fxuSingle.c 9.28 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/**CFile****************************************************************

  FileName    [fxuSingle.c]

  PackageName [MVSIS 2.0: Multi-valued logic synthesis system.]

  Synopsis    [Procedures to compute the set of single-cube divisors.]

  Author      [MVSIS Group]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - February 1, 2003.]

  Revision    [$Id: fxuSingle.c,v 1.0 2003/02/01 00:00:00 alanmi Exp $]

***********************************************************************/

#include "fxuInt.h"
Alan Mishchenko committed
20
#include "vec.h"
Alan Mishchenko committed
21 22 23 24 25

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

Alan Mishchenko committed
26 27
static void Fxu_MatrixComputeSinglesOneCollect( Fxu_Matrix * p, Fxu_Var * pVar, Vec_Ptr_t * vSingles );

Alan Mishchenko committed
28
////////////////////////////////////////////////////////////////////////
Alan Mishchenko committed
29
///                     FUNCTION DEFINITIONS                         ///
Alan Mishchenko committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Computes and adds all single-cube divisors to storage.]

  Description [This procedure should be called once when the matrix is
  already contructed before the process of logic extraction begins..]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Alan Mishchenko committed
44
void Fxu_MatrixComputeSingles( Fxu_Matrix * p, int fUse0, int nSingleMax )
Alan Mishchenko committed
45 46
{
    Fxu_Var * pVar;
Alan Mishchenko committed
47 48 49 50 51 52
    Vec_Ptr_t * vSingles;
    int i, k;
    // set the weight limit
    p->nWeightLimit = 1 - fUse0;
    // iterate through columns in the matrix and collect single-cube divisors
    vSingles = Vec_PtrAlloc( 10000 );
Alan Mishchenko committed
53
    Fxu_MatrixForEachVariable( p, pVar )
Alan Mishchenko committed
54 55 56 57 58 59 60 61
        Fxu_MatrixComputeSinglesOneCollect( p, pVar, vSingles );
    p->nSingleTotal = Vec_PtrSize(vSingles) / 3;
    // check if divisors should be filtered
    if ( Vec_PtrSize(vSingles) > nSingleMax )
    {
        int * pWeigtCounts, nDivCount, Weight, i, c;;
        assert( Vec_PtrSize(vSingles) % 3 == 0 );
        // count how many divisors have the given weight
Alan Mishchenko committed
62
        pWeigtCounts = ABC_ALLOC( int, 1000 );
Alan Mishchenko committed
63 64 65
        memset( pWeigtCounts, 0, sizeof(int) * 1000 );
        for ( i = 2; i < Vec_PtrSize(vSingles); i += 3 )
        {
Alan Mishchenko committed
66
            Weight = (int)(ABC_PTRUINT_T)Vec_PtrEntry(vSingles, i);
Alan Mishchenko committed
67 68 69 70 71 72 73 74 75 76 77 78 79
            if ( Weight >= 999 )
                pWeigtCounts[999]++;
            else
                pWeigtCounts[Weight]++;
        }
        // select the bound on the weight (above this bound, singles will be included)
        nDivCount = 0;
        for ( c = 999; c >= 0; c-- )
        {
            nDivCount += pWeigtCounts[c];
            if ( nDivCount >= nSingleMax )
                break;
        }
Alan Mishchenko committed
80
        ABC_FREE( pWeigtCounts );
Alan Mishchenko committed
81 82 83 84
        // collect singles with the given costs
        k = 0;
        for ( i = 2; i < Vec_PtrSize(vSingles); i += 3 )
        {
Alan Mishchenko committed
85
            Weight = (int)(ABC_PTRUINT_T)Vec_PtrEntry(vSingles, i);
Alan Mishchenko committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
            if ( Weight < c )
                continue;
            Vec_PtrWriteEntry( vSingles, k++, Vec_PtrEntry(vSingles, i-2) );
            Vec_PtrWriteEntry( vSingles, k++, Vec_PtrEntry(vSingles, i-1) );
            Vec_PtrWriteEntry( vSingles, k++, Vec_PtrEntry(vSingles, i) );
            if ( k/3 == nSingleMax )
                break;
        }
        Vec_PtrShrink( vSingles, k );
        // adjust the weight limit
        p->nWeightLimit = c;
    }
    // collect the selected divisors
    assert( Vec_PtrSize(vSingles) % 3 == 0 );
    for ( i = 0; i < Vec_PtrSize(vSingles); i += 3 )
    {
        Fxu_MatrixAddSingle( p, 
            Vec_PtrEntry(vSingles,i), 
            Vec_PtrEntry(vSingles,i+1), 
Alan Mishchenko committed
105
            (int)(ABC_PTRUINT_T)Vec_PtrEntry(vSingles,i+2) );
Alan Mishchenko committed
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    }
    Vec_PtrFree( vSingles );
}

/**Function*************************************************************

  Synopsis    [Adds the single-cube divisors associated with a new column.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_MatrixComputeSinglesOneCollect( Fxu_Matrix * p, Fxu_Var * pVar, Vec_Ptr_t * vSingles )
{
    Fxu_Lit * pLitV, * pLitH;
    Fxu_Var * pVar2;
    int Coin;
    int WeightCur;

    // start collecting the affected vars
    Fxu_MatrixRingVarsStart( p );
    // go through all the literals of this variable
    for ( pLitV = pVar->lLits.pHead; pLitV; pLitV = pLitV->pVNext )
        // for this literal, go through all the horizontal literals
        for ( pLitH = pLitV->pHPrev; pLitH; pLitH = pLitH->pHPrev )
        {
            // get another variable
            pVar2 = pLitH->pVar;
            // skip the var if it is already used
            if ( pVar2->pOrder )
                continue;
            // skip the var if it belongs to the same node
//            if ( pValue2Node[pVar->iVar] == pValue2Node[pVar2->iVar] )
//                continue;
            // collect the var
            Fxu_MatrixRingVarsAdd( p, pVar2 );
        }
    // stop collecting the selected vars
    Fxu_MatrixRingVarsStop( p );

    // iterate through the selected vars
    Fxu_MatrixForEachVarInRing( p, pVar2 )
    {
        // count the coincidence
        Coin = Fxu_SingleCountCoincidence( p, pVar2, pVar );
        assert( Coin > 0 );
        // get the new weight
        WeightCur = Coin - 2;
        // peformance fix (August 24, 2007)
        if ( WeightCur >= p->nWeightLimit )
        {
            Vec_PtrPush( vSingles, pVar2 );
            Vec_PtrPush( vSingles, pVar );
Alan Mishchenko committed
162
            Vec_PtrPush( vSingles, (void *)(ABC_PTRUINT_T)WeightCur );
Alan Mishchenko committed
163 164 165 166 167
        }
    }

    // unmark the vars
    Fxu_MatrixRingVarsUnmark( p );
Alan Mishchenko committed
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
}

/**Function*************************************************************

  Synopsis    [Adds the single-cube divisors associated with a new column.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fxu_MatrixComputeSinglesOne( Fxu_Matrix * p, Fxu_Var * pVar )
{
    Fxu_Lit * pLitV, * pLitH;
    Fxu_Var * pVar2;
    int Coin;
    int WeightCur;

    // start collecting the affected vars
    Fxu_MatrixRingVarsStart( p );
    // go through all the literals of this variable
    for ( pLitV = pVar->lLits.pHead; pLitV; pLitV = pLitV->pVNext )
        // for this literal, go through all the horizontal literals
        for ( pLitH = pLitV->pHPrev; pLitH; pLitH = pLitH->pHPrev )
        {
            // get another variable
            pVar2 = pLitH->pVar;
            // skip the var if it is already used
            if ( pVar2->pOrder )
                continue;
            // skip the var if it belongs to the same node
//            if ( pValue2Node[pVar->iVar] == pValue2Node[pVar2->iVar] )
//                continue;
            // collect the var
            Fxu_MatrixRingVarsAdd( p, pVar2 );
        }
    // stop collecting the selected vars
    Fxu_MatrixRingVarsStop( p );

    // iterate through the selected vars
    Fxu_MatrixForEachVarInRing( p, pVar2 )
    {
        // count the coincidence
        Coin = Fxu_SingleCountCoincidence( p, pVar2, pVar );
        assert( Coin > 0 );
        // get the new weight
        WeightCur = Coin - 2;
Alan Mishchenko committed
217 218 219 220
        // peformance fix (August 24, 2007)
//        if ( WeightCur >= 0 )
//        Fxu_MatrixAddSingle( p, pVar2, pVar, WeightCur );
        if ( WeightCur >= p->nWeightLimit )
Alan Mishchenko committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            Fxu_MatrixAddSingle( p, pVar2, pVar, WeightCur );
    }
    // unmark the vars
    Fxu_MatrixRingVarsUnmark( p );
}

/**Function*************************************************************

  Synopsis    [Computes the coincidence count of two columns.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fxu_SingleCountCoincidence( Fxu_Matrix * p, Fxu_Var * pVar1, Fxu_Var * pVar2 )
{
    Fxu_Lit * pLit1, * pLit2;
    int Result;

    // compute the coincidence count
    Result = 0;
    pLit1  = pVar1->lLits.pHead;
    pLit2  = pVar2->lLits.pHead;
    while ( 1 )
    {
        if ( pLit1 && pLit2 )
        {
            if ( pLit1->pCube->pVar->iVar == pLit2->pCube->pVar->iVar )
            { // the variables are the same
                if ( pLit1->iCube == pLit2->iCube )
                { // the literals are the same
                    pLit1 = pLit1->pVNext;
                    pLit2 = pLit2->pVNext;
                    // add this literal to the coincidence
                    Result++;
                }
                else if ( pLit1->iCube < pLit2->iCube )
                    pLit1 = pLit1->pVNext;
                else
                    pLit2 = pLit2->pVNext;
            }
            else if ( pLit1->pCube->pVar->iVar < pLit2->pCube->pVar->iVar )
                pLit1 = pLit1->pVNext;
            else
                pLit2 = pLit2->pVNext;
        }
        else if ( pLit1 && !pLit2 )
            pLit1 = pLit1->pVNext;
        else if ( !pLit1 && pLit2 )
            pLit2 = pLit2->pVNext;
        else
            break;
    }
    return Result;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////