Mishchenko

Added several knobs to control QoR in &nf.

parent 22640552
......@@ -287,6 +287,8 @@ struct Jf_Par_t_
int DelayTarget;
int fAreaOnly;
int fPinPerm;
int fPinQuick;
int fPinFilter;
int fOptEdge;
int fUseMux7;
int fPower;
......
......@@ -162,7 +162,7 @@ static inline int Nf_CfgCompl( Nf_Cfg_t Cfg, int i )
/**Function*************************************************************
Synopsis [Sort inputs by delay.]
Synopsis []
Description []
......@@ -171,46 +171,91 @@ static inline int Nf_CfgCompl( Nf_Cfg_t Cfg, int i )
SeeAlso []
***********************************************************************/
void Nf_StoCreateGateAdd( Nf_Man_t * pMan, word uTruth, int * pFans, int nFans, int CellId )
int Nf_StoCellIsDominated( Mio_Cell2_t * pCell, int * pFans, word * pProf )
{
Vec_Int_t * vArray;
Nf_Cfg_t Mat = Nf_Int2Cfg(0);
int i, GateId, Entry, fCompl = (int)(uTruth & 1);
int k;
if ( pCell->Area < pProf[0] )
return 0;
for ( k = 0; k < (int)pCell->nFanins; k++ )
if ( pCell->Delays[Abc_Lit2Var(pFans[k])] < pProf[k+1] )
return 0;
return 1; // pCell is dominated
}
void Nf_StoCreateGateAdd( Nf_Man_t * pMan, word uTruth, int * pFans, int nFans, int CellId, Vec_Wec_t * vProfs, Vec_Wrd_t * vStore )
{
Vec_Int_t * vArray, * vArrayProfs = NULL;
Mio_Cell2_t * pCell = Nf_ManCell( pMan, CellId );
int i, k, GateId, Entry, fCompl = (int)(uTruth & 1);
word uFunc = fCompl ? ~uTruth : uTruth;
int iFunc = Vec_MemHashInsert( pMan->vTtMem, &uFunc );
Nf_Cfg_t Mat = Nf_Int2Cfg(0);
// get match array
if ( iFunc == Vec_WecSize(pMan->vTt2Match) )
Vec_WecPushLevel( pMan->vTt2Match );
vArray = Vec_WecEntry( pMan->vTt2Match, iFunc );
// create match
Mat.fCompl = fCompl;
assert( nFans < 7 );
assert( nFans == (int)pCell->nFanins );
for ( i = 0; i < nFans; i++ )
{
Mat.Perm |= (unsigned)(i << (Abc_Lit2Var(pFans[i]) << 2));
Mat.Phase |= (unsigned)(Abc_LitIsCompl(pFans[i]) << Abc_Lit2Var(pFans[i]));
}
if ( pMan->pPars->fPinPerm ) // use pin-permutation (slower but good for delay when pin-delays differ)
// check other profiles
if ( pMan->pPars->fPinFilter )
{
Vec_IntPush( vArray, CellId );
Vec_IntPush( vArray, Nf_Cfg2Int(Mat) );
return;
// get profile array
assert( Vec_WecSize(pMan->vTt2Match) == Vec_WecSize(vProfs) );
if ( iFunc == Vec_WecSize(vProfs) )
Vec_WecPushLevel( vProfs );
vArrayProfs = Vec_WecEntry( vProfs, iFunc );
assert( Vec_IntSize(vArray) == 2 * Vec_IntSize(vArrayProfs) );
// skip dominated matches
Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
if ( Nf_Int2Cfg(Entry).Phase == Mat.Phase && Nf_Int2Cfg(Entry).fCompl == Mat.fCompl )
{
int Offset = Vec_IntEntry(vArrayProfs, i/2);
word * pProf = Vec_WrdEntryP(vStore, Offset);
if ( Nf_StoCellIsDominated(pCell, pFans, pProf) )
return;
}
}
// check pin permutation
if ( !pMan->pPars->fPinPerm ) // do not use pin-permutation (improves delay when pin-delays differ)
{
if ( pMan->pPars->fPinQuick ) // reduce the number of matches agressively
{
Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
if ( GateId == CellId && Abc_TtBitCount8[Nf_Int2Cfg(Entry).Phase] == Abc_TtBitCount8[Mat.Phase] )
return;
}
else // reduce the number of matches less agressively
{
Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
if ( GateId == CellId && Nf_Int2Cfg(Entry).Phase == Mat.Phase )
return;
}
}
// check if the same one exists
Vec_IntForEachEntryDouble( vArray, GateId, Entry, i )
if ( GateId == CellId && Nf_Int2Cfg(Entry).Phase == Mat.Phase )
break;
if ( i == Vec_IntSize(vArray) )
// save data and profile
Vec_IntPush( vArray, CellId );
Vec_IntPush( vArray, Nf_Cfg2Int(Mat) );
// add delay profile
if ( pMan->pPars->fPinFilter )
{
Vec_IntPush( vArray, CellId );
Vec_IntPush( vArray, Nf_Cfg2Int(Mat) );
Vec_IntPush( vArrayProfs, Vec_WrdSize(vStore) );
Vec_WrdPush( vStore, pCell->Area );
for ( k = 0; k < nFans; k++ )
Vec_WrdPush( vStore, pCell->Delays[Abc_Lit2Var(pFans[k])] );
}
}
void Nf_StoCreateGateMaches( Nf_Man_t * pMan, Mio_Cell2_t * pCell, int ** pComp, int ** pPerm, int * pnPerms )
void Nf_StoCreateGateMaches( Nf_Man_t * pMan, Mio_Cell2_t * pCell, int ** pComp, int ** pPerm, int * pnPerms, Vec_Wec_t * vProfs, Vec_Wrd_t * vStore )
{
int Perm[NF_LEAF_MAX], * Perm1, * Perm2;
int nPerms = pnPerms[pCell->nFanins];
int nMints = (1 << pCell->nFanins);
word tCur, tTemp1, tTemp2;
int i, p, c;
assert( pCell->nFanins <= 6 );
for ( i = 0; i < (int)pCell->nFanins; i++ )
Perm[i] = Abc_Var2Lit( i, 0 );
tCur = tTemp1 = pCell->uTruth;
......@@ -219,7 +264,7 @@ void Nf_StoCreateGateMaches( Nf_Man_t * pMan, Mio_Cell2_t * pCell, int ** pComp,
tTemp2 = tCur;
for ( c = 0; c < nMints; c++ )
{
Nf_StoCreateGateAdd( pMan, tCur, Perm, pCell->nFanins, pCell->Id );
Nf_StoCreateGateAdd( pMan, tCur, Perm, pCell->nFanins, pCell->Id, vProfs, vStore );
// update
tCur = Abc_Tt6Flip( tCur, pComp[pCell->nFanins][c] );
Perm1 = Perm + pComp[pCell->nFanins][c];
......@@ -239,9 +284,11 @@ void Nf_StoCreateGateMaches( Nf_Man_t * pMan, Mio_Cell2_t * pCell, int ** pComp,
void Nf_StoDeriveMatches( Nf_Man_t * p, int fVerbose )
{
// abctime clk = Abc_Clock();
int * pComp[7];
int * pPerm[7];
int nPerms[7], i;
Vec_Wec_t * vProfs = Vec_WecAlloc( 1000 );
Vec_Wrd_t * vStore = Vec_WrdAlloc( 10000 );
int * pComp[7], * pPerm[7], nPerms[7], i;
Vec_WecPushLevel( vProfs );
Vec_WecPushLevel( vProfs );
for ( i = 1; i <= 6; i++ )
pComp[i] = Extra_GreyCodeSchedule( i );
for ( i = 1; i <= 6; i++ )
......@@ -250,11 +297,13 @@ void Nf_StoDeriveMatches( Nf_Man_t * p, int fVerbose )
nPerms[i] = Extra_Factorial( i );
p->pCells = Mio_CollectRootsNewDefault2( 6, &p->nCells, fVerbose );
for ( i = 2; i < p->nCells; i++ )
Nf_StoCreateGateMaches( p, p->pCells + i, pComp, pPerm, nPerms );
Nf_StoCreateGateMaches( p, p->pCells + i, pComp, pPerm, nPerms, vProfs, vStore );
for ( i = 1; i <= 6; i++ )
ABC_FREE( pComp[i] );
for ( i = 1; i <= 6; i++ )
ABC_FREE( pPerm[i] );
Vec_WecFree( vProfs );
Vec_WrdFree( vStore );
// Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
}
//void Nf_StoPrintOne( Nf_Man_t * p, int Count, int t, int i, int GateId, Pf_Mat_t Mat )
......@@ -2108,6 +2157,8 @@ void Nf_ManSetDefaultPars( Jf_Par_t * pPars )
pPars->DelayTarget = -1;
pPars->fAreaOnly = 0;
pPars->fPinPerm = 0;
pPars->fPinQuick = 0;
pPars->fPinFilter = 0;
pPars->fOptEdge = 1;
pPars->fCoarsen = 0;
pPars->fCutMin = 1;
......@@ -2163,10 +2214,6 @@ Gia_Man_t * Nf_ManPerformMapping( Gia_Man_t * pGia, Jf_Par_t * pPars )
}
pNew = Nf_ManDeriveMapping( p );
Nf_StoDelete( p );
if ( pCls != pGia )
Gia_ManStop( pCls );
if ( pNew == NULL )
return Gia_ManDup( pGia );
return pNew;
}
......
......@@ -26490,16 +26490,16 @@ int Abc_CommandAbc9Put( Abc_Frame_t * pAbc, int argc, char ** argv )
Abc_Print( -1, "Empty network.\n" );
return 1;
}
if ( Gia_ManHasMapping(pAbc->pGia) || pAbc->pGia->pMuxes )
{
extern Abc_Ntk_t * Abc_NtkFromMappedGia( Gia_Man_t * p );
pNtk = Abc_NtkFromMappedGia( pAbc->pGia );
}
else if ( Gia_ManHasCellMapping(pAbc->pGia) )
if ( Gia_ManHasCellMapping(pAbc->pGia) )
{
extern Abc_Ntk_t * Abc_NtkFromCellMappedGia( Gia_Man_t * p );
pNtk = Abc_NtkFromCellMappedGia( pAbc->pGia );
}
else if ( Gia_ManHasMapping(pAbc->pGia) || pAbc->pGia->pMuxes )
{
extern Abc_Ntk_t * Abc_NtkFromMappedGia( Gia_Man_t * p );
pNtk = Abc_NtkFromMappedGia( pAbc->pGia );
}
else if ( Gia_ManHasDangling(pAbc->pGia) == 0 )
{
pMan = Gia_ManToAig( pAbc->pGia, 0 );
......@@ -34059,7 +34059,7 @@ int Abc_CommandAbc9Nf( Abc_Frame_t * pAbc, int argc, char ** argv )
Gia_Man_t * pNew; int c;
Nf_ManSetDefaultPars( pPars );
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "KCFARLEDQWapkvwh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "KCFARLEDQWakpqfvwh" ) ) != EOF )
{
switch ( c )
{
......@@ -34182,11 +34182,17 @@ int Abc_CommandAbc9Nf( Abc_Frame_t * pAbc, int argc, char ** argv )
case 'a':
pPars->fAreaOnly ^= 1;
break;
case 'k':
pPars->fCoarsen ^= 1;
break;
case 'p':
pPars->fPinPerm ^= 1;
break;
case 'k':
pPars->fCoarsen ^= 1;
case 'q':
pPars->fPinQuick ^= 1;
break;
case 'f':
pPars->fPinFilter ^= 1;
break;
case 'v':
pPars->fVerbose ^= 1;
......@@ -34226,22 +34232,24 @@ usage:
sprintf(Buffer, "best possible" );
else
sprintf(Buffer, "%d", pPars->DelayTarget );
Abc_Print( -2, "usage: &nf [-KCFARLEDQ num] [-akpvwh]\n" );
Abc_Print( -2, "usage: &nf [-KCFARLEDQ num] [-akpqfvwh]\n" );
Abc_Print( -2, "\t performs technology mapping of the network\n" );
Abc_Print( -2, "\t-K num : LUT size for the mapping (2 <= K <= %d) [default = %d]\n", pPars->nLutSizeMax, pPars->nLutSize );
Abc_Print( -2, "\t-C num : the max number of priority cuts (1 <= C <= %d) [default = %d]\n", pPars->nCutNumMax, pPars->nCutNum );
Abc_Print( -2, "\t-F num : the number of area flow rounds [default = %d]\n", pPars->nRounds );
Abc_Print( -2, "\t-A num : the number of exact area rounds (when \'-a\' is used) [default = %d]\n", pPars->nRoundsEla );
Abc_Print( -2, "\t-R num : the delay relaxation ratio (num >= 0) [default = %d]\n", pPars->nRelaxRatio );
Abc_Print( -2, "\t-L num : the fanout limit for coarsening XOR/MUX (num >= 2) [default = %d]\n", pPars->nCoarseLimit );
Abc_Print( -2, "\t-E num : the area/edge tradeoff parameter (0 <= num <= 100) [default = %d]\n", pPars->nAreaTuner );
Abc_Print( -2, "\t-D num : sets the delay constraint for the mapping [default = %s]\n", Buffer );
Abc_Print( -2, "\t-Q num : internal parameter impacting area of the mapping [default = %s]\n", Buffer );
Abc_Print( -2, "\t-a : toggles area-oriented mapping [default = %s]\n", pPars->fAreaOnly? "yes": "no" );
Abc_Print( -2, "\t-k : toggles coarsening the subject graph [default = %s]\n", pPars->fCoarsen? "yes": "no" );
Abc_Print( -2, "\t-p : toggles pin-permutation (useful when pin-delays differ) [default = %s]\n", pPars->fPinPerm? "yes": "no" );
Abc_Print( -2, "\t-v : toggles verbose output [default = %s]\n", pPars->fVerbose? "yes": "no" );
Abc_Print( -2, "\t-w : toggles very verbose output [default = %s]\n", pPars->fVeryVerbose? "yes": "no" );
Abc_Print( -2, "\t-K num : LUT size for the mapping (2 <= K <= %d) [default = %d]\n", pPars->nLutSizeMax, pPars->nLutSize );
Abc_Print( -2, "\t-C num : the max number of priority cuts (1 <= C <= %d) [default = %d]\n", pPars->nCutNumMax, pPars->nCutNum );
Abc_Print( -2, "\t-F num : the number of area flow rounds [default = %d]\n", pPars->nRounds );
Abc_Print( -2, "\t-A num : the number of exact area rounds (when \'-a\' is used) [default = %d]\n", pPars->nRoundsEla );
Abc_Print( -2, "\t-R num : the delay relaxation ratio (num >= 0) [default = %d]\n", pPars->nRelaxRatio );
Abc_Print( -2, "\t-L num : the fanout limit for coarsening XOR/MUX (num >= 2) [default = %d]\n", pPars->nCoarseLimit );
Abc_Print( -2, "\t-E num : the area/edge tradeoff parameter (0 <= num <= 100) [default = %d]\n", pPars->nAreaTuner );
Abc_Print( -2, "\t-D num : sets the delay constraint for the mapping [default = %s]\n", Buffer );
Abc_Print( -2, "\t-Q num : internal parameter impacting area of the mapping [default = %d]\n", pPars->nReqTimeFlex );
Abc_Print( -2, "\t-a : toggles area-oriented mapping [default = %s]\n", pPars->fAreaOnly? "yes": "no" );
Abc_Print( -2, "\t-k : toggles coarsening the subject graph [default = %s]\n", pPars->fCoarsen? "yes": "no" );
Abc_Print( -2, "\t-p : toggles pin permutation (more matches - better quality) [default = %s]\n", pPars->fPinPerm? "yes": "no" );
Abc_Print( -2, "\t-q : toggles quick mapping (fewer matches - worse quality) [default = %s]\n", pPars->fPinQuick? "yes": "no" );
Abc_Print( -2, "\t-f : toggles filtering matches (useful with unit delay model) [default = %s]\n", pPars->fPinFilter? "yes": "no" );
Abc_Print( -2, "\t-v : toggles verbose output [default = %s]\n", pPars->fVerbose? "yes": "no" );
Abc_Print( -2, "\t-w : toggles very verbose output [default = %s]\n", pPars->fVeryVerbose? "yes": "no" );
Abc_Print( -2, "\t-h : prints the command usage\n");
return 1;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment