Commit 689cbe90 by Alan Mishchenko

Version abc80927

parent 91effd81
......@@ -3270,6 +3270,10 @@ SOURCE=.\src\aig\saig\saig.h
# End Source File
# Begin Source File
SOURCE=.\src\aig\saig\saigAbs.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\saig\saigBmc.c
# End Source File
# Begin Source File
......@@ -3290,6 +3294,10 @@ SOURCE=.\src\aig\saig\saigIoa.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\saig\saigLoc.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\saig\saigMiter.c
# End Source File
# Begin Source File
......@@ -3488,6 +3496,10 @@ SOURCE=.\src\aig\ssw\sswSimSat.c
SOURCE=.\src\aig\ssw\sswSweep.c
# End Source File
# Begin Source File
SOURCE=.\src\aig\ssw\sswUnique.c
# End Source File
# End Group
# End Group
# End Group
......
......@@ -480,6 +480,7 @@ extern int Aig_ObjCollectSuper( Aig_Obj_t * pObj, Vec_Ptr_t * vSuper
/*=== aigDup.c ==========================================================*/
extern Aig_Man_t * Aig_ManDupSimple( Aig_Man_t * p );
extern Aig_Man_t * Aig_ManDupSimpleDfs( Aig_Man_t * p );
extern Aig_Man_t * Aig_ManDupSimpleDfsPart( Aig_Man_t * p, Vec_Ptr_t * vPis, Vec_Ptr_t * vPos );
extern Aig_Man_t * Aig_ManDupOrdered( Aig_Man_t * p );
extern Aig_Man_t * Aig_ManDupExor( Aig_Man_t * p );
extern Aig_Man_t * Aig_ManDupDfs( Aig_Man_t * p );
......
......@@ -194,6 +194,43 @@ Aig_Man_t * Aig_ManDupSimpleDfs( Aig_Man_t * p )
/**Function*************************************************************
Synopsis [Duplicates part of the AIG manager.]
Description [Orders nodes as follows: PIs, ANDs, POs.]
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Aig_ManDupSimpleDfsPart( Aig_Man_t * p, Vec_Ptr_t * vPis, Vec_Ptr_t * vPos )
{
Aig_Man_t * pNew;
Aig_Obj_t * pObj, * pObjNew;
int i;
// create the new manager
pNew = Aig_ManStart( Aig_ManObjNumMax(p) );
// create the PIs
Aig_ManCleanData( p );
Aig_ManConst1(p)->pData = Aig_ManConst1( pNew );
Vec_PtrForEachEntry( vPis, pObj, i )
pObj->pData = Aig_ObjCreatePi( pNew );
// duplicate internal nodes
Vec_PtrForEachEntry( vPos, pObj, i )
{
pObjNew = Aig_ManDupSimpleDfs_rec( pNew, p, Aig_ObjFanin0(pObj) );
pObjNew = Aig_NotCond( pObjNew, Aig_ObjFaninC0(pObj) );
Aig_ObjCreatePo( pNew, pObjNew );
}
Aig_ManSetRegNum( pNew, 0 );
// check the resulting network
if ( !Aig_ManCheck(pNew) )
printf( "Aig_ManDupSimple(): The check has failed.\n" );
return pNew;
}
/**Function*************************************************************
Synopsis [Duplicates the AIG manager.]
Description [Assumes topological ordering of the nodes.]
......
......@@ -56,6 +56,7 @@ void Fra_SecSetDefaultParams( Fra_Sec_t * p )
p->fInterpolation = 1; // enables interpolation
p->fReachability = 1; // enables BDD based reachability
p->fStopOnFirstFail = 1; // enables stopping after first output of a miter has failed to prove
p->fUseNewProver = 0; // enables new prover
p->fSilent = 0; // disables all output
p->fVerbose = 0; // enables verbose reporting of statistics
p->fVeryVerbose = 0; // enables very verbose reporting
......
SRC += src/aig/saig/saigBmc.c \
SRC += src/aig/saig/saigAbs.c \
src/aig/saig/saigBmc.c \
src/aig/saig/saigCone.c \
src/aig/saig/saigDup.c \
src/aig/saig/saigHaig.c \
src/aig/saig/saigIoa.c \
src/aig/saig/saigLoc.c \
src/aig/saig/saigMiter.c \
src/aig/saig/saigPhase.c \
src/aig/saig/saigRetFwd.c \
......
......@@ -84,6 +84,7 @@ extern int Saig_ManBmcSimple( Aig_Man_t * pAig, int nFrames, int n
extern void Saig_ManPrintCones( Aig_Man_t * p );
/*=== saigDup.c ==========================================================*/
extern Aig_Man_t * Said_ManDupOrpos( Aig_Man_t * p );
extern Aig_Man_t * Saig_ManAbstraction( Aig_Man_t * pAig, Vec_Int_t * vFlops );
/*=== saigHaig.c ==========================================================*/
extern Aig_Man_t * Saig_ManHaigRecord( Aig_Man_t * p, int nIters, int nSteps, int fRetimingOnly, int fAddBugs, int fUseCnf, int fVerbose );
/*=== saigIoa.c ==========================================================*/
......
......@@ -34,8 +34,7 @@
Synopsis [Create timeframes of the manager for BMC.]
Description [The resulting manager is combinational. The primary inputs
corresponding to register outputs are ordered first. POs correspond to \
Description [The resulting manager is combinational. POs correspond to \
the property outputs in each time-frame.]
SideEffects []
......@@ -106,8 +105,7 @@ int Saig_ManFramesCount_rec( Aig_Man_t * p, Aig_Obj_t * pObj )
Synopsis [Create timeframes of the manager for BMC.]
Description [The resulting manager is combinational. The primary inputs
corresponding to register outputs are ordered first. POs correspond to
Description [The resulting manager is combinational. POs correspond to
the property outputs in each time-frame.
The unrolling is stopped as soon as the number of nodes in the frames
exceeds the given maximum size.]
......
......@@ -67,6 +67,66 @@ Aig_Man_t * Said_ManDupOrpos( Aig_Man_t * pAig )
return pAigNew;
}
/**Function*************************************************************
Synopsis [Numbers of flops included in the abstraction.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
Aig_Man_t * Saig_ManAbstraction( Aig_Man_t * pAig, Vec_Int_t * vFlops )
{
Aig_Man_t * pAigNew;
Aig_Obj_t * pObj, * pObjLi, * pObjLo;
int i, Entry;
// start the new manager
pAigNew = Aig_ManStart( Aig_ManNodeNum(pAig) );
// map the constant node
Aig_ManConst1(pAig)->pData = Aig_ManConst1( pAigNew );
// label included flops
Vec_IntForEachEntry( vFlops, Entry, i )
{
pObjLi = Saig_ManLi( pAig, Entry );
assert( pObjLi->fMarkA == 0 );
pObjLi->fMarkA = 1;
pObjLo = Saig_ManLo( pAig, Entry );
assert( pObjLo->fMarkA == 0 );
pObjLo->fMarkA = 1;
}
// create variables for PIs
Aig_ManForEachPi( pAig, pObj, i )
if ( !pObj->fMarkA )
pObj->pData = Aig_ObjCreatePi( pAigNew );
// create variables for LOs
Aig_ManForEachPi( pAig, pObj, i )
if ( pObj->fMarkA )
{
pObj->fMarkA = 0;
pObj->pData = Aig_ObjCreatePi( pAigNew );
}
// add internal nodes of this frame
Aig_ManForEachNode( pAig, pObj, i )
pObj->pData = Aig_And( pAigNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
// create POs
Aig_ManForEachPo( pAig, pObj, i )
if ( !pObj->fMarkA )
Aig_ObjCreatePo( pAigNew, Aig_ObjChild0Copy(pObj) );
// create LIs
Aig_ManForEachPo( pAig, pObj, i )
if ( pObj->fMarkA )
{
pObj->fMarkA = 0;
Aig_ObjCreatePo( pAigNew, Aig_ObjChild0Copy(pObj) );
}
Aig_ManCleanup( pAigNew );
Aig_ManSetRegNum( pAigNew, Vec_IntSize(vFlops) );
return pAigNew;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
......
/**CFile****************************************************************
FileName [saigLoc.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Sequential AIG package.]
Synopsis [Localization package.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: saigLoc.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
#include "saig.h"
#include "cnf.h"
#include "satSolver.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Performs localization by unrolling timeframes backward.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Saig_ManLocalization( Aig_Man_t * p, int nFramesMax, int nConfMax, int fVerbose )
{
sat_solver * pSat;
Vec_Int_t * vTopVarNums;
Vec_Ptr_t * vTop, * vBot;
Cnf_Dat_t * pCnfTop, * pCnfBot;
Aig_Man_t * pPartTop, * pPartBot;
Aig_Obj_t * pObj, * pObjBot;
int i, f, clk, Lits[2], status, RetValue, nSatVarNum, nConfPrev;
assert( Saig_ManPoNum(p) == 1 );
Aig_ManSetPioNumbers( p );
// start the top by including the PO
vBot = Vec_PtrAlloc( 100 );
vTop = Vec_PtrAlloc( 100 );
Vec_PtrPush( vTop, Aig_ManPo(p, 0) );
// create the manager composed of one PI/PO pair
pPartTop = Aig_ManStart( 10 );
Aig_ObjCreatePo( pPartTop, Aig_ObjCreatePi(pPartTop) );
pCnfTop = Cnf_Derive( pPartTop, 0 );
// start the array of CNF variables
vTopVarNums = Vec_IntAlloc( 100 );
Vec_IntPush( vTopVarNums, pCnfTop->pVarNums[Aig_ManPi(pPartTop,0)->Id] );
// start the solver
pSat = Cnf_DataWriteIntoSolver( pCnfTop, 1, 0 );
// iterate backward unrolling
RetValue = -1;
nSatVarNum = pCnfTop->nVars;
if ( fVerbose )
printf( "Localization parameters: FramesMax = %5d. ConflictMax = %6d.\n", nFramesMax, nConfMax );
for ( f = 0; ; f++ )
{
clk = clock();
// get the bottom
Aig_SupportNodes( p, (Aig_Obj_t **)Vec_PtrArray(vTop), Vec_PtrSize(vTop), vBot );
// derive AIG for the part between top and bottom
pPartBot = Aig_ManDupSimpleDfsPart( p, vBot, vTop );
// convert it into CNF
pCnfBot = Cnf_Derive( pPartBot, Aig_ManPoNum(pPartBot) );
Cnf_DataLift( pCnfBot, nSatVarNum );
nSatVarNum += pCnfBot->nVars;
// stitch variables of top and bot
assert( Aig_ManPoNum(pPartBot) == Vec_IntSize(vTopVarNums) );
Aig_ManForEachPo( pPartBot, pObjBot, i )
{
Lits[0] = toLitCond( Vec_IntEntry(vTopVarNums, i), 0 );
Lits[1] = toLitCond( pCnfBot->pVarNums[pObjBot->Id], 1 );
if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
assert( 0 );
Lits[0] = toLitCond( Vec_IntEntry(vTopVarNums, i), 1 );
Lits[1] = toLitCond( pCnfBot->pVarNums[pObjBot->Id], 0 );
if ( !sat_solver_addclause( pSat, Lits, Lits+2 ) )
assert( 0 );
}
// add CNF to the SAT solver
for ( i = 0; i < pCnfBot->nClauses; i++ )
if ( !sat_solver_addclause( pSat, pCnfBot->pClauses[i], pCnfBot->pClauses[i+1] ) )
break;
if ( i < pCnfBot->nClauses )
{
// printf( "SAT solver became UNSAT after adding clauses.\n" );
RetValue = 1;
break;
}
// run the SAT solver
nConfPrev = pSat->stats.conflicts;
status = sat_solver_solve( pSat, NULL, NULL, (sint64)nConfMax, 0, 0, 0 );
if ( fVerbose )
{
printf( "%3d : PI = %5d. PO = %5d. AIG = %5d. Var = %6d. Conf = %6d. ",
f+1, Aig_ManPiNum(pPartBot), Aig_ManPoNum(pPartBot), Aig_ManNodeNum(pPartBot),
nSatVarNum, pSat->stats.conflicts-nConfPrev );
PRT( "Time", clock() - clk );
}
if ( status == l_Undef )
break;
if ( status == l_False )
{
RetValue = 1;
break;
}
assert( status == l_True );
if ( f == nFramesMax - 1 )
break;
// the problem is SAT - add more clauses
// create new set of POs to derive new top
Vec_PtrClear( vTop );
Vec_IntClear( vTopVarNums );
Vec_PtrForEachEntry( vBot, pObj, i )
{
assert( Aig_ObjIsPi(pObj) );
if ( Saig_ObjIsLo(p, pObj) )
{
pObjBot = pObj->pData;
assert( pObjBot != NULL );
Vec_PtrPush( vTop, Saig_ObjLoToLi(p, pObj) );
Vec_IntPush( vTopVarNums, pCnfBot->pVarNums[pObjBot->Id] );
}
}
// remove old top and replace it by bottom
Aig_ManStop( pPartTop );
pPartTop = pPartBot;
pPartBot = NULL;
Cnf_DataFree( pCnfTop );
pCnfTop = pCnfBot;
pCnfBot = NULL;
}
// printf( "Completed %d interations.\n", f+1 );
// cleanup
sat_solver_delete( pSat );
Aig_ManStop( pPartTop );
Cnf_DataFree( pCnfTop );
Aig_ManStop( pPartBot );
Cnf_DataFree( pCnfBot );
Vec_IntFree( vTopVarNums );
Vec_PtrFree( vTop );
Vec_PtrFree( vBot );
return RetValue;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
......@@ -10,4 +10,5 @@ SRC += src/aig/ssw/sswAig.c \
src/aig/ssw/sswSat.c \
src/aig/ssw/sswSim.c \
src/aig/ssw/sswSimSat.c \
src/aig/ssw/sswSweep.c
src/aig/ssw/sswSweep.c \
src/aig/ssw/sswUnique.c
......@@ -53,6 +53,7 @@ struct Ssw_Pars_t_
int fSkipCheck; // do not run equivalence check for unaffected cones
int fLatchCorr; // perform register correspondence
int fSemiFormal; // enable semiformal filtering
int fUniqueness; // enable uniqueness constraints
int fVerbose; // verbose stats
// optimized latch correspondence
int fLatchCorrOpt; // perform register correspondence (optimized)
......@@ -82,11 +83,15 @@ struct Ssw_Cex_t_
/// FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
/*=== sswAbs.c ==========================================================*/
extern Aig_Man_t * Saig_ManProofAbstraction( Aig_Man_t * p, int nFrames, int nConfMax, int fVerbose );
/*=== sswCore.c ==========================================================*/
extern void Ssw_ManSetDefaultParams( Ssw_Pars_t * p );
extern void Ssw_ManSetDefaultParamsLcorr( Ssw_Pars_t * p );
extern Aig_Man_t * Ssw_SignalCorrespondence( Aig_Man_t * pAig, Ssw_Pars_t * pPars );
extern Aig_Man_t * Ssw_LatchCorrespondence( Aig_Man_t * pAig, Ssw_Pars_t * pPars );
/*=== sswLoc.c ==========================================================*/
extern int Saig_ManLocalization( Aig_Man_t * p, int nFramesMax, int nConfMax, int fVerbose );
/*=== sswPart.c ==========================================================*/
extern Aig_Man_t * Ssw_SignalCorrespondencePart( Aig_Man_t * pAig, Ssw_Pars_t * pPars );
/*=== sswPairs.c ===================================================*/
......
......@@ -45,7 +45,7 @@ void Ssw_ManSetDefaultParams( Ssw_Pars_t * p )
p->nPartSize = 0; // size of the partition
p->nOverSize = 0; // size of the overlap between partitions
p->nFramesK = 1; // the induction depth
p->nFramesAddSim = 2; // additional frames to simulate
p->nFramesAddSim = 0; // additional frames to simulate
p->nConstrs = 0; // treat the last nConstrs POs as seq constraints
p->nBTLimit = 1000; // conflict limit at a node
p->nMinDomSize = 100; // min clock domain considered for optimization
......@@ -53,6 +53,7 @@ void Ssw_ManSetDefaultParams( Ssw_Pars_t * p )
p->fSkipCheck = 0; // do not run equivalence check for unaffected cones
p->fLatchCorr = 0; // performs register correspondence
p->fSemiFormal = 0; // enable semiformal filtering
p->fUniqueness = 0; // enable uniqueness constraints
p->fVerbose = 0; // verbose stats
// latch correspondence
p->fLatchCorrOpt = 0; // performs optimized register correspondence
......@@ -153,9 +154,9 @@ clk = clock();
RetValue = Ssw_ManSweep( p );
if ( p->pPars->fVerbose )
{
printf( "%3d : Const = %6d. Cl = %6d. LR = %6d. NR = %6d. F = %5d. ",
printf( "%3d : Const = %6d. Cl = %6d. LR = %6d. NR = %6d. U = %3d. F = %2d. ",
nIter, Ssw_ClassesCand1Num(p->ppClasses), Ssw_ClassesClassNum(p->ppClasses),
p->nConstrReduced, Aig_ManNodeNum(p->pFrames), p->nSatFailsReal );
p->nConstrReduced, Aig_ManNodeNum(p->pFrames), p->nUniques, p->nSatFailsReal );
if ( p->pPars->fSkipCheck )
printf( "Use = %5d. Skip = %5d. ",
p->nRefUse, p->nRefSkip );
......@@ -165,7 +166,7 @@ clk = clock();
Ssw_ManCleanup( p );
if ( !RetValue )
break;
/*
{
static int Flag = 0;
if ( Flag++ == 4 && nIter == 4 )
......@@ -176,6 +177,7 @@ clk = clock();
Aig_ManStop( pSRed );
}
}
*/
}
p->pPars->nIters = nIter + 1;
......
......@@ -78,6 +78,10 @@ struct Ssw_Man_t_
int nRecycleCalls; // the number of calls since last recycling
int nRecycles; // the number of time SAT solver was recycled
int nConeMax; // the maximum cone size
// uniqueness
Vec_Ptr_t * vCommon; // the set of common variables in the logic cones
int iOutputLit; // the output literal of the uniqueness constaint
int nUniques; // the number of uniqueness constaints used
// sequential simulator
Ssw_Sml_t * pSml;
// counter example storage
......@@ -205,10 +209,13 @@ extern Ssw_Sml_t * Ssw_SmlSimulateSeq( Aig_Man_t * pAig, int nPref, int nFrame
extern void Ssw_ManResimulateBit( Ssw_Man_t * p, Aig_Obj_t * pObj, Aig_Obj_t * pRepr );
extern void Ssw_ManResimulateWord( Ssw_Man_t * p, Aig_Obj_t * pCand, Aig_Obj_t * pRepr, int f );
/*=== sswSweep.c ===================================================*/
extern int Ssw_ManGetSatVarValue( Ssw_Man_t * p, Aig_Obj_t * pObj, int f );
extern int Ssw_ManSweepNode( Ssw_Man_t * p, Aig_Obj_t * pObj, int f, int fBmc );
extern int Ssw_ManSweepBmc( Ssw_Man_t * p );
extern int Ssw_ManSweep( Ssw_Man_t * p );
/*=== sswUnique.c ===================================================*/
extern int Ssw_ManUniqueOne( Ssw_Man_t * p, Aig_Obj_t * pRepr, Aig_Obj_t * pObj );
extern int Ssw_ManUniqueAddConstraint( Ssw_Man_t * p, Vec_Ptr_t * vCommon, int f1, int f2 );
#ifdef __cplusplus
}
......
......@@ -59,6 +59,8 @@ Ssw_Man_t * Ssw_ManCreate( Aig_Man_t * pAig, Ssw_Pars_t * pPars )
// SAT solving (latch corr only)
p->vUsedNodes = Vec_PtrAlloc( 1000 );
p->vUsedPis = Vec_PtrAlloc( 1000 );
p->vCommon = Vec_PtrAlloc( 100 );
p->iOutputLit = -1;
// allocate storage for sim pattern
p->nPatWords = Aig_BitWordNum( Saig_ManPiNum(pAig) * p->nFrames + Saig_ManRegNum(pAig) );
p->pPatWords = ALLOC( unsigned, p->nPatWords );
......@@ -190,6 +192,7 @@ void Ssw_ManStop( Ssw_Man_t * p )
Vec_PtrFree( p->vUsedNodes );
Vec_PtrFree( p->vUsedPis );
Vec_IntFree( p->vSatVars );
Vec_PtrFree( p->vCommon );
FREE( p->pNodeToFrames );
FREE( p->pPatWords );
free( p );
......
......@@ -42,7 +42,7 @@
int Ssw_NodesAreEquiv( Ssw_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
{
int nBTLimit = p->pPars->nBTLimit;
int pLits[2], RetValue, RetValue1, clk;//, status;
int pLits[3], nLits, RetValue, RetValue1, clk;//, status;
p->nSatCalls++;
// sanity checks
......@@ -59,8 +59,11 @@ int Ssw_NodesAreEquiv( Ssw_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
// solve under assumptions
// A = 1; B = 0 OR A = 1; B = 1
nLits = 2;
pLits[0] = toLitCond( Ssw_ObjSatNum(p,pOld), 0 );
pLits[1] = toLitCond( Ssw_ObjSatNum(p,pNew), pOld->fPhase == pNew->fPhase );
if ( p->iOutputLit > -1 )
pLits[nLits++] = p->iOutputLit;
if ( p->pPars->fPolarFlip )
{
if ( pOld->fPhase ) pLits[0] = lit_neg( pLits[0] );
......@@ -75,16 +78,19 @@ int Ssw_NodesAreEquiv( Ssw_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew )
}
clk = clock();
RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2,
RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + nLits,
(sint64)nBTLimit, (sint64)0, (sint64)0, (sint64)0 );
p->timeSat += clock() - clk;
if ( RetValue1 == l_False )
{
p->timeSatUnsat += clock() - clk;
pLits[0] = lit_neg( pLits[0] );
pLits[1] = lit_neg( pLits[1] );
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
if ( nLits == 2 )
{
pLits[0] = lit_neg( pLits[0] );
pLits[1] = lit_neg( pLits[1] );
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
}
p->nSatCallsUnsat++;
}
else if ( RetValue1 == l_True )
......@@ -109,8 +115,11 @@ p->timeSatUndec += clock() - clk;
// solve under assumptions
// A = 0; B = 1 OR A = 0; B = 0
nLits = 2;
pLits[0] = toLitCond( Ssw_ObjSatNum(p,pOld), 1 );
pLits[1] = toLitCond( Ssw_ObjSatNum(p,pNew), pOld->fPhase ^ pNew->fPhase );
if ( p->iOutputLit > -1 )
pLits[nLits++] = p->iOutputLit;
if ( p->pPars->fPolarFlip )
{
if ( pOld->fPhase ) pLits[0] = lit_neg( pLits[0] );
......@@ -124,16 +133,19 @@ p->timeSatUndec += clock() - clk;
}
clk = clock();
RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + 2,
RetValue1 = sat_solver_solve( p->pSat, pLits, pLits + nLits,
(sint64)nBTLimit, (sint64)0, (sint64)0, (sint64)0 );
p->timeSat += clock() - clk;
if ( RetValue1 == l_False )
{
p->timeSatUnsat += clock() - clk;
pLits[0] = lit_neg( pLits[0] );
pLits[1] = lit_neg( pLits[1] );
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
if ( nLits == 2 )
{
pLits[0] = lit_neg( pLits[0] );
pLits[1] = lit_neg( pLits[1] );
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 );
assert( RetValue );
}
p->nSatCallsUnsat++;
}
else if ( RetValue1 == l_True )
......
......@@ -87,14 +87,15 @@ void Ssw_ManSweepMarkRefinement( Ssw_Man_t * p )
SeeAlso []
***********************************************************************/
int Ssw_ManOriginalPiValue( Ssw_Man_t * p, Aig_Obj_t * pObj, int f )
int Ssw_ManGetSatVarValue( Ssw_Man_t * p, Aig_Obj_t * pObj, int f )
{
Aig_Obj_t * pObjFraig;
int nVarNum, Value;
assert( Aig_ObjIsPi(pObj) );
// assert( Aig_ObjIsPi(pObj) );
pObjFraig = Ssw_ObjFrame( p, pObj, f );
nVarNum = Ssw_ObjSatNum( p, Aig_Regular(pObjFraig) );
Value = (!nVarNum)? 0 : (Aig_IsComplement(pObjFraig) ^ sat_solver_var_value( p->pSat, nVarNum ));
// Value = (Aig_IsComplement(pObjFraig) ^ ((!nVarNum)? 0 : sat_solver_var_value( p->pSat, nVarNum )));
// Value = (!nVarNum)? Aig_ManRandom(0) & 1 : (Aig_IsComplement(pObjFraig) ^ sat_solver_var_value( p->pSat, nVarNum ));
if ( p->pPars->fPolarFlip )
{
......@@ -120,7 +121,7 @@ void Ssw_SmlSavePatternAig( Ssw_Man_t * p, int f )
int i;
memset( p->pPatWords, 0, sizeof(unsigned) * p->nPatWords );
Aig_ManForEachPi( p->pAig, pObj, i )
if ( Ssw_ManOriginalPiValue( p, pObj, f ) )
if ( Ssw_ManGetSatVarValue( p, pObj, f ) )
Aig_InfoSetBit( p->pPatWords, i );
}
......@@ -179,7 +180,7 @@ int Ssw_ManSweepNode( Ssw_Man_t * p, Aig_Obj_t * pObj, int f, int fBmc )
{
// if the fraiged nodes are the same, return
if ( Aig_Regular(pObjFraig) == Aig_Regular(pObjReprFraig) )
return 0;
return 0;
// count the number of skipped calls
if ( !pObj->fMarkA && !pObjRepr->fMarkA )
p->nRefSkip++;
......@@ -212,6 +213,18 @@ int Ssw_ManSweepNode( Ssw_Man_t * p, Aig_Obj_t * pObj, int f, int fBmc )
// disproved the equivalence
Ssw_SmlSavePatternAig( p, f );
}
if ( !fBmc && p->pPars->fUniqueness && p->pPars->nFramesK > 1 &&
Ssw_ManUniqueOne( p, pObjRepr, pObj ) && p->iOutputLit == -1 )
{
if ( Ssw_ManUniqueAddConstraint( p, p->vCommon, 0, 1 ) )
{
int RetValue;
assert( p->iOutputLit > -1 );
RetValue = Ssw_ManSweepNode( p, pObj, f, 0 );
p->iOutputLit = -1;
return RetValue;
}
}
if ( p->pPars->nConstrs == 0 )
Ssw_ManResimulateWord( p, pObj, pObjRepr, f );
else
......@@ -300,6 +313,7 @@ int Ssw_ManSweep( Ssw_Man_t * p )
Bar_Progress_t * pProgress = NULL;
Aig_Obj_t * pObj, * pObj2, * pObjNew;
int nConstrPairs, clk, i, f;
int v;
// perform speculative reduction
clk = clock();
......@@ -330,6 +344,8 @@ clk = clock();
Ssw_ManSweepMarkRefinement( p );
p->timeMarkCones += clock() - clk;
//Ssw_ManUnique( p );
// map constants and PIs of the last frame
f = p->pPars->nFramesK;
Ssw_ObjSetFrame( p, Aig_ManConst1(p->pAig), f, Aig_ManConst1(p->pFrames) );
......@@ -338,10 +354,18 @@ p->timeMarkCones += clock() - clk;
// make sure LOs are assigned
Saig_ManForEachLo( p->pAig, pObj, i )
assert( Ssw_ObjFrame( p, pObj, f ) != NULL );
////
// bring up the previous frames
if ( p->pPars->fUniqueness )
for ( v = 0; v < f; v++ )
Saig_ManForEachLo( p->pAig, pObj, i )
Ssw_CnfNodeAddToSolver( p, Aig_Regular(Ssw_ObjFrame(p, pObj, v)) );
////
// sweep internal nodes
p->fRefined = 0;
p->nSatFailsReal = 0;
p->nRefUse = p->nRefSkip = 0;
p->nUniques = 0;
Ssw_ClassesClearRefined( p->ppClasses );
if ( p->pPars->fVerbose )
pProgress = Bar_ProgressStart( stdout, Aig_ManObjNumMax(p->pAig) );
......
/**CFile****************************************************************
FileName [sswSat.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Inductive prover with constraints.]
Synopsis [On-demand uniqueness constraints.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - September 1, 2008.]
Revision [$Id: sswSat.c,v 1.00 2008/09/01 00:00:00 alanmi Exp $]
***********************************************************************/
#include "sswInt.h"
////////////////////////////////////////////////////////////////////////
/// DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
/**Function*************************************************************
Synopsis [Returns the result of merging the two vectors.]
Description [Assumes that the vectors are sorted in the increasing order.]
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Vec_PtrTwoMerge( Vec_Ptr_t * vArr1, Vec_Ptr_t * vArr2, Vec_Ptr_t * vArr )
{
Aig_Obj_t ** pBeg = (Aig_Obj_t **)vArr->pArray;
Aig_Obj_t ** pBeg1 = (Aig_Obj_t **)vArr1->pArray;
Aig_Obj_t ** pBeg2 = (Aig_Obj_t **)vArr2->pArray;
Aig_Obj_t ** pEnd1 = (Aig_Obj_t **)vArr1->pArray + vArr1->nSize;
Aig_Obj_t ** pEnd2 = (Aig_Obj_t **)vArr2->pArray + vArr2->nSize;
Vec_PtrGrow( vArr, Vec_PtrSize(vArr1) + Vec_PtrSize(vArr2) );
pBeg = (Aig_Obj_t **)vArr->pArray;
while ( pBeg1 < pEnd1 && pBeg2 < pEnd2 )
{
if ( (*pBeg1)->Id == (*pBeg2)->Id )
*pBeg++ = *pBeg1++, pBeg2++;
else if ( (*pBeg1)->Id < (*pBeg2)->Id )
*pBeg++ = *pBeg1++;
else
*pBeg++ = *pBeg2++;
}
while ( pBeg1 < pEnd1 )
*pBeg++ = *pBeg1++;
while ( pBeg2 < pEnd2 )
*pBeg++ = *pBeg2++;
vArr->nSize = pBeg - (Aig_Obj_t **)vArr->pArray;
assert( vArr->nSize <= vArr->nCap );
assert( vArr->nSize >= vArr1->nSize );
assert( vArr->nSize >= vArr2->nSize );
}
/**Function*************************************************************
Synopsis [Returns the result of merging the two vectors.]
Description [Assumes that the vectors are sorted in the increasing order.]
SideEffects []
SeeAlso []
***********************************************************************/
static inline void Vec_PtrTwoCommon( Vec_Ptr_t * vArr1, Vec_Ptr_t * vArr2, Vec_Ptr_t * vArr )
{
Aig_Obj_t ** pBeg = (Aig_Obj_t **)vArr->pArray;
Aig_Obj_t ** pBeg1 = (Aig_Obj_t **)vArr1->pArray;
Aig_Obj_t ** pBeg2 = (Aig_Obj_t **)vArr2->pArray;
Aig_Obj_t ** pEnd1 = (Aig_Obj_t **)vArr1->pArray + vArr1->nSize;
Aig_Obj_t ** pEnd2 = (Aig_Obj_t **)vArr2->pArray + vArr2->nSize;
Vec_PtrGrow( vArr, AIG_MAX( Vec_PtrSize(vArr1), Vec_PtrSize(vArr2) ) );
pBeg = (Aig_Obj_t **)vArr->pArray;
while ( pBeg1 < pEnd1 && pBeg2 < pEnd2 )
{
if ( (*pBeg1)->Id == (*pBeg2)->Id )
*pBeg++ = *pBeg1++, pBeg2++;
else if ( (*pBeg1)->Id < (*pBeg2)->Id )
// *pBeg++ = *pBeg1++;
pBeg1++;
else
// *pBeg++ = *pBeg2++;
pBeg2++;
}
// while ( pBeg1 < pEnd1 )
// *pBeg++ = *pBeg1++;
// while ( pBeg2 < pEnd2 )
// *pBeg++ = *pBeg2++;
vArr->nSize = pBeg - (Aig_Obj_t **)vArr->pArray;
assert( vArr->nSize <= vArr->nCap );
assert( vArr->nSize <= vArr1->nSize );
assert( vArr->nSize <= vArr2->nSize );
}
/**Function*************************************************************
Synopsis [Returns 1 if uniqueness constraints can be added.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ssw_ManUniqueOne( Ssw_Man_t * p, Aig_Obj_t * pRepr, Aig_Obj_t * pObj )
{
int fVerbose = 0;
Aig_Obj_t * ppObjs[2], * pTemp;
Vec_Ptr_t * vSupp, * vSupp2;
int i, k, Value0, Value1, RetValue;
assert( p->pPars->nFramesK > 1 );
vSupp = Vec_PtrAlloc( 100 );
vSupp2 = Vec_PtrAlloc( 100 );
Vec_PtrClear( p->vCommon );
// compute the first support in terms of LOs
ppObjs[0] = pRepr;
ppObjs[1] = pObj;
Aig_SupportNodes( p->pAig, ppObjs, 2, vSupp );
// modify support to be in terms of LIs
k = 0;
Vec_PtrForEachEntry( vSupp, pTemp, i )
if ( Saig_ObjIsLo(p->pAig, pTemp) )
Vec_PtrWriteEntry( vSupp, k++, Saig_ObjLoToLi(p->pAig, pTemp) );
Vec_PtrShrink( vSupp, k );
// compute the support of support
Aig_SupportNodes( p->pAig, (Aig_Obj_t **)Vec_PtrArray(vSupp), Vec_PtrSize(vSupp), vSupp2 );
// return support to LO
Vec_PtrForEachEntry( vSupp, pTemp, i )
Vec_PtrWriteEntry( vSupp, i, Saig_ObjLiToLo(p->pAig, pTemp) );
// find the number of common vars
Vec_PtrSort( vSupp, Aig_ObjCompareIdIncrease );
Vec_PtrSort( vSupp2, Aig_ObjCompareIdIncrease );
Vec_PtrTwoCommon( vSupp, vSupp2, p->vCommon );
/*
{
Vec_Ptr_t * vNew = Vec_PtrDup(vSupp);
Vec_PtrUniqify( vNew, Aig_ObjCompareIdIncrease );
if ( Vec_PtrSize(vNew) != Vec_PtrSize(vSupp) )
printf( "Not unique!\n" );
}
{
Vec_Ptr_t * vNew = Vec_PtrDup(vSupp2);
Vec_PtrUniqify( vNew, Aig_ObjCompareIdIncrease );
if ( Vec_PtrSize(vNew) != Vec_PtrSize(vSupp2) )
printf( "Not unique!\n" );
}
{
Vec_Ptr_t * vNew = Vec_PtrDup(p->vCommon);
Vec_PtrUniqify( vNew, Aig_ObjCompareIdIncrease );
if ( Vec_PtrSize(vNew) != Vec_PtrSize(p->vCommon) )
printf( "Not unique!\n" );
}
*/
if ( fVerbose )
printf( "Node = %5d : One = %3d. Two = %3d. Common = %3d. ",
Aig_ObjId(pObj), Vec_PtrSize(vSupp), Vec_PtrSize(vSupp2), Vec_PtrSize(p->vCommon) );
// check the current values
RetValue = 1;
Vec_PtrForEachEntry( p->vCommon, pTemp, i )
{
Value0 = Ssw_ManGetSatVarValue( p, pTemp, 0 );
Value1 = Ssw_ManGetSatVarValue( p, pTemp, 1 );
if ( Value0 != Value1 )
RetValue = 0;
if ( fVerbose )
printf( "%d", Value0 ^ Value1 );
}
if ( Vec_PtrSize(p->vCommon) == 0 )
RetValue = 0;
if ( fVerbose )
printf( "\n" );
Vec_PtrFree( vSupp );
Vec_PtrFree( vSupp2 );
return RetValue;
}
/**Function*************************************************************
Synopsis [Returns the output of the uniqueness constraint.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Ssw_ManUniqueAddConstraint( Ssw_Man_t * p, Vec_Ptr_t * vCommon, int f1, int f2 )
{
Aig_Obj_t * pObj, * pObj1New, * pObj2New, * pMiter, * pTotal;
int i, pLits[2];
// int RetValue;
assert( Vec_PtrSize(vCommon) > 0 );
// generate the constraint
pTotal = Aig_ManConst0(p->pFrames);
Vec_PtrForEachEntry( vCommon, pObj, i )
{
assert( Saig_ObjIsLo(p->pAig, pObj) );
pObj1New = Ssw_ObjFrame( p, pObj, f1 );
pObj2New = Ssw_ObjFrame( p, pObj, f2 );
pMiter = Aig_Exor( p->pFrames, pObj1New, pObj2New );
pTotal = Aig_Or( p->pFrames, pTotal, pMiter );
}
if ( Aig_ObjIsConst1(Aig_Regular(pTotal)) )
{
// printf( "Skipped\n" );
return 0;
}
p->nUniques++;
// create CNF
Ssw_CnfNodeAddToSolver( p, Aig_Regular(pTotal) );
// add output constraint
pLits[0] = toLitCond( Ssw_ObjSatNum(p,Aig_Regular(pTotal)), Aig_IsComplement(pTotal) );
/*
RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 1 );
assert( RetValue );
// simplify the solver
if ( p->pSat->qtail != p->pSat->qhead )
{
RetValue = sat_solver_simplify(p->pSat);
assert( RetValue != 0 );
}
*/
assert( p->iOutputLit == -1 );
p->iOutputLit = pLits[0];
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
......@@ -215,6 +215,7 @@ static int Abc_CommandBmc ( Abc_Frame_t * pAbc, int argc, char ** arg
static int Abc_CommandBmcInter ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandIndcut ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandEnlarge ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandLocalize ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandTraceStart ( Abc_Frame_t * pAbc, int argc, char ** argv );
static int Abc_CommandTraceCheck ( Abc_Frame_t * pAbc, int argc, char ** argv );
......@@ -481,6 +482,7 @@ void Abc_Init( Abc_Frame_t * pAbc )
Cmd_CommandAdd( pAbc, "Verification", "int", Abc_CommandBmcInter, 0 );
Cmd_CommandAdd( pAbc, "Verification", "indcut", Abc_CommandIndcut, 0 );
Cmd_CommandAdd( pAbc, "Verification", "enlarge", Abc_CommandEnlarge, 1 );
Cmd_CommandAdd( pAbc, "Verification", "loc", Abc_CommandLocalize, 0 );
Cmd_CommandAdd( pAbc, "ABC8", "*r", Abc_CommandAbc8Read, 0 );
......@@ -3671,7 +3673,7 @@ int Abc_CommandMfs( Abc_Frame_t * pAbc, int argc, char ** argv )
// set defaults
Abc_NtkMfsParsDefault( pPars );
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "WFDMLCraesvwh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "WFDMLCraestvwh" ) ) != EOF )
{
switch ( c )
{
......@@ -3753,6 +3755,9 @@ int Abc_CommandMfs( Abc_Frame_t * pAbc, int argc, char ** argv )
case 's':
pPars->fSwapEdge ^= 1;
break;
case 't':
pPars->fOneHotness ^= 1;
break;
case 'v':
pPars->fVerbose ^= 1;
break;
......@@ -3786,7 +3791,7 @@ int Abc_CommandMfs( Abc_Frame_t * pAbc, int argc, char ** argv )
return 0;
usage:
fprintf( pErr, "usage: mfs [-WFDMLC <num>] [-raesvh]\n" );
fprintf( pErr, "usage: mfs [-WFDMLC <num>] [-raestvh]\n" );
fprintf( pErr, "\t performs don't-care-based optimization of logic networks\n" );
fprintf( pErr, "\t-W <num> : the number of levels in the TFO cone (0 <= num) [default = %d]\n", pPars->nWinTfoLevs );
fprintf( pErr, "\t-F <num> : the max number of fanouts to skip (1 <= num) [default = %d]\n", pPars->nFanoutsMax );
......@@ -3798,6 +3803,7 @@ usage:
fprintf( pErr, "\t-a : toggle minimizing area or area+edges [default = %s]\n", pPars->fArea? "area": "area+edges" );
fprintf( pErr, "\t-e : toggle high-effort resubstitution [default = %s]\n", pPars->fMoreEffort? "yes": "no" );
fprintf( pErr, "\t-s : toggle evaluation of edge swapping [default = %s]\n", pPars->fSwapEdge? "yes": "no" );
fprintf( pErr, "\t-t : toggle using artificial one-hotness conditions [default = %s]\n", pPars->fOneHotness? "yes": "no" );
fprintf( pErr, "\t-v : toggle printing optimization summary [default = %s]\n", pPars->fVerbose? "yes": "no" );
fprintf( pErr, "\t-w : toggle printing detailed stats for each node [default = %s]\n", pPars->fVeryVerbose? "yes": "no" );
fprintf( pErr, "\t-h : print the command usage\n");
......@@ -13535,7 +13541,7 @@ int Abc_CommandSeqSweep2( Abc_Frame_t * pAbc, int argc, char ** argv )
// set defaults
Ssw_ManSetDefaultParams( pPars );
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "PQFCLNSplsfvh" ) ) != EOF )
while ( ( c = Extra_UtilGetopt( argc, argv, "PQFCLNSplsfuvh" ) ) != EOF )
{
switch ( c )
{
......@@ -13628,6 +13634,9 @@ int Abc_CommandSeqSweep2( Abc_Frame_t * pAbc, int argc, char ** argv )
case 'f':
pPars->fSemiFormal ^= 1;
break;
case 'u':
pPars->fUniqueness ^= 1;
break;
case 'v':
pPars->fVerbose ^= 1;
break;
......@@ -13680,7 +13689,7 @@ int Abc_CommandSeqSweep2( Abc_Frame_t * pAbc, int argc, char ** argv )
return 0;
usage:
fprintf( pErr, "usage: scorr [-PQFCLNS <num>] [-plsfvh]\n" );
fprintf( pErr, "usage: scorr [-PQFCLNS <num>] [-plsfuvh]\n" );
fprintf( pErr, "\t performs sequential sweep using K-step induction\n" );
fprintf( pErr, "\t-P num : max partition size (0 = no partitioning) [default = %d]\n", pPars->nPartSize );
fprintf( pErr, "\t-Q num : partition overlap (0 = no overlap) [default = %d]\n", pPars->nOverSize );
......@@ -13693,6 +13702,7 @@ usage:
fprintf( pErr, "\t-l : toggle latch correspondence only [default = %s]\n", pPars->fLatchCorr? "yes": "no" );
fprintf( pErr, "\t-s : toggle skipping unaffected cones [default = %s]\n", pPars->fSkipCheck? "yes": "no" );
fprintf( pErr, "\t-f : toggle filtering using interative BMC [default = %s]\n", pPars->fSemiFormal? "yes": "no" );
fprintf( pErr, "\t-u : toggle using uniqueness constraints [default = %s]\n", pPars->fUniqueness? "yes": "no" );
fprintf( pErr, "\t-v : toggle verbose output [default = %s]\n", pPars->fVerbose? "yes": "no" );
fprintf( pErr, "\t-h : print the command usage\n");
return 1;
......@@ -16475,6 +16485,105 @@ usage:
fprintf( pErr, "\t-h : print the command usage\n");
return 1;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_CommandLocalize( Abc_Frame_t * pAbc, int argc, char ** argv )
{
FILE * pOut, * pErr;
Abc_Ntk_t * pNtk;
int nFramesMax;
int nConfMax;
int fVerbose;
int c;
extern void Abc_NtkDarLocalize( Abc_Ntk_t * pNtk, int nFramesMax, int nConfMax, int fVerbose );
pNtk = Abc_FrameReadNtk(pAbc);
pOut = Abc_FrameReadOut(pAbc);
pErr = Abc_FrameReadErr(pAbc);
// set defaults
nFramesMax = 50;
nConfMax = 500;
fVerbose = 0;
Extra_UtilGetoptReset();
while ( ( c = Extra_UtilGetopt( argc, argv, "FCvh" ) ) != EOF )
{
switch ( c )
{
case 'F':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-F\" should be followed by an integer.\n" );
goto usage;
}
nFramesMax = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nFramesMax < 0 )
goto usage;
break;
case 'C':
if ( globalUtilOptind >= argc )
{
fprintf( pErr, "Command line switch \"-C\" should be followed by an integer.\n" );
goto usage;
}
nConfMax = atoi(argv[globalUtilOptind]);
globalUtilOptind++;
if ( nConfMax < 0 )
goto usage;
break;
case 'v':
fVerbose ^= 1;
break;
case 'h':
goto usage;
default:
goto usage;
}
}
if ( pNtk == NULL )
{
fprintf( pErr, "Empty network.\n" );
return 1;
}
if ( Abc_NtkIsComb(pNtk) )
{
fprintf( pErr, "The network is combinational.\n" );
return 0;
}
if ( !Abc_NtkIsStrash(pNtk) )
{
fprintf( stdout, "Currently only works for structurally hashed circuits.\n" );
return 0;
}
if ( Abc_NtkPoNum(pNtk) != 1 )
{
fprintf( pErr, "Currently this command works only for single-output miter.\n" );
return 0;
}
// modify the current network
Abc_NtkDarLocalize( pNtk, nFramesMax, nConfMax, fVerbose );
return 0;
usage:
fprintf( pErr, "usage: loc [-FC num] [-vh]\n" );
fprintf( pErr, "\t performs localization for single-output miter\n" );
fprintf( pErr, "\t-F num : the max number of timeframes [default = %d]\n", nFramesMax );
fprintf( pErr, "\t-C num : the max number of conflicts by SAT solver [default = %d]\n", nConfMax );
fprintf( pErr, "\t-v : toggle printing verbose information [default = %s]\n", fVerbose? "yes": "no" );
fprintf( pErr, "\t-h : print the command usage\n");
return 1;
}
/**Function*************************************************************
......
......@@ -1974,6 +1974,44 @@ Abc_Ntk_t * Abc_NtkDarEnlarge( Abc_Ntk_t * pNtk, int nFrames, int fVerbose )
Aig_ManStop( pMan );
return pNtkAig;
}
/**Function*************************************************************
Synopsis [Performs targe enlargement.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void Abc_NtkDarLocalize( Abc_Ntk_t * pNtk, int nFramesMax, int nConfMax, int fVerbose )
{
Aig_Man_t * pMan, * pTemp;
int clkTotal = clock();
int RetValue;
pMan = Abc_NtkToDar( pNtk, 0, 1 );
if ( pMan == NULL )
return;
RetValue = Saig_ManLocalization( pTemp = pMan, nFramesMax, nConfMax, fVerbose );
Aig_ManStop( pTemp );
if ( RetValue == 1 )
{
printf( "Networks are equivalent. " );
PRT( "Time", clock() - clkTotal );
}
else if ( RetValue == 0 )
{
printf( "Networks are NOT EQUIVALENT. " );
PRT( "Time", clock() - clkTotal );
}
else
{
printf( "Networks are UNDECIDED. " );
PRT( "Time", clock() - clkTotal );
}
}
/**Function*************************************************************
......@@ -2453,6 +2491,7 @@ Aig_ManPrintStats( pMan );
***********************************************************************/
Abc_Ntk_t * Abc_NtkDarTestNtk( Abc_Ntk_t * pNtk )
{
/*
extern Aig_Man_t * Ssw_SignalCorrespondeceTestPairs( Aig_Man_t * pAig );
Abc_Ntk_t * pNtkAig;
......@@ -2471,6 +2510,26 @@ Abc_Ntk_t * Abc_NtkDarTestNtk( Abc_Ntk_t * pNtk )
pNtkAig->pSpec = Extra_UtilStrsav(pNtk->pSpec);
Aig_ManStop( pMan );
return pNtkAig;
*/
Aig_Man_t * Saig_ManProofAbstraction( Aig_Man_t * p, int nFrames, int nConfMax, int fVerbose );
Abc_Ntk_t * pNtkAig;
Aig_Man_t * pMan, * pTemp;
assert( Abc_NtkIsStrash(pNtk) );
pMan = Abc_NtkToDar( pNtk, 0, 1 );
if ( pMan == NULL )
return NULL;
Aig_ManSetRegNum( pMan, pMan->nRegs );
pMan = Saig_ManProofAbstraction( pTemp = pMan, 10, 1000, 1 );
Aig_ManStop( pTemp );
pNtkAig = Abc_NtkFromAigPhase( pMan );
pNtkAig->pName = Extra_UtilStrsav(pNtk->pName);
pNtkAig->pSpec = Extra_UtilStrsav(pNtk->pSpec);
Aig_ManStop( pMan );
return pNtkAig;
}
////////////////////////////////////////////////////////////////////////
......
......@@ -122,7 +122,15 @@ Abc_Ntk_t * Abc_NtkRestrashZero( Abc_Ntk_t * pNtk, bool fCleanup )
// complement the 1-valued registers
Abc_NtkForEachLatch( pNtkAig, pObj, i )
if ( Abc_LatchIsInit1(pObj) )
{
Abc_ObjXorFaninC( Abc_ObjFanin0(pObj), 0 );
// if latch has PO as one of its fanouts change latch name
if ( Abc_NodeFindCoFanout( Abc_ObjFanout0(pObj) ) )
{
Nm_ManDeleteIdName( pObj->pNtk->pManName, Abc_ObjFanout0(pObj)->Id );
Abc_ObjAssignName( Abc_ObjFanout0(pObj), Abc_ObjName(Abc_ObjFanout0(pObj)), "_inv" );
}
}
// set all constant-0 values
Abc_NtkForEachLatch( pNtkAig, pObj, i )
Abc_LatchSetInit0( pObj );
......
......@@ -52,6 +52,7 @@ struct Mfs_Par_t_
int fArea; // performs optimization for area
int fMoreEffort; // performs high-affort minimization
int fSwapEdge; // performs edge swapping
int fOneHotness; // adds one-hotness conditions
int fDelay; // performs optimization for delay
int fVerbose; // enable basic stats
int fVeryVerbose; // enable detailed stats
......
......@@ -41,6 +41,7 @@
***********************************************************************/
void Abc_NtkMfsParsDefault( Mfs_Par_t * pPars )
{
memset( pPars, 0, sizeof(Mfs_Par_t) );
pPars->nWinTfoLevs = 2;
pPars->nFanoutsMax = 10;
pPars->nDepthMax = 20;
......@@ -52,6 +53,7 @@ void Abc_NtkMfsParsDefault( Mfs_Par_t * pPars )
pPars->fArea = 0;
pPars->fMoreEffort = 0;
pPars->fSwapEdge = 0;
pPars->fOneHotness = 0;
pPars->fVerbose = 0;
pPars->fVeryVerbose = 0;
}
......@@ -155,6 +157,8 @@ p->timeCnf += clock() - clk;
// create the SAT problem
clk = clock();
p->pSat = Cnf_DataWriteIntoSolver( p->pCnf, 1, 0 );
if ( p->pSat && p->pPars->fOneHotness )
Abc_NtkAddOneHotness( p );
if ( p->pSat == NULL )
return 0;
// solve the SAT problem
......
......@@ -141,6 +141,7 @@ extern int Abc_NtkMfsResubNode( Mfs_Man_t * p, Abc_Obj_t * pNode );
extern int Abc_NtkMfsResubNode2( Mfs_Man_t * p, Abc_Obj_t * pNode );
/*=== mfsSat.c ==========================================================*/
extern int Abc_NtkMfsSolveSat( Mfs_Man_t * p, Abc_Obj_t * pNode );
extern int Abc_NtkAddOneHotness( Mfs_Man_t * p );
/*=== mfsStrash.c ==========================================================*/
extern Aig_Man_t * Abc_NtkConstructAig( Mfs_Man_t * p, Abc_Obj_t * pNode );
extern double Abc_NtkConstraintRatio( Mfs_Man_t * p, Abc_Obj_t * pNode );
......
......@@ -123,6 +123,15 @@ sat_solver * Abc_MfsCreateSolverResub( Mfs_Man_t * p, int * pCands, int nCands,
return NULL;
}
// add one-hotness constraints
if ( p->pPars->fOneHotness )
{
p->pSat = pSat;
if ( !Abc_NtkAddOneHotness( p ) )
return NULL;
p->pSat = NULL;
}
// bookmark the clauses of A
if ( pCands )
sat_solver_store_mark_clauses_a( pSat );
......@@ -139,6 +148,14 @@ sat_solver * Abc_MfsCreateSolverResub( Mfs_Man_t * p, int * pCands, int nCands,
return NULL;
}
}
// add one-hotness constraints
if ( p->pPars->fOneHotness )
{
p->pSat = pSat;
if ( !Abc_NtkAddOneHotness( p ) )
return NULL;
p->pSat = NULL;
}
// transform the literals
for ( i = 0; i < p->pCnf->nLiterals; i++ )
p->pCnf->pClauses[0][i] -= 2 * p->pCnf->nVars;
......
......@@ -133,6 +133,38 @@ int Abc_NtkMfsSolveSat( Mfs_Man_t * p, Abc_Obj_t * pNode )
return 1;
}
/**Function*************************************************************
Synopsis [Adds one-hotness constraints for the window inputs.]
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int Abc_NtkAddOneHotness( Mfs_Man_t * p )
{
Aig_Obj_t * pObj1, * pObj2;
int i, k, Lits[2];
for ( i = 0; i < Vec_PtrSize(p->pAigWin->vPis); i++ )
for ( k = i+1; k < Vec_PtrSize(p->pAigWin->vPis); k++ )
{
pObj1 = Aig_ManPi( p->pAigWin, i );
pObj2 = Aig_ManPi( p->pAigWin, k );
Lits[0] = toLitCond( p->pCnf->pVarNums[pObj1->Id], 1 );
Lits[1] = toLitCond( p->pCnf->pVarNums[pObj2->Id], 1 );
if ( !sat_solver_addclause( p->pSat, Lits, Lits+2 ) )
{
sat_solver_delete( p->pSat );
p->pSat = NULL;
return 0;
}
}
return 1;
}
////////////////////////////////////////////////////////////////////////
/// END OF FILE ///
////////////////////////////////////////////////////////////////////////
......
......@@ -796,7 +796,7 @@ void Intp_ManUnsatCore_rec( Vec_Int_t * vAnties, Vec_Int_t * vBreaks, int iThis,
Synopsis [Computes UNSAT core of the satisfiablity problem.]
Description [Takes the interpolation manager, the CNF deriving by the SAT
Description [Takes the interpolation manager, the CNF derived by the SAT
solver, which includes the root clauses and the learned clauses. Returns
the array of integers representing the number of root clauses that are in
the UNSAT core.]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment