Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
abc
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
abc
Commits
03e7b720
Commit
03e7b720
authored
Sep 07, 2017
by
Alan Mishchenko
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Experiments with Glucose.
parent
32312c43
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
157 additions
and
27 deletions
+157
-27
src/sat/glucose/AbcGlucose.cpp
+138
-2
src/sat/glucose/Glucose.cpp
+14
-24
src/sat/glucose/SimpSolver.cpp
+3
-0
src/sat/glucose/Solver.h
+2
-1
No files found.
src/sat/glucose/AbcGlucose.cpp
View file @
03e7b720
...
...
@@ -245,6 +245,49 @@ int bmcg_sat_solver_conflictnum(bmcg_sat_solver* s)
return
((
Gluco
::
Solver
*
)
s
)
->
conflicts
;
}
int
bmcg_sat_solver_minimize_assumptions
(
bmcg_sat_solver
*
s
,
int
*
plits
,
int
nlits
)
{
vec
<
int
>*
array
=
&
((
Gluco
::
Solver
*
)
s
)
->
user_vec
;
int
i
,
nlitsL
,
nlitsR
,
nresL
,
nresR
,
status
;
if
(
nlits
==
1
)
{
// since the problem is UNSAT, we try to solve it without assuming the last literal
// if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
status
=
bmcg_sat_solver_solve
(
s
,
NULL
,
0
);
return
status
!=
-
1
;
// return 1 if the problem is not UNSAT
}
assert
(
nlits
>=
2
);
nlitsL
=
nlits
/
2
;
nlitsR
=
nlits
-
nlitsL
;
// solve with these assumptions
status
=
bmcg_sat_solver_solve
(
s
,
plits
,
nlitsL
);
if
(
status
==
-
1
)
// these are enough
return
bmcg_sat_solver_minimize_assumptions
(
s
,
plits
,
nlitsL
);
// these are not enough
// solve for the right lits
// assume left bits
nresL
=
nlitsR
==
1
?
1
:
bmcg_sat_solver_minimize_assumptions
(
s
,
plits
+
nlitsL
,
nlitsR
);
// unassume left bits
// swap literals
array
->
clear
();
for
(
i
=
0
;
i
<
nlitsL
;
i
++
)
array
->
push
(
plits
[
i
]);
for
(
i
=
0
;
i
<
nresL
;
i
++
)
plits
[
i
]
=
plits
[
nlitsL
+
i
];
for
(
i
=
0
;
i
<
nlitsL
;
i
++
)
plits
[
nresL
+
i
]
=
(
*
array
)[
i
];
// solve with these assumptions
// assume right bits
status
=
bmcg_sat_solver_solve
(
s
,
plits
,
nresL
);
if
(
status
==
-
1
)
// these are enough
// unassume right bits
return
nresL
;
// solve for the left lits
nresR
=
nlitsL
==
1
?
1
:
bmcg_sat_solver_minimize_assumptions
(
s
,
plits
+
nresL
,
nlitsL
);
// unassume right bits
return
nresL
+
nresR
;
}
/**Function*************************************************************
Synopsis []
...
...
@@ -298,7 +341,7 @@ void Glucose_SolveCnf( char * pFilename, Glucose_Pars * pPars )
***********************************************************************/
Vec_Int_t
*
Glucose_SolverFromAig
(
Gia_Man_t
*
p
,
SimpSolver
&
S
)
{
//
abctime clk = Abc_Clock();
abctime
clk
=
Abc_Clock
();
int
*
pLit
,
*
pStop
,
i
;
Cnf_Dat_t
*
pCnf
=
(
Cnf_Dat_t
*
)
Mf_ManGenerateCnf
(
p
,
8
/*nLutSize*/
,
0
/*fCnfObjIds*/
,
1
/*fAddOrCla*/
,
0
,
0
/*verbose*/
);
for
(
i
=
0
;
i
<
pCnf
->
nClauses
;
i
++
)
...
...
@@ -315,12 +358,104 @@ Vec_Int_t * Glucose_SolverFromAig( Gia_Man_t * p, SimpSolver& S )
S
.
addClause
(
lits
);
}
Vec_Int_t
*
vCnfIds
=
Vec_IntAllocArrayCopy
(
pCnf
->
pVarNums
,
pCnf
->
nVars
);
printf
(
"CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. "
,
pCnf
->
nVars
,
pCnf
->
nClauses
,
pCnf
->
nLiterals
);
Abc_PrintTime
(
1
,
"Time"
,
Abc_Clock
()
-
clk
);
Cnf_DataFree
(
pCnf
);
return
vCnfIds
;
}
// procedure below does not work because glucose_solver_addclause() expects Solver
Vec_Int_t
*
Glucose_SolverFromAig2
(
Gia_Man_t
*
p
,
SimpSolver
&
S
)
{
Cnf_Dat_t
*
pCnf
=
(
Cnf_Dat_t
*
)
Mf_ManGenerateCnf
(
p
,
8
/*nLutSize*/
,
0
/*fCnfObjIds*/
,
1
/*fAddOrCla*/
,
0
,
0
/*verbose*/
);
for
(
int
i
=
0
;
i
<
pCnf
->
nClauses
;
i
++
)
if
(
!
glucose_solver_addclause
(
&
S
,
pCnf
->
pClauses
[
i
],
pCnf
->
pClauses
[
i
+
1
]
-
pCnf
->
pClauses
[
i
]
)
)
assert
(
0
);
Vec_Int_t
*
vCnfIds
=
Vec_IntAllocArrayCopy
(
pCnf
->
pVarNums
,
pCnf
->
nVars
);
//printf( "CNF stats: Vars = %6d. Clauses = %7d. Literals = %8d. ", pCnf->nVars, pCnf->nClauses, pCnf->nLiterals );
//Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
Cnf_DataFree
(
pCnf
);
return
vCnfIds
;
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
void
Glucose_GenerateSop
(
Gia_Man_t
*
p
)
{
bmcg_sat_solver
*
pSat
[
2
]
=
{
bmcg_sat_solver_start
(),
bmcg_sat_solver_start
()
};
// generate CNF for the on-set and off-set
Cnf_Dat_t
*
pCnf
=
(
Cnf_Dat_t
*
)
Mf_ManGenerateCnf
(
p
,
8
/*nLutSize*/
,
0
/*fCnfObjIds*/
,
0
/*fAddOrCla*/
,
0
,
0
/*verbose*/
);
int
i
,
n
,
nVars
=
Gia_ManCiNum
(
p
);
int
iFirstVar
=
pCnf
->
nVars
-
nVars
;
assert
(
Gia_ManCoNum
(
p
)
==
1
);
for
(
n
=
0
;
n
<
2
;
n
++
)
{
int
Lit
=
Abc_Var2Lit
(
1
,
!
n
);
// output variable is 1
for
(
i
=
0
;
i
<
pCnf
->
nClauses
;
i
++
)
if
(
!
bmcg_sat_solver_addclause
(
pSat
[
n
],
pCnf
->
pClauses
[
i
],
pCnf
->
pClauses
[
i
+
1
]
-
pCnf
->
pClauses
[
i
]
)
)
assert
(
0
);
if
(
!
bmcg_sat_solver_addclause
(
pSat
[
n
],
&
Lit
,
1
)
)
assert
(
0
);
}
Cnf_DataFree
(
pCnf
);
// generate assignments
Vec_Int_t
*
vLits
=
Vec_IntAlloc
(
nVars
);
Vec_Str_t
*
vCube
=
Vec_StrAlloc
(
nVars
+
4
);
while
(
1
)
{
// generate onset minterm
int
status
=
bmcg_sat_solver_solve
(
pSat
[
1
],
NULL
,
0
);
if
(
status
==
-
1
)
break
;
assert
(
status
==
1
);
Vec_IntClear
(
vLits
);
for
(
i
=
0
;
i
<
nVars
;
i
++
)
Vec_IntPush
(
vLits
,
Abc_Var2Lit
(
iFirstVar
+
i
,
!
bmcg_sat_solver_read_cex_varvalue
(
pSat
[
1
],
iFirstVar
+
i
))
);
// expand it against offset
status
=
bmcg_sat_solver_solve
(
pSat
[
0
],
Vec_IntArray
(
vLits
),
Vec_IntSize
(
vLits
)
);
assert
(
status
==
-
1
);
int
*
pFinal
,
nFinal
=
bmcg_sat_solver_final
(
pSat
[
0
],
&
pFinal
);
// print cube
Vec_StrFill
(
vCube
,
nVars
,
'-'
);
Vec_StrPrintF
(
vCube
,
" 1
\n\0
"
);
for
(
i
=
0
;
i
<
nFinal
;
i
++
)
Vec_StrWriteEntry
(
vCube
,
Abc_Lit2Var
(
pFinal
[
i
])
-
iFirstVar
,
(
char
)(
'0'
+
Abc_LitIsCompl
(
pFinal
[
i
]))
);
printf
(
"%s"
,
Vec_StrArray
(
vCube
)
);
// add blocking clause
if
(
!
bmcg_sat_solver_addclause
(
pSat
[
1
],
pFinal
,
nFinal
)
)
break
;
}
Vec_IntFree
(
vLits
);
Vec_StrFree
(
vCube
);
bmcg_sat_solver_stop
(
pSat
[
0
]
);
bmcg_sat_solver_stop
(
pSat
[
1
]
);
}
/**Function*************************************************************
Synopsis []
Description []
SideEffects []
SeeAlso []
***********************************************************************/
int
Glucose_SolveAig
(
Gia_Man_t
*
p
,
Glucose_Pars
*
pPars
)
{
abctime
clk
=
Abc_Clock
();
...
...
@@ -329,6 +464,7 @@ int Glucose_SolveAig(Gia_Man_t * p, Glucose_Pars * pPars)
S
.
verbosity
=
pPars
->
verb
;
S
.
verbEveryConflicts
=
50000
;
S
.
showModel
=
false
;
//S.verbosity = 2;
S
.
setConfBudget
(
pPars
->
nConfls
>
0
?
(
int64_t
)
pPars
->
nConfls
:
-
1
);
S
.
parsing
=
1
;
...
...
@@ -347,7 +483,7 @@ int Glucose_SolveAig(Gia_Man_t * p, Glucose_Pars * pPars)
S
.
eliminate
(
true
);
vec
<
Lit
>
dummy
;
lbool
ret
=
S
.
solveLimited
(
dummy
);
lbool
ret
=
S
.
solveLimited
(
dummy
,
0
);
if
(
pPars
->
verb
)
glucose_print_stats
(
S
,
Abc_Clock
()
-
clk
);
printf
(
ret
==
l_True
?
"SATISFIABLE"
:
ret
==
l_False
?
"UNSATISFIABLE"
:
"INDETERMINATE"
);
...
...
src/sat/glucose/Glucose.cpp
View file @
03e7b720
...
...
@@ -224,6 +224,12 @@ bool Solver::addClause_(vec<Lit>& ps)
assert
(
decisionLevel
()
==
0
);
if
(
!
ok
)
return
false
;
if
(
0
)
{
for
(
int
i
=
0
;
i
<
ps
.
size
();
i
++
)
printf
(
"%d "
,
ps
[
i
]
);
printf
(
"
\n
"
);
}
// Check if clause is satisfied and remove false/duplicate literals:
sort
(
ps
);
...
...
@@ -797,25 +803,18 @@ CRef Solver::propagate()
vec
<
Watcher
>&
ws
=
watches
[
p
];
Watcher
*
i
,
*
j
,
*
end
;
num_props
++
;
// First, Propagate binary clauses
// First, Propagate binary clauses
vec
<
Watcher
>&
wbin
=
watchesBin
[
p
];
for
(
int
k
=
0
;
k
<
wbin
.
size
();
k
++
)
{
Lit
imp
=
wbin
[
k
].
blocker
;
if
(
value
(
imp
)
==
l_False
)
{
return
wbin
[
k
].
cref
;
}
if
(
value
(
imp
)
==
l_Undef
)
{
uncheckedEnqueue
(
imp
,
wbin
[
k
].
cref
);
}
}
for
(
i
=
j
=
(
Watcher
*
)
ws
,
end
=
i
+
ws
.
size
();
i
!=
end
;){
// Try to avoid inspecting the clause:
...
...
@@ -836,7 +835,6 @@ CRef Solver::propagate()
Lit
first
=
c
[
0
];
Watcher
w
=
Watcher
(
cr
,
first
);
if
(
first
!=
blocker
&&
value
(
first
)
==
l_True
){
*
j
++
=
w
;
continue
;
}
// Look for new watch:
...
...
@@ -912,40 +910,35 @@ struct reduceDB_lt {
// Main criteria... Like in MiniSat we keep all binary clauses
if
(
ca
[
x
].
size
()
>
2
&&
ca
[
y
].
size
()
==
2
)
return
1
;
if
(
ca
[
y
].
size
()
>
2
&&
ca
[
x
].
size
()
==
2
)
return
0
;
if
(
ca
[
y
].
size
()
>
2
&&
ca
[
x
].
size
()
==
2
)
return
0
;
if
(
ca
[
x
].
size
()
==
2
&&
ca
[
y
].
size
()
==
2
)
return
0
;
// Second one based on literal block distance
if
(
ca
[
x
].
lbd
()
>
ca
[
y
].
lbd
())
return
1
;
if
(
ca
[
x
].
lbd
()
<
ca
[
y
].
lbd
())
return
0
;
// Finally we can use old activity or size, we choose the last one
return
ca
[
x
].
activity
()
<
ca
[
y
].
activity
();
//return x->size() < y->size();
//return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
return
ca
[
x
].
activity
()
<
ca
[
y
].
activity
();
//return x->size() < y->size();
//return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); }
}
};
void
Solver
::
reduceDB
()
{
int
i
,
j
;
{
int
i
,
j
;
nbReduceDB
++
;
sort
(
learnts
,
reduceDB_lt
(
ca
));
// We have a lot of "good" clauses, it is difficult to compare them. Keep more !
if
(
ca
[
learnts
[
learnts
.
size
()
/
RATIOREMOVECLAUSES
]].
lbd
()
<=
3
)
nbclausesbeforereduce
+=
specialIncReduceDB
;
// Useless :-)
if
(
ca
[
learnts
.
last
()].
lbd
()
<=
5
)
nbclausesbeforereduce
+=
specialIncReduceDB
;
if
(
ca
[
learnts
.
last
()].
lbd
()
<=
5
)
nbclausesbeforereduce
+=
specialIncReduceDB
;
// Don't delete binary or locked clauses. From the rest, delete clauses from the first half
// Keep clauses which seem to be usefull (their lbd was reduce during this sequence)
int
limit
=
learnts
.
size
()
/
2
;
for
(
i
=
j
=
0
;
i
<
learnts
.
size
();
i
++
){
Clause
&
c
=
ca
[
learnts
[
i
]];
if
(
c
.
lbd
()
>
2
&&
c
.
size
()
>
2
&&
c
.
canBeDel
()
&&
!
locked
(
c
)
&&
(
i
<
limit
))
{
...
...
@@ -965,12 +958,9 @@ void Solver::reduceDB()
void
Solver
::
removeSatisfied
(
vec
<
CRef
>&
cs
)
{
int
i
,
j
;
for
(
i
=
j
=
0
;
i
<
cs
.
size
();
i
++
){
Clause
&
c
=
ca
[
cs
[
i
]];
if
(
satisfied
(
c
))
removeClause
(
cs
[
i
]);
else
...
...
src/sat/glucose/SimpSolver.cpp
View file @
03e7b720
...
...
@@ -604,6 +604,7 @@ void SimpSolver::extendModel()
bool
SimpSolver
::
eliminate
(
bool
turn_off_elim
)
{
abctime
clk
=
Abc_Clock
();
if
(
!
simplify
())
return
false
;
else
if
(
!
use_simplification
)
...
...
@@ -690,6 +691,7 @@ bool SimpSolver::eliminate(bool turn_off_elim)
printf
(
"c | Eliminated clauses: %10.2f Mb |
\n
"
,
double
(
elimclauses
.
size
()
*
sizeof
(
uint32_t
))
/
(
1024
*
1024
));
Abc_PrintTime
(
1
,
"Time"
,
Abc_Clock
()
-
clk
);
return
ok
;
}
...
...
@@ -702,6 +704,7 @@ void SimpSolver::cleanUpClauses()
if
(
ca
[
clauses
[
i
]].
mark
()
==
0
)
clauses
[
j
++
]
=
clauses
[
i
];
clauses
.
shrink
(
i
-
j
);
printf
(
"Simplication removed %d variables and %d clauses. "
,
eliminated_vars
,
i
-
j
);
}
...
...
src/sat/glucose/Solver.h
View file @
03e7b720
...
...
@@ -60,6 +60,7 @@ public:
bool
terminate_search_early
;
// used to stop the solver early if it as instructed by an external caller
int
*
pstop
;
// another callback
uint64_t
nRuntimeLimit
;
// runtime limit
vec
<
int
>
user_vec
;
// Problem specification:
//
...
...
@@ -229,7 +230,7 @@ protected:
vec
<
char
>
polarity
;
// The preferred polarity of each variable.
vec
<
char
>
decision
;
// Declares if a variable is eligible for selection in the decision heuristic.
vec
<
Lit
>
trail
;
// Assignment stack; stores all assigments made in the order they were made.
vec
<
int
>
nbpos
;
vec
<
int
>
nbpos
;
vec
<
int
>
trail_lim
;
// Separator indices for different decision levels in 'trail'.
vec
<
VarData
>
vardata
;
// Stores reason and level for each variable.
int
qhead
;
// Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment