casDec.c 18.1 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/**CFile****************************************************************

  FileName    [casDec.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [CASCADE: Decomposition of shared BDDs into a LUT cascade.]

  Synopsis    [BDD-based decomposition with encoding.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - Spring 2002.]

  Revision    [$Id: casDec.c,v 1.0 2002/01/01 00:00:00 alanmi Exp $]

***********************************************************************/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

26
#include "src/misc/extra/extraBdd.h"
Alan Mishchenko committed
27 28
#include "cas.h"

29 30 31
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
////////////////////////////////////////////////////////////////////////
///                      type definitions                            ///
////////////////////////////////////////////////////////////////////////

typedef struct
{
    int nIns;                // the number of LUT variables
    int nInsP;               // the number of inputs coming from the previous LUT
    int nCols;               // the number of columns in this LUT
    int nMulti;              // the column multiplicity, [log2(nCols)]
    int nSimple;             // the number of outputs implemented as direct connections to inputs of the previous block
    int Level;               // the starting level in the ADD in this LUT

//  DdNode ** pbVarsIn[32];  // the BDDs of the elementary input variables
//  DdNode ** pbVarsOut[32]; // the BDDs of the elementary output variables 

//  char * pNamesIn[32];     // the names of input variables
//  char * pNamesOut[32];    // the names of output variables

    DdNode ** pbCols;        // the array of columns represented by BDDs
    DdNode ** pbCodes;       // the array of codes (in terms of pbVarsOut)
    DdNode ** paNodes;       // the array of starting ADD nodes on the next level (also referenced)

    DdNode * bRelation;      // the relation after encoding

    // the relation depends on the three groups of variables:
    // (1) variables on top represent the outputs of the previous cascade
    // (2) variables in the middle represent the primary inputs
    // (3) variables below (CVars) represent the codes
    //
    // the replacement is done after computing the relation
} LUT;


////////////////////////////////////////////////////////////////////////
///                      static functions                            ///
////////////////////////////////////////////////////////////////////////

// the LUT-2-BLIF writing function
void WriteLUTSintoBLIFfile( FILE * pFile, DdManager * dd, LUT ** pLuts, int nLuts, DdNode ** bCVars, char ** pNames, int nNames, char * FileName );

// the function to write a DD (BDD or ADD) as a network of MUXES
extern void WriteDDintoBLIFfile( FILE * pFile, DdNode * Func, char * OutputName, char * Prefix, char ** InputNames );
extern void WriteDDintoBLIFfileReorder( DdManager * dd, FILE * pFile, DdNode * Func, char * OutputName, char * Prefix, char ** InputNames );

////////////////////////////////////////////////////////////////////////
///                      static varibles                             ///
////////////////////////////////////////////////////////////////////////

static int s_LutSize = 15;
static int s_nFuncVars; 

long s_EncodingTime;

long s_EncSearchTime;
long s_EncComputeTime;

////////////////////////////////////
// temporary output variables
//FILE * pTable;
//long s_ReadingTime;
//long s_RemappingTime;
////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                      debugging macros                            ///
////////////////////////////////////////////////////////////////////////

Alan Mishchenko committed
100
#define PRB_(f)       printf( #f " = " ); Cudd_bddPrint(dd,f); printf( "\n" )
Alan Mishchenko committed
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#define PRK(f,n)     Cudd_PrintKMap(stdout,dd,(f),Cudd_Not(f),(n),NULL,0); printf( "K-map for function" #f "\n\n" )
#define PRK2(f,g,n)  Cudd_PrintKMap(stdout,dd,(f),(g),(n),NULL,0); printf( "K-map for function <" #f ", " #g ">\n\n" ) 


////////////////////////////////////////////////////////////////////////
///                     EXTERNAL FUNCTIONS                           ///
////////////////////////////////////////////////////////////////////////

int CreateDecomposedNetwork( DdManager * dd, DdNode * aFunc, char ** pNames, int nNames, char * FileName, int nLutSize, int fCheck, int fVerbose )
// aFunc is a 0-1 ADD for the given function
// pNames (nNames) are the input variable names
// FileName is the name of the output file for the LUT network
// dynamic variable reordering should be disabled when this function is running
{
    static LUT * pLuts[MAXINPUTS];   // the LUT cascade
    static int Profile[MAXINPUTS];   // the profile filled in with the info about the BDD width
    static int Permute[MAXINPUTS];   // the array to store a temporary permutation of variables

    LUT * p;               // the current LUT
    int i, v;

    DdNode * bCVars[32];   // these are variables for the codes

    int nVarsRem;          // the number of remaining variables
    int PrevMulti;         // column multiplicity on the previous level
    int fLastLut;          // flag to signal the last LUT
    int nLuts;
    int nLutsTotal = 0;
    int nLutOutputs = 0;
    int nLutOutputsOrig = 0;

    long clk1;

    s_LutSize = nLutSize;

    s_nFuncVars = nNames;

    // get the profile
    clk1 = clock();
    Extra_ProfileWidth( dd, aFunc, Profile, -1 );


//  for ( v = 0; v < nNames; v++ )
//      printf( "Level = %2d, Width = %2d\n", v+1, Profile[v] );


//printf( "\n" );

    // mark-up the LUTs
    // assuming that the manager has exactly nNames vars (new vars have not been introduced yet)
    nVarsRem  = nNames;     // the number of remaining variables
    PrevMulti = 0;          // column multiplicity on the previous level
    fLastLut  = 0;
    nLuts     = 0;
    do
    {
Alan Mishchenko committed
157
        p = (LUT*) ABC_ALLOC( char, sizeof(LUT) );
Alan Mishchenko committed
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        memset( p, 0, sizeof(LUT) );

        if ( nVarsRem + PrevMulti <= s_LutSize ) // this is the last LUT
        {
            p->nIns   = nVarsRem + PrevMulti;
            p->nInsP  = PrevMulti;
            p->nCols  = 2;
            p->nMulti = 1;
            p->Level  = nNames-nVarsRem;

            nVarsRem  = 0;
            PrevMulti = 1;

            fLastLut  = 1;
        }
        else // this is not the last LUT
        {
            p->nIns   = s_LutSize;
            p->nInsP  = PrevMulti;
            p->nCols  = Profile[nNames-(nVarsRem-(s_LutSize-PrevMulti))];
178
            p->nMulti = Abc_Base2Log(p->nCols);
Alan Mishchenko committed
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            p->Level  = nNames-nVarsRem;

            nVarsRem  = nVarsRem-(s_LutSize-PrevMulti);
            PrevMulti = p->nMulti;
        }
        
        if ( p->nMulti >= s_LutSize )
        {
            printf( "The LUT size is too small\n" );
            return 0;
        }

        nLutOutputsOrig += p->nMulti;


//if ( fVerbose )
//printf( "Stage %2d: In = %3d, InP = %3d, Cols = %5d, Multi = %2d, Level = %2d\n", 
//       nLuts+1, p->nIns, p->nInsP, p->nCols, p->nMulti, p->Level );


        // there should be as many columns, codes, and nodes, as there are columns on this level
Alan Mishchenko committed
200 201 202
        p->pbCols  = (DdNode **) ABC_ALLOC( char, p->nCols * sizeof(DdNode *) );
        p->pbCodes = (DdNode **) ABC_ALLOC( char, p->nCols * sizeof(DdNode *) );
        p->paNodes = (DdNode **) ABC_ALLOC( char, p->nCols * sizeof(DdNode *) );
Alan Mishchenko committed
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

        pLuts[nLuts] = p;
        nLuts++;
    }
    while ( !fLastLut );


//if ( fVerbose )
//printf( "The number of cascades = %d\n", nLuts );


//fprintf( pTable, "%d ", nLuts );


    // add the new variables at the bottom
    for ( i = 0; i < s_LutSize; i++ )
        bCVars[i] = Cudd_bddNewVar(dd);

    // for each LUT - assign the LUT and encode the columns
    s_EncodingTime = 0;
    for ( i = 0; i < nLuts; i++ )
    {
        int RetValue;
        DdNode * bVars[32];    
        int nVars;
        DdNode * bVarsInCube;
        DdNode * bVarsCCube;
        DdNode * bVarsCube;
        int CutLevel;

        p = pLuts[i];

        // compute the columns of this LUT starting from the given set of nodes with the given codes
        // (these codes have been remapped to depend on the topmost variables in the manager)
        // for the first LUT, start with the constant 1 BDD
        CutLevel = p->Level + p->nIns - p->nInsP;
        if ( i == 0 )
            RetValue = Extra_bddNodePathsUnderCutArray( 
                            dd, &aFunc, &(b1), 1, 
                            p->paNodes, p->pbCols, CutLevel );
        else
            RetValue = Extra_bddNodePathsUnderCutArray( 
                            dd, pLuts[i-1]->paNodes, pLuts[i-1]->pbCodes, pLuts[i-1]->nCols, 
                            p->paNodes, p->pbCols, CutLevel );
        assert( RetValue == p->nCols );
        // at this point, we have filled out p->paNodes[] and p->pbCols[] of this LUT
        // pLuts[i-1]->paNodes depended on normal vars
        // pLuts[i-1]->pbCodes depended on the topmost variables 
        // the resulting p->paNodes depend on normal ADD nodes
        // the resulting p->pbCols depend on normal vars and topmost variables in the manager

        // perform the encoding

        // create the cube of these variables
        // collect the topmost variables of the manager
        nVars = p->nInsP;
        for ( v = 0; v < nVars; v++ )
            bVars[v] = dd->vars[ dd->invperm[v] ];
        bVarsCCube  = Extra_bddBitsToCube( dd, (1<<nVars)-1, nVars, bVars, 1 );    Cudd_Ref( bVarsCCube );

        // collect the primary input variables involved in this LUT
        nVars = p->nIns - p->nInsP;
        for ( v = 0; v < nVars; v++ )
            bVars[v] = dd->vars[ dd->invperm[p->Level+v] ];
        bVarsInCube = Extra_bddBitsToCube( dd, (1<<nVars)-1, nVars, bVars, 1 );    Cudd_Ref( bVarsInCube );

        // get the cube
        bVarsCube   = Cudd_bddAnd( dd, bVarsInCube, bVarsCCube );              Cudd_Ref( bVarsCube );
        Cudd_RecursiveDeref( dd, bVarsInCube );
        Cudd_RecursiveDeref( dd, bVarsCCube );

        // get the encoding relation
        if ( i == nLuts -1 )
        {
            DdNode * bVar;
            assert( p->nMulti == 1 );
            assert( p->nCols == 2 );
            assert( Cudd_IsConstant( p->paNodes[0] ) );
            assert( Cudd_IsConstant( p->paNodes[1] ) );

            bVar = ( p->paNodes[0] == a1 )? bCVars[0]: Cudd_Not( bCVars[0] );
            p->bRelation = Cudd_bddIte( dd, bVar, p->pbCols[0], p->pbCols[1] );  Cudd_Ref( p->bRelation );
        }
        else
        {
            long clk2 = clock();
//          p->bRelation = PerformTheEncoding( dd, p->pbCols, p->nCols, bVarsCube, bCVars, p->nMulti, &p->nSimple );  Cudd_Ref( p->bRelation );
            p->bRelation = Extra_bddEncodingNonStrict( dd, p->pbCols, p->nCols, bVarsCube, bCVars, p->nMulti, &p->nSimple );  Cudd_Ref( p->bRelation );
            s_EncodingTime += clock() - clk2;
        }

        // update the number of LUT outputs
        nLutOutputs += (p->nMulti - p->nSimple);
        nLutsTotal += p->nMulti;

//if ( fVerbose )
//printf( "Stage %2d: Simple = %d\n", i+1, p->nSimple );

if ( fVerbose )
printf( "Stage %3d: In = %3d  InP = %3d  Cols = %5d  Multi = %2d  Simple = %2d  Level = %3d\n", 
       i+1, p->nIns, p->nInsP, p->nCols, p->nMulti, p->nSimple, p->Level );

        // get the codes from the relation (these are not necessarily cubes)
        {
            int c;
            for ( c = 0; c < p->nCols; c++ )
            {
                p->pbCodes[c] = Cudd_bddAndAbstract( dd, p->bRelation, p->pbCols[c], bVarsCube ); Cudd_Ref( p->pbCodes[c] );
            }
        }

        Cudd_RecursiveDeref( dd, bVarsCube );

        // remap the codes to depend on the topmost varibles of the manager
        // useful as a preparation for the next step
        {
            DdNode ** pbTemp;
            int k, v;

Alan Mishchenko committed
322
            pbTemp = (DdNode **) ABC_ALLOC( char, p->nCols * sizeof(DdNode *) );
Alan Mishchenko committed
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

            // create the identical permutation
            for ( v = 0; v < dd->size; v++ )
                Permute[v] = v;

            // use the topmost variables of the manager 
            // to represent the previous level codes
            for ( v = 0; v < p->nMulti; v++ )
                Permute[bCVars[v]->index] = dd->invperm[v];

            Extra_bddPermuteArray( dd, p->pbCodes, pbTemp, p->nCols, Permute );
            // the array pbTemp comes already referenced

            // deref the old codes and assign the new ones
            for ( k = 0; k < p->nCols; k++ )
            {
                Cudd_RecursiveDeref( dd, p->pbCodes[k] );
                p->pbCodes[k] = pbTemp[k];
            }
Alan Mishchenko committed
342
            ABC_FREE( pbTemp );
Alan Mishchenko committed
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        }
    } 
    if ( fVerbose )
    printf( "LUTs: Total = %5d. Final = %5d. Simple = %5d. (%6.2f %%)  ", 
        nLutsTotal, nLutOutputs, nLutsTotal-nLutOutputs, 100.0*(nLutsTotal-nLutOutputs)/nLutsTotal );
    if ( fVerbose )
    printf( "Memory = %6.2f Mb\n", 1.0*nLutOutputs*(1<<nLutSize)/(1<<20) );
//  printf( "\n" );

//fprintf( pTable, "%d ", nLutOutputsOrig );
//fprintf( pTable, "%d ", nLutOutputs );

    if ( fVerbose )
    {
    printf( "Pure decomposition time   = %.2f sec\n", (float)(clock() - clk1 - s_EncodingTime)/(float)(CLOCKS_PER_SEC) );
    printf( "Encoding time             = %.2f sec\n", (float)(s_EncodingTime)/(float)(CLOCKS_PER_SEC) );
//  printf( "Encoding search time      = %.2f sec\n", (float)(s_EncSearchTime)/(float)(CLOCKS_PER_SEC) );
//  printf( "Encoding compute time     = %.2f sec\n", (float)(s_EncComputeTime)/(float)(CLOCKS_PER_SEC) );
    }


//fprintf( pTable, "%.2f ", (float)(s_ReadingTime)/(float)(CLOCKS_PER_SEC) );
//fprintf( pTable, "%.2f ", (float)(clock() - clk1 - s_EncodingTime)/(float)(CLOCKS_PER_SEC) );
//fprintf( pTable, "%.2f ", (float)(s_EncodingTime)/(float)(CLOCKS_PER_SEC) );
//fprintf( pTable, "%.2f ", (float)(s_RemappingTime)/(float)(CLOCKS_PER_SEC) );


    // write LUTs into the BLIF file
    clk1 = clock();
    if ( fCheck )
    {
        FILE * pFile;
        // start the file
        pFile = fopen( FileName, "w" );
        fprintf( pFile, ".model %s\n", FileName );

        fprintf( pFile, ".inputs" );
        for ( i = 0; i < nNames; i++ )
            fprintf( pFile, " %s", pNames[i] );
        fprintf( pFile, "\n" );
        fprintf( pFile, ".outputs F" );
        fprintf( pFile, "\n" );

        // write the DD into the file
        WriteLUTSintoBLIFfile( pFile, dd, pLuts, nLuts, bCVars, pNames, nNames, FileName );

        fprintf( pFile, ".end\n" );
        fclose( pFile );
        if ( fVerbose )
        printf( "Output file writing time  = %.2f sec\n", (float)(clock() - clk1)/(float)(CLOCKS_PER_SEC) );
    }


    // updo the LUT cascade
    for ( i = 0; i < nLuts; i++ )
    {
        p = pLuts[i];
        for ( v = 0; v < p->nCols; v++ )
        {
            Cudd_RecursiveDeref( dd, p->pbCols[v] );
            Cudd_RecursiveDeref( dd, p->pbCodes[v] );
            Cudd_RecursiveDeref( dd, p->paNodes[v] );
        }
        Cudd_RecursiveDeref( dd, p->bRelation );

Alan Mishchenko committed
408 409 410 411
        ABC_FREE( p->pbCols );
        ABC_FREE( p->pbCodes );
        ABC_FREE( p->paNodes );
        ABC_FREE( p );
Alan Mishchenko committed
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    }

    return 1;
}
 
void WriteLUTSintoBLIFfile( FILE * pFile, DdManager * dd, LUT ** pLuts, int nLuts, DdNode ** bCVars, char ** pNames, int nNames, char * FileName )
{
    int i, v, o;
    static char * pNamesLocalIn[MAXINPUTS];
    static char * pNamesLocalOut[MAXINPUTS];
    static char Buffer[100];
    DdNode * bCube, * bCof, * bFunc;
    LUT * p;

    // go through all the LUTs
    for ( i = 0; i < nLuts; i++ )
    {
        // get the pointer to the LUT
        p = pLuts[i];

        if ( i == nLuts -1 )
        {
            assert( p->nMulti == 1 );
        }


        fprintf( pFile, "#----------------- LUT #%d ----------------------\n", i );


        // fill in the names for the current LUT

        // write the outputs of the previous LUT
        if ( i != 0 )
        for ( v = 0; v < p->nInsP; v++ )
        {
            sprintf( Buffer, "LUT%02d_%02d", i-1, v );
            pNamesLocalIn[dd->invperm[v]] = Extra_UtilStrsav( Buffer );
        }
        // write the primary inputs of the current LUT
        for ( v = 0; v < p->nIns - p->nInsP; v++ )
            pNamesLocalIn[dd->invperm[p->Level+v]] = Extra_UtilStrsav( pNames[dd->invperm[p->Level+v]] );
        // write the outputs of the current LUT
        for ( v = 0; v < p->nMulti; v++ )
        {
            sprintf( Buffer, "LUT%02d_%02d", i, v );
            if ( i != nLuts - 1 )
                pNamesLocalOut[v] = Extra_UtilStrsav( Buffer );
            else 
                pNamesLocalOut[v] = Extra_UtilStrsav( "F" );
        }


        // write LUT outputs

        // get the prefix
        sprintf( Buffer, "L%02d_", i );

        // get the cube of encoding variables
        bCube = Extra_bddBitsToCube( dd, (1<<p->nMulti)-1, p->nMulti, bCVars, 1 );   Cudd_Ref( bCube );

        // write each output of the LUT
        for ( o = 0; o < p->nMulti; o++ )
        {
            // get the cofactor of this output
            bCof = Cudd_Cofactor( dd, p->bRelation, bCVars[o] );  Cudd_Ref( bCof );
            // quantify the remaining variables to get the function
            bFunc = Cudd_bddExistAbstract( dd, bCof, bCube );     Cudd_Ref( bFunc );
            Cudd_RecursiveDeref( dd, bCof );
            
            // write BLIF
            sprintf( Buffer, "L%02d_%02d_", i, o );

//          WriteDDintoBLIFfileReorder( dd, pFile, bFunc, pNamesLocalOut[o], Buffer, pNamesLocalIn );
            // does not work well; the advantage is marginal (30%), the run time is huge...

            WriteDDintoBLIFfile( pFile, bFunc, pNamesLocalOut[o], Buffer, pNamesLocalIn );
            Cudd_RecursiveDeref( dd, bFunc );
        }
        Cudd_RecursiveDeref( dd, bCube );

        // clean up the previous local names
        for ( v = 0; v < dd->size; v++ )
        {
            if ( pNamesLocalIn[v] )
Alan Mishchenko committed
496
                ABC_FREE( pNamesLocalIn[v] );
Alan Mishchenko committed
497 498 499
            pNamesLocalIn[v] = NULL;
        }
        for ( v = 0; v < p->nMulti; v++ )
Alan Mishchenko committed
500
            ABC_FREE( pNamesLocalOut[v] );
Alan Mishchenko committed
501 502 503 504 505 506 507 508 509 510 511
    }
}


////////////////////////////////////////////////////////////////////////
///                           END OF FILE                            ///
////////////////////////////////////////////////////////////////////////




512 513
ABC_NAMESPACE_IMPL_END