ivyDfs.c 15.7 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/**CFile****************************************************************

  FileName    [ivyDfs.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [And-Inverter Graph package.]

  Synopsis    [DFS collection procedures.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - May 11, 2006.]

  Revision    [$Id: ivyDfs.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $]

***********************************************************************/

#include "ivy.h"

23 24 25
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Collects nodes in the DFS order.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_ManDfs_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj, Vec_Int_t * vNodes )
{
    if ( Ivy_ObjIsMarkA(pObj) )
        return;
    Ivy_ObjSetMarkA(pObj);
    if ( Ivy_ObjIsConst1(pObj) || Ivy_ObjIsCi(pObj) )
    {
        if ( p->pHaig == NULL && pObj->pEquiv )
            Ivy_ManDfs_rec( p, Ivy_Regular(pObj->pEquiv), vNodes );
        return;
    }
//printf( "visiting node %d\n", pObj->Id );
/*
    if ( pObj->Id == 87 || pObj->Id == 90 )
    {
        int y = 0;
    }
*/
    assert( Ivy_ObjIsBuf(pObj) || Ivy_ObjIsAnd(pObj) || Ivy_ObjIsExor(pObj) );
    Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes );
    if ( !Ivy_ObjIsBuf(pObj) )
        Ivy_ManDfs_rec( p, Ivy_ObjFanin1(pObj), vNodes );
    if ( p->pHaig == NULL && pObj->pEquiv )
        Ivy_ManDfs_rec( p, Ivy_Regular(pObj->pEquiv), vNodes );
    Vec_IntPush( vNodes, pObj->Id );

//printf( "adding node %d with fanins %d and %d and equiv %d (refs = %d)\n", 
//       pObj->Id, Ivy_ObjFanin0(pObj)->Id, Ivy_ObjFanin1(pObj)->Id, 
//       pObj->pEquiv? Ivy_Regular(pObj->pEquiv)->Id: -1, Ivy_ObjRefs(pObj) );
}

/**Function*************************************************************

  Synopsis    [Collects AND/EXOR nodes in the DFS order from CIs to COs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Ivy_ManDfs( Ivy_Man_t * p )
{
    Vec_Int_t * vNodes;
    Ivy_Obj_t * pObj;
    int i;
    assert( Ivy_ManLatchNum(p) == 0 );
    // make sure the nodes are not marked
    Ivy_ManForEachObj( p, pObj, i )
        assert( !pObj->fMarkA && !pObj->fMarkB );
    // collect the nodes
    vNodes = Vec_IntAlloc( Ivy_ManNodeNum(p) );
    Ivy_ManForEachPo( p, pObj, i )
        Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes );
    // unmark the collected nodes
//    Ivy_ManForEachNodeVec( p, vNodes, pObj, i )
//        Ivy_ObjClearMarkA(pObj);
    Ivy_ManForEachObj( p, pObj, i )
        Ivy_ObjClearMarkA(pObj);
    // make sure network does not have dangling nodes
    assert( Vec_IntSize(vNodes) == Ivy_ManNodeNum(p) + Ivy_ManBufNum(p) );
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Collects AND/EXOR nodes in the DFS order from CIs to COs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Ivy_ManDfsSeq( Ivy_Man_t * p, Vec_Int_t ** pvLatches )
{
    Vec_Int_t * vNodes, * vLatches;
    Ivy_Obj_t * pObj;
    int i;
//    assert( Ivy_ManLatchNum(p) > 0 );
    // make sure the nodes are not marked
    Ivy_ManForEachObj( p, pObj, i )
        assert( !pObj->fMarkA && !pObj->fMarkB );
    // collect the latches
    vLatches = Vec_IntAlloc( Ivy_ManLatchNum(p) );
    Ivy_ManForEachLatch( p, pObj, i )
        Vec_IntPush( vLatches, pObj->Id );
    // collect the nodes
    vNodes = Vec_IntAlloc( Ivy_ManNodeNum(p) );
    Ivy_ManForEachPo( p, pObj, i )
        Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes );
    Ivy_ManForEachNodeVec( p, vLatches, pObj, i )
        Ivy_ManDfs_rec( p, Ivy_ObjFanin0(pObj), vNodes );
    // unmark the collected nodes
//    Ivy_ManForEachNodeVec( p, vNodes, pObj, i )
//        Ivy_ObjClearMarkA(pObj);
    Ivy_ManForEachObj( p, pObj, i )
        Ivy_ObjClearMarkA(pObj);
    // make sure network does not have dangling nodes
//    assert( Vec_IntSize(vNodes) == Ivy_ManNodeNum(p) + Ivy_ManBufNum(p) );

// temporary!!!

    if ( pvLatches == NULL )
        Vec_IntFree( vLatches );
    else
        *pvLatches = vLatches;
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Collects nodes in the cone.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_ManCollectCone_rec( Ivy_Obj_t * pObj, Vec_Ptr_t * vCone )
{
    if ( pObj->fMarkA )
        return;
    if ( Ivy_ObjIsBuf(pObj) )
    {
        Ivy_ManCollectCone_rec( Ivy_ObjFanin0(pObj), vCone );
        Vec_PtrPush( vCone, pObj );
        return;
    }
    assert( Ivy_ObjIsNode(pObj) );
    Ivy_ManCollectCone_rec( Ivy_ObjFanin0(pObj), vCone );
    Ivy_ManCollectCone_rec( Ivy_ObjFanin1(pObj), vCone );
    Vec_PtrPushUnique( vCone, pObj );
}

/**Function*************************************************************

  Synopsis    [Collects nodes in the cone.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Ivy_ManCollectCone( Ivy_Obj_t * pObj, Vec_Ptr_t * vFront, Vec_Ptr_t * vCone )
{
    Ivy_Obj_t * pTemp;
    int i;
    assert( !Ivy_IsComplement(pObj) );
    assert( Ivy_ObjIsNode(pObj) );
    // mark the nodes
202
    Vec_PtrForEachEntry( Ivy_Obj_t *, vFront, pTemp, i )
Alan Mishchenko committed
203 204 205 206 207 208
        Ivy_Regular(pTemp)->fMarkA = 1;
    assert( pObj->fMarkA == 0 );
    // collect the cone
    Vec_PtrClear( vCone );
    Ivy_ManCollectCone_rec( pObj, vCone );
    // unmark the nodes
209
    Vec_PtrForEachEntry( Ivy_Obj_t *, vFront, pTemp, i )
Alan Mishchenko committed
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        Ivy_Regular(pTemp)->fMarkA = 0;
}

/**Function*************************************************************

  Synopsis    [Returns the nodes by level.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Vec_t * Ivy_ManLevelize( Ivy_Man_t * p )
{
    Vec_Vec_t * vNodes;
    Ivy_Obj_t * pObj;
    int i;
    vNodes = Vec_VecAlloc( 100 );
    Ivy_ManForEachObj( p, pObj, i )
    {
        assert( !Ivy_ObjIsBuf(pObj) );
        if ( Ivy_ObjIsNode(pObj) )
            Vec_VecPush( vNodes, pObj->Level, pObj );
    }
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Computes required levels for each node.]

  Description [Assumes topological ordering of the nodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Ivy_ManRequiredLevels( Ivy_Man_t * p )
{
    Ivy_Obj_t * pObj;
    Vec_Int_t * vLevelsR;
    Vec_Vec_t * vNodes;
    int i, k, Level, LevelMax;
    assert( p->vRequired == NULL );
    // start the required times
    vLevelsR = Vec_IntStart( Ivy_ManObjIdMax(p) + 1 );
    // iterate through the nodes in the reverse order
    vNodes = Ivy_ManLevelize( p );
261
    Vec_VecForEachEntryReverseReverse( Ivy_Obj_t *, vNodes, pObj, i, k )
Alan Mishchenko committed
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    {
        Level = Vec_IntEntry( vLevelsR, pObj->Id ) + 1 + Ivy_ObjIsExor(pObj);
        if ( Vec_IntEntry( vLevelsR, Ivy_ObjFaninId0(pObj) ) < Level )
            Vec_IntWriteEntry( vLevelsR, Ivy_ObjFaninId0(pObj), Level );
        if ( Vec_IntEntry( vLevelsR, Ivy_ObjFaninId1(pObj) ) < Level )
            Vec_IntWriteEntry( vLevelsR, Ivy_ObjFaninId1(pObj), Level );
    }
    Vec_VecFree( vNodes );
    // convert it into the required times
    LevelMax = Ivy_ManLevels( p );
//printf( "max %5d\n",LevelMax );
    Ivy_ManForEachObj( p, pObj, i )
    {
        Level = Vec_IntEntry( vLevelsR, pObj->Id );
        Vec_IntWriteEntry( vLevelsR, pObj->Id, LevelMax - Level );
//printf( "%5d : %5d %5d\n", pObj->Id, Level, LevelMax - Level );
    }
    p->vRequired = vLevelsR;
    return vLevelsR;
}

/**Function*************************************************************

  Synopsis    [Recursively detects combinational loops.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_ManIsAcyclic_rec( Ivy_Man_t * p, Ivy_Obj_t * pObj )
{
    // skip the node if it is already visited
    if ( Ivy_ObjIsTravIdPrevious(p, pObj) )
        return 1;
    // check if the node is part of the combinational loop
    if ( Ivy_ObjIsTravIdCurrent(p, pObj) )
    {
        fprintf( stdout, "Manager contains combinational loop!\n" );
        fprintf( stdout, "Node \"%d\" is encountered twice on the following path:\n",  Ivy_ObjId(pObj) );
        fprintf( stdout, " %d",  Ivy_ObjId(pObj) );
        return 0;
    }
    // mark this node as a node on the current path
    Ivy_ObjSetTravIdCurrent( p, pObj );
    // explore equivalent nodes if pObj is the main node
    if ( p->pHaig == NULL && pObj->pEquiv && Ivy_ObjRefs(pObj) > 0 )
    {
        Ivy_Obj_t * pTemp;
        assert( !Ivy_IsComplement(pObj->pEquiv) );
        for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) )
        {
            // traverse the fanin's cone searching for the loop
            if ( !Ivy_ManIsAcyclic_rec(p, pTemp) )
            {
                // return as soon as the loop is detected
                fprintf( stdout, " -> (%d", Ivy_ObjId(pObj) );
                for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) )
                    fprintf( stdout, " %d", Ivy_ObjId(pTemp) );
                fprintf( stdout, ")" );
                return 0; 
            }
        }
    }
    // quite if it is a CI node
    if ( Ivy_ObjIsCi(pObj) || Ivy_ObjIsConst1(pObj) )
    {
        // mark this node as a visited node
        Ivy_ObjSetTravIdPrevious( p, pObj );
        return 1;
    }
    assert( Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj) );
    // traverse the fanin's cone searching for the loop
    if ( !Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin0(pObj)) )
    {
        // return as soon as the loop is detected
        fprintf( stdout, " -> %d", Ivy_ObjId(pObj) );
        return 0;
    }
    // traverse the fanin's cone searching for the loop
    if ( Ivy_ObjIsNode(pObj) && !Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin1(pObj)) )
    {
        // return as soon as the loop is detected
        fprintf( stdout, " -> %d", Ivy_ObjId(pObj) );
        return 0;
    }
    // mark this node as a visited node
    Ivy_ObjSetTravIdPrevious( p, pObj );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Detects combinational loops.]

  Description [This procedure is based on the idea suggested by Donald Chai. 
  As we traverse the network and visit the nodes, we need to distinquish 
  three types of nodes: (1) those that are visited for the first time, 
  (2) those that have been visited in this traversal but are currently not 
  on the traversal path, (3) those that have been visited and are currently 
  on the travesal path. When the node of type (3) is encountered, it means 
  that there is a combinational loop. To mark the three types of nodes, 
  two new values of the traversal IDs are used.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_ManIsAcyclic( Ivy_Man_t * p )
{
    Ivy_Obj_t * pObj;
    int fAcyclic, i;
    // set the traversal ID for this DFS ordering
    Ivy_ManIncrementTravId( p );   
    Ivy_ManIncrementTravId( p );   
    // pObj->TravId == pNet->nTravIds      means "pObj is on the path"
    // pObj->TravId == pNet->nTravIds - 1  means "pObj is visited but is not on the path"
    // pObj->TravId <  pNet->nTravIds - 1  means "pObj is not visited"
    // traverse the network to detect cycles
    fAcyclic = 1;
    Ivy_ManForEachCo( p, pObj, i )
    {
        // traverse the output logic cone
Alan Mishchenko committed
388
        if ( (fAcyclic = Ivy_ManIsAcyclic_rec(p, Ivy_ObjFanin0(pObj))) )
Alan Mishchenko committed
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            continue;
        // stop as soon as the first loop is detected
        fprintf( stdout, " (cone of %s \"%d\")\n", Ivy_ObjIsLatch(pObj)? "latch" : "PO", Ivy_ObjId(pObj) );
        break;
    }
    return fAcyclic;
}

/**Function*************************************************************

  Synopsis    [Sets the levels of the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_ManSetLevels_rec( Ivy_Obj_t * pObj, int fHaig )
{
    // quit if the node is visited
    if ( Ivy_ObjIsMarkA(pObj) )
        return pObj->Level;
    Ivy_ObjSetMarkA(pObj);
    // quit if this is a CI
    if ( Ivy_ObjIsConst1(pObj) || Ivy_ObjIsCi(pObj) )
        return 0;
    assert( Ivy_ObjIsBuf(pObj) || Ivy_ObjIsAnd(pObj) || Ivy_ObjIsExor(pObj) );
    // get levels of the fanins
    Ivy_ManSetLevels_rec( Ivy_ObjFanin0(pObj), fHaig );
    if ( !Ivy_ObjIsBuf(pObj) )
        Ivy_ManSetLevels_rec( Ivy_ObjFanin1(pObj), fHaig );
    // get level of the node
    if ( Ivy_ObjIsBuf(pObj) )
        pObj->Level = 1 + Ivy_ObjFanin0(pObj)->Level;
    else if ( Ivy_ObjIsNode(pObj) )
        pObj->Level = Ivy_ObjLevelNew( pObj );
    else assert( 0 );
    // get level of other choices
    if ( fHaig && pObj->pEquiv && Ivy_ObjRefs(pObj) > 0 )
    {
        Ivy_Obj_t * pTemp;
        unsigned LevelMax = pObj->Level;
        for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) )
        {
            Ivy_ManSetLevels_rec( pTemp, fHaig );
            LevelMax = IVY_MAX( LevelMax, pTemp->Level );
        }
        // get this level
        pObj->Level = LevelMax;
        for ( pTemp = pObj->pEquiv; pTemp != pObj; pTemp = Ivy_Regular(pTemp->pEquiv) )
            pTemp->Level = LevelMax;
    }
    return pObj->Level;
}

/**Function*************************************************************

  Synopsis    [Sets the levels of the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ivy_ManSetLevels( Ivy_Man_t * p, int fHaig )
{
    Ivy_Obj_t * pObj;
    int i, LevelMax;
    // check if CIs have choices
    if ( fHaig )
    {
        Ivy_ManForEachCi( p, pObj, i )
            if ( pObj->pEquiv )
                printf( "CI %d has a choice, which will not be visualized.\n", pObj->Id );
    }
    // clean the levels
    Ivy_ManForEachObj( p, pObj, i )
        pObj->Level = 0;
    // compute the levels
    LevelMax = 0;
    Ivy_ManForEachCo( p, pObj, i )
    {
        Ivy_ManSetLevels_rec( Ivy_ObjFanin0(pObj), fHaig );
        LevelMax = IVY_MAX( LevelMax, (int)Ivy_ObjFanin0(pObj)->Level );
    }
    // compute levels of nodes without fanout
    Ivy_ManForEachObj( p, pObj, i )
        if ( (Ivy_ObjIsNode(pObj) || Ivy_ObjIsBuf(pObj)) && Ivy_ObjRefs(pObj) == 0 )
        {
            Ivy_ManSetLevels_rec( pObj, fHaig );
            LevelMax = IVY_MAX( LevelMax, (int)pObj->Level );
        }
    // clean the marks
    Ivy_ManForEachObj( p, pObj, i )
        Ivy_ObjClearMarkA(pObj);
    return LevelMax;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


497 498
ABC_NAMESPACE_IMPL_END