cuddSubsetHB.c 41.1 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/**CFile***********************************************************************

  FileName    [cuddSubsetHB.c]

  PackageName [cudd]

  Synopsis    [Procedure to subset the given BDD by choosing the heavier
        branches]


  Description [External procedures provided by this module:
                <ul>
        <li> Cudd_SubsetHeavyBranch()
        <li> Cudd_SupersetHeavyBranch()
        </ul>
           Internal procedures included in this module:
        <ul>
        <li> cuddSubsetHeavyBranch()
        </ul>
           Static procedures included in this module:
        <ul>
        <li> ResizeCountMintermPages();
        <li> ResizeNodeDataPages()
        <li> ResizeCountNodePages()
        <li> SubsetCountMintermAux()
        <li> SubsetCountMinterm()
        <li> SubsetCountNodesAux()
        <li> SubsetCountNodes()
        <li> BuildSubsetBdd()
        </ul>
        ]

  SeeAlso     [cuddSubsetSP.c]

  Author      [Kavita Ravi]

  Copyright   [This file was created at the University of Colorado at
               Boulder.  The University of Colorado at Boulder makes no
           warranty about the suitability of this software for any
           purpose.  It is presented on an AS IS basis.]

******************************************************************************/

#ifdef __STDC__
#include <float.h>
#else
#define DBL_MAX_EXP 1024
#endif
Alan Mishchenko committed
49
#include "util_hack.h"
Alan Mishchenko committed
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#include "cuddInt.h"

/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/

#define    DEFAULT_PAGE_SIZE 2048
#define    DEFAULT_NODE_DATA_PAGE_SIZE 1024
#define INITIAL_PAGES 128


/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/

/* data structure to store the information on each node. It keeps
 * the number of minterms represented by the DAG rooted at this node
 * in terms of the number of variables specified by the user, number
 * of nodes in this DAG and the number of nodes of its child with
 * lesser number of minterms that are not shared by the child with
 * more minterms
 */
struct NodeData {
    double *mintermPointer;
    int *nodesPointer;
    int *lightChildNodesPointer;
};

/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/

typedef struct NodeData NodeData_t;

/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
static char rcsid[] DD_UNUSED = "$Id: cuddSubsetHB.c,v 1.1.1.1 2003/02/24 22:23:53 wjiang Exp $";
#endif

static int memOut;
#ifdef DEBUG
static    int        num_calls;
#endif

static    DdNode            *zero, *one; /* constant functions */
static    double        **mintermPages;    /* pointers to the pages */
static    int        **nodePages; /* pointers to the pages */
static    int        **lightNodePages; /* pointers to the pages */
static    double        *currentMintermPage; /* pointer to the current
                           page */
static  double         max; /* to store the 2^n value of the number
                  * of variables */

static    int        *currentNodePage; /* pointer to the current
                           page */
static    int        *currentLightNodePage; /* pointer to the
                        *  current page */
static    int        pageIndex; /* index to next element */
static    int        page; /* index to current page */
static    int        pageSize = DEFAULT_PAGE_SIZE; /* page size */
static  int             maxPages; /* number of page pointers */

static    NodeData_t    *currentNodeDataPage; /* pointer to the current
                         page */
static    int        nodeDataPage; /* index to next element */
static    int        nodeDataPageIndex; /* index to next element */
static    NodeData_t    **nodeDataPages; /* index to current page */
static    int        nodeDataPageSize = DEFAULT_NODE_DATA_PAGE_SIZE;
                                                     /* page size */
static  int             maxNodeDataPages; /* number of page pointers */


/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/

/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

static void ResizeNodeDataPages ARGS(());
static void ResizeCountMintermPages ARGS(());
static void ResizeCountNodePages ARGS(());
static double SubsetCountMintermAux ARGS((DdNode *node, double max, st_table *table));
static st_table * SubsetCountMinterm ARGS((DdNode *node, int nvars));
static int SubsetCountNodesAux ARGS((DdNode *node, st_table *table, double max));
static int SubsetCountNodes ARGS((DdNode *node, st_table *table, int nvars));
static void StoreNodes ARGS((st_table *storeTable, DdManager *dd, DdNode *node));
static DdNode * BuildSubsetBdd ARGS((DdManager *dd, DdNode *node, int *size, st_table *visitedTable, int threshold, st_table *storeTable, st_table *approxTable));

/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/

/**Function********************************************************************

  Synopsis    [Extracts a dense subset from a BDD with the heavy branch
  heuristic.]

  Description [Extracts a dense subset from a BDD. This procedure
  builds a subset by throwing away one of the children of each node,
  starting from the root, until the result is small enough. The child
  that is eliminated from the result is the one that contributes the
  fewer minterms.  Returns a pointer to the BDD of the subset if
  successful. NULL if the procedure runs out of memory. The parameter
  numVars is the maximum number of variables to be used in minterm
  calculation and node count calculation.  The optimal number should
  be as close as possible to the size of the support of f.  However,
  it is safe to pass the value returned by Cudd_ReadSize for numVars
  when the number of variables is under 1023.  If numVars is larger
  than 1023, it will overflow. If a 0 parameter is passed then the
  procedure will compute a value which will avoid overflow but will
  cause underflow with 2046 variables or more.]

  SideEffects [None]

  SeeAlso     [Cudd_SubsetShortPaths Cudd_SupersetHeavyBranch Cudd_ReadSize]

******************************************************************************/
DdNode *
Cudd_SubsetHeavyBranch(
  DdManager * dd /* manager */,
  DdNode * f /* function to be subset */,
  int  numVars /* number of variables in the support of f */,
  int  threshold /* maximum number of nodes in the subset */)
{
    DdNode *subset;

    memOut = 0;
    do {
    dd->reordered = 0;
    subset = cuddSubsetHeavyBranch(dd, f, numVars, threshold);
    } while ((dd->reordered == 1) && (!memOut));

    return(subset);

} /* end of Cudd_SubsetHeavyBranch */


/**Function********************************************************************

  Synopsis    [Extracts a dense superset from a BDD with the heavy branch
  heuristic.]

  Description [Extracts a dense superset from a BDD. The procedure is
  identical to the subset procedure except for the fact that it
  receives the complement of the given function. Extracting the subset
  of the complement function is equivalent to extracting the superset
  of the function. This procedure builds a superset by throwing away
  one of the children of each node starting from the root of the
  complement function, until the result is small enough. The child
  that is eliminated from the result is the one that contributes the
  fewer minterms.
  Returns a pointer to the BDD of the superset if successful. NULL if
  intermediate result causes the procedure to run out of memory. The
  parameter numVars is the maximum number of variables to be used in
  minterm calculation and node count calculation.  The optimal number
  should be as close as possible to the size of the support of f.
  However, it is safe to pass the value returned by Cudd_ReadSize for
  numVars when the number of variables is under 1023.  If numVars is
  larger than 1023, it will overflow. If a 0 parameter is passed then
  the procedure will compute a value which will avoid overflow but
  will cause underflow with 2046 variables or more.]

  SideEffects [None]

  SeeAlso     [Cudd_SubsetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize]

******************************************************************************/
DdNode *
Cudd_SupersetHeavyBranch(
  DdManager * dd /* manager */,
  DdNode * f /* function to be superset */,
  int  numVars /* number of variables in the support of f */,
  int  threshold /* maximum number of nodes in the superset */)
{
    DdNode *subset, *g;

    g = Cudd_Not(f);    
    memOut = 0;
    do {
    dd->reordered = 0;
    subset = cuddSubsetHeavyBranch(dd, g, numVars, threshold);
    } while ((dd->reordered == 1) && (!memOut));
    
    return(Cudd_NotCond(subset, (subset != NULL)));
    
} /* end of Cudd_SupersetHeavyBranch */


/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [The main procedure that returns a subset by choosing the heavier
  branch in the BDD.]

  Description [Here a subset BDD is built by throwing away one of the
  children. Starting at root, annotate each node with the number of
  minterms (in terms of the total number of variables specified -
  numVars), number of nodes taken by the DAG rooted at this node and
  number of additional nodes taken by the child that has the lesser
  minterms. The child with the lower number of minterms is thrown away
  and a dyanmic count of the nodes of the subset is kept. Once the
  threshold is reached the subset is returned to the calling
  procedure.]

  SideEffects [None]

  SeeAlso     [Cudd_SubsetHeavyBranch]

******************************************************************************/
DdNode *
cuddSubsetHeavyBranch(
  DdManager * dd /* DD manager */,
  DdNode * f /* current DD */,
  int  numVars /* maximum number of variables */,
  int  threshold /* threshold size for the subset */)
{

    int i, *size;
    st_table *visitedTable;
    int numNodes;
    NodeData_t *currNodeQual;
    DdNode *subset;
    double minN;
    st_table *storeTable, *approxTable;
    char *key, *value;
    st_generator *stGen;
    
    if (f == NULL) {
    fprintf(dd->err, "Cannot subset, nil object\n");
    dd->errorCode = CUDD_INVALID_ARG;
    return(NULL);
    }

    one     = Cudd_ReadOne(dd);
    zero = Cudd_Not(one);

    /* If user does not know numVars value, set it to the maximum
     * exponent that the pow function can take. The -1 is due to the
     * discrepancy in the value that pow takes and the value that
     * log gives.
     */
    if (numVars == 0) {
    /* set default value */
    numVars = DBL_MAX_EXP - 1;
    }

    if (Cudd_IsConstant(f)) {
    return(f);
    }

    max = pow(2.0, (double)numVars);

    /* Create visited table where structures for node data are allocated and
       stored in a st_table */
    visitedTable = SubsetCountMinterm(f, numVars);
    if ((visitedTable == NULL) || memOut) {
    (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n");
    dd->errorCode = CUDD_MEMORY_OUT;
    return(0);
    }
    numNodes = SubsetCountNodes(f, visitedTable, numVars);
    if (memOut) {
    (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n");
    dd->errorCode = CUDD_MEMORY_OUT;
    return(0);
    }

    if (st_lookup(visitedTable, (char *)f, (char **)&currNodeQual)) {
    minN = *(((NodeData_t *)currNodeQual)->mintermPointer);
    } else {
    fprintf(dd->err,
        "Something is wrong, ought to be node quality table\n");
    dd->errorCode = CUDD_INTERNAL_ERROR;
    }

Alan Mishchenko committed
339
    size = ABC_ALLOC(int, 1);
Alan Mishchenko committed
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    if (size == NULL) {
    dd->errorCode = CUDD_MEMORY_OUT;
    return(NULL);
    }
    *size = numNodes;

#ifdef DEBUG
    num_calls = 0;
#endif
    /* table to store nodes being created. */
    storeTable = st_init_table(st_ptrcmp, st_ptrhash);
    /* insert the constant */
    cuddRef(one);
    if (st_insert(storeTable, (char *)Cudd_ReadOne(dd), NIL(char)) ==
    ST_OUT_OF_MEM) {
    fprintf(dd->out, "Something wrong, st_table insert failed\n");
    }
    /* table to store approximations of nodes */
    approxTable = st_init_table(st_ptrcmp, st_ptrhash);
    subset = (DdNode *)BuildSubsetBdd(dd, f, size, visitedTable, threshold,
                      storeTable, approxTable);
    if (subset != NULL) {
    cuddRef(subset);
    }

    stGen = st_init_gen(approxTable);
    if (stGen == NULL) {
    st_free_table(approxTable);
    return(NULL);
    }
    while(st_gen(stGen, (char **)&key, (char **)&value)) {
    Cudd_RecursiveDeref(dd, (DdNode *)value);
    }
    st_free_gen(stGen); stGen = NULL;
    st_free_table(approxTable);

    stGen = st_init_gen(storeTable);
    if (stGen == NULL) {
    st_free_table(storeTable);
    return(NULL);
    }
    while(st_gen(stGen, (char **)&key, (char **)&value)) {
    Cudd_RecursiveDeref(dd, (DdNode *)key);
    }
    st_free_gen(stGen); stGen = NULL;
    st_free_table(storeTable);

    for (i = 0; i <= page; i++) {
Alan Mishchenko committed
388
    ABC_FREE(mintermPages[i]);
Alan Mishchenko committed
389
    }
Alan Mishchenko committed
390
    ABC_FREE(mintermPages);
Alan Mishchenko committed
391
    for (i = 0; i <= page; i++) {
Alan Mishchenko committed
392
    ABC_FREE(nodePages[i]);
Alan Mishchenko committed
393
    }
Alan Mishchenko committed
394
    ABC_FREE(nodePages);
Alan Mishchenko committed
395
    for (i = 0; i <= page; i++) {
Alan Mishchenko committed
396
    ABC_FREE(lightNodePages[i]);
Alan Mishchenko committed
397
    }
Alan Mishchenko committed
398
    ABC_FREE(lightNodePages);
Alan Mishchenko committed
399
    for (i = 0; i <= nodeDataPage; i++) {
Alan Mishchenko committed
400
    ABC_FREE(nodeDataPages[i]);
Alan Mishchenko committed
401
    }
Alan Mishchenko committed
402
    ABC_FREE(nodeDataPages);
Alan Mishchenko committed
403
    st_free_table(visitedTable);
Alan Mishchenko committed
404
    ABC_FREE(size);
Alan Mishchenko committed
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
#if 0
    (void) Cudd_DebugCheck(dd);
    (void) Cudd_CheckKeys(dd);
#endif

    if (subset != NULL) {
#ifdef DD_DEBUG
      if (!Cudd_bddLeq(dd, subset, f)) {
        fprintf(dd->err, "Wrong subset\n");
        dd->errorCode = CUDD_INTERNAL_ERROR;
        return(NULL);
      }
#endif
        cuddDeref(subset);
        return(subset);
    } else {
        return(NULL);
    }
} /* end of cuddSubsetHeavyBranch */


/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/


/**Function********************************************************************

  Synopsis    [Resize the number of pages allocated to store the node data.]

  Description [Resize the number of pages allocated to store the node data
  The procedure  moves the counter to the next page when the end of
  the page is reached and allocates new pages when necessary.]

  SideEffects [Changes the size of pages, page, page index, maximum
  number of pages freeing stuff in case of memory out. ]

  SeeAlso     []

******************************************************************************/
static void
ResizeNodeDataPages(
   )
{
    int i;
    NodeData_t **newNodeDataPages;

    nodeDataPage++;
    /* If the current page index is larger than the number of pages
     * allocated, allocate a new page array. Page numbers are incremented by
     * INITIAL_PAGES
     */
    if (nodeDataPage == maxNodeDataPages) {
Alan Mishchenko committed
458
    newNodeDataPages = ABC_ALLOC(NodeData_t *,maxNodeDataPages + INITIAL_PAGES);
Alan Mishchenko committed
459
    if (newNodeDataPages == NULL) {
Alan Mishchenko committed
460 461
        for (i = 0; i < nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
        ABC_FREE(nodeDataPages);
Alan Mishchenko committed
462 463 464 465 466 467 468 469
        memOut = 1;
        return;
    } else {
        for (i = 0; i < maxNodeDataPages; i++) {
        newNodeDataPages[i] = nodeDataPages[i];
        }
        /* Increase total page count */
        maxNodeDataPages += INITIAL_PAGES;
Alan Mishchenko committed
470
        ABC_FREE(nodeDataPages);
Alan Mishchenko committed
471 472 473 474 475
        nodeDataPages = newNodeDataPages;
    }
    }
    /* Allocate a new page */
    currentNodeDataPage = nodeDataPages[nodeDataPage] =
Alan Mishchenko committed
476
    ABC_ALLOC(NodeData_t ,nodeDataPageSize);
Alan Mishchenko committed
477
    if (currentNodeDataPage == NULL) {
Alan Mishchenko committed
478 479
    for (i = 0; i < nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
    ABC_FREE(nodeDataPages);
Alan Mishchenko committed
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
    memOut = 1;
    return;
    }
    /* reset page index */
    nodeDataPageIndex = 0;
    return;

} /* end of ResizeNodeDataPages */


/**Function********************************************************************

  Synopsis    [Resize the number of pages allocated to store the minterm
  counts. ]

  Description [Resize the number of pages allocated to store the minterm
  counts.  The procedure  moves the counter to the next page when the
  end of the page is reached and allocates new pages when necessary.]

  SideEffects [Changes the size of minterm pages, page, page index, maximum 
  number of pages freeing stuff in case of memory out. ]

  SeeAlso     []

******************************************************************************/
static void
ResizeCountMintermPages(
   )
{
    int i;
    double **newMintermPages;

    page++;
    /* If the current page index is larger than the number of pages
     * allocated, allocate a new page array. Page numbers are incremented by
     * INITIAL_PAGES
     */
    if (page == maxPages) {
Alan Mishchenko committed
518
    newMintermPages = ABC_ALLOC(double *,maxPages + INITIAL_PAGES);
Alan Mishchenko committed
519
    if (newMintermPages == NULL) {
Alan Mishchenko committed
520 521
        for (i = 0; i < page; i++) ABC_FREE(mintermPages[i]);
        ABC_FREE(mintermPages);
Alan Mishchenko committed
522 523 524 525 526 527 528 529
        memOut = 1;
        return;
    } else {
        for (i = 0; i < maxPages; i++) {
        newMintermPages[i] = mintermPages[i];
        }
        /* Increase total page count */
        maxPages += INITIAL_PAGES;
Alan Mishchenko committed
530
        ABC_FREE(mintermPages);
Alan Mishchenko committed
531 532 533 534
        mintermPages = newMintermPages;
    }
    }
    /* Allocate a new page */
Alan Mishchenko committed
535
    currentMintermPage = mintermPages[page] = ABC_ALLOC(double,pageSize);
Alan Mishchenko committed
536
    if (currentMintermPage == NULL) {
Alan Mishchenko committed
537 538
    for (i = 0; i < page; i++) ABC_FREE(mintermPages[i]);
    ABC_FREE(mintermPages);
Alan Mishchenko committed
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    memOut = 1;
    return;
    }
    /* reset page index */
    pageIndex = 0;
    return;

} /* end of ResizeCountMintermPages */


/**Function********************************************************************

  Synopsis    [Resize the number of pages allocated to store the node counts.]

  Description [Resize the number of pages allocated to store the node counts.
  The procedure  moves the counter to the next page when the end of
  the page is reached and allocates new pages when necessary.]

  SideEffects [Changes the size of pages, page, page index, maximum
  number of pages freeing stuff in case of memory out.]

  SeeAlso     []

******************************************************************************/
static void
ResizeCountNodePages(
   )
{
    int i;
    int **newNodePages;

    page++;

    /* If the current page index is larger than the number of pages
     * allocated, allocate a new page array. The number of pages is incremented
     * by INITIAL_PAGES.
     */
    if (page == maxPages) {
Alan Mishchenko committed
577
    newNodePages = ABC_ALLOC(int *,maxPages + INITIAL_PAGES);
Alan Mishchenko committed
578
    if (newNodePages == NULL) {
Alan Mishchenko committed
579 580 581 582
        for (i = 0; i < page; i++) ABC_FREE(nodePages[i]);
        ABC_FREE(nodePages);
        for (i = 0; i < page; i++) ABC_FREE(lightNodePages[i]);
        ABC_FREE(lightNodePages);
Alan Mishchenko committed
583 584 585 586 587 588
        memOut = 1;
        return;
    } else {
        for (i = 0; i < maxPages; i++) {
        newNodePages[i] = nodePages[i];
        }
Alan Mishchenko committed
589
        ABC_FREE(nodePages);
Alan Mishchenko committed
590 591 592
        nodePages = newNodePages;
    }

Alan Mishchenko committed
593
    newNodePages = ABC_ALLOC(int *,maxPages + INITIAL_PAGES);
Alan Mishchenko committed
594
    if (newNodePages == NULL) {
Alan Mishchenko committed
595 596 597 598
        for (i = 0; i < page; i++) ABC_FREE(nodePages[i]);
        ABC_FREE(nodePages);
        for (i = 0; i < page; i++) ABC_FREE(lightNodePages[i]);
        ABC_FREE(lightNodePages);
Alan Mishchenko committed
599 600 601 602 603 604
        memOut = 1;
        return;
    } else {
        for (i = 0; i < maxPages; i++) {
        newNodePages[i] = lightNodePages[i];
        }
Alan Mishchenko committed
605
        ABC_FREE(lightNodePages);
Alan Mishchenko committed
606 607 608 609 610 611
        lightNodePages = newNodePages;
    }
    /* Increase total page count */
    maxPages += INITIAL_PAGES;
    }
    /* Allocate a new page */
Alan Mishchenko committed
612
    currentNodePage = nodePages[page] = ABC_ALLOC(int,pageSize);
Alan Mishchenko committed
613
    if (currentNodePage == NULL) {
Alan Mishchenko committed
614 615 616 617
    for (i = 0; i < page; i++) ABC_FREE(nodePages[i]);
    ABC_FREE(nodePages);
    for (i = 0; i < page; i++) ABC_FREE(lightNodePages[i]);
    ABC_FREE(lightNodePages);
Alan Mishchenko committed
618 619 620 621
    memOut = 1;
    return;
    }
    /* Allocate a new page */
Alan Mishchenko committed
622
    currentLightNodePage = lightNodePages[page] = ABC_ALLOC(int,pageSize);
Alan Mishchenko committed
623
    if (currentLightNodePage == NULL) {
Alan Mishchenko committed
624 625 626 627
    for (i = 0; i <= page; i++) ABC_FREE(nodePages[i]);
    ABC_FREE(nodePages);
    for (i = 0; i < page; i++) ABC_FREE(lightNodePages[i]);
    ABC_FREE(lightNodePages);
Alan Mishchenko committed
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    memOut = 1;
    return;
    }
    /* reset page index */
    pageIndex = 0;
    return;

} /* end of ResizeCountNodePages */


/**Function********************************************************************

  Synopsis    [Recursively counts minterms of each node in the DAG.]

  Description [Recursively counts minterms of each node in the DAG.
  Similar to the cuddCountMintermAux which recursively counts the
  number of minterms for the dag rooted at each node in terms of the
  total number of variables (max). This procedure creates the node
  data structure and stores the minterm count as part of the node
  data structure. ]

  SideEffects [Creates structures of type node quality and fills the st_table]

  SeeAlso     [SubsetCountMinterm]

******************************************************************************/
static double
SubsetCountMintermAux(
  DdNode * node /* function to analyze */,
  double  max /* number of minterms of constant 1 */,
  st_table * table /* visitedTable table */)
{

    DdNode    *N,*Nv,*Nnv; /* nodes to store cofactors  */
    double    min,*pmin; /* minterm count */
    double    min1, min2; /* minterm count */
    NodeData_t *dummy;
    NodeData_t *newEntry;
    int i;

#ifdef DEBUG
    num_calls++;
#endif

    /* Constant case */
    if (Cudd_IsConstant(node)) {
    if (node == zero) {
        return(0.0);
    } else {
        return(max);
    }
    } else {

    /* check if entry for this node exists */
    if (st_lookup(table,(char *)node, (char **)&dummy)) {
        min = *(dummy->mintermPointer);
        return(min);
    }

    /* Make the node regular to extract cofactors */
    N = Cudd_Regular(node);

    /* store the cofactors */
    Nv = Cudd_T(N);
    Nnv = Cudd_E(N);
    
    Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node));
    Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node));

    min1 =  SubsetCountMintermAux(Nv, max,table)/2.0;
    if (memOut) return(0.0);
    min2 =  SubsetCountMintermAux(Nnv,max,table)/2.0;
    if (memOut) return(0.0);
    min = (min1+min2);

    /* if page index is at the bottom, then create a new page */
    if (pageIndex == pageSize) ResizeCountMintermPages();
    if (memOut) {
Alan Mishchenko committed
706 707
        for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
        ABC_FREE(nodeDataPages);
Alan Mishchenko committed
708 709 710 711 712 713 714 715 716 717 718 719 720 721
        st_free_table(table);
        return(0.0);
    }

    /* point to the correct location in the page */
    pmin = currentMintermPage+pageIndex;
    pageIndex++;

    /* store the minterm count of this node in the page */
    *pmin = min;

    /* Note I allocate the struct here. Freeing taken care of later */
    if (nodeDataPageIndex == nodeDataPageSize) ResizeNodeDataPages();
    if (memOut) {
Alan Mishchenko committed
722 723
        for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]);
        ABC_FREE(mintermPages);
Alan Mishchenko committed
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
        st_free_table(table);
        return(0.0);
    }

    newEntry = currentNodeDataPage + nodeDataPageIndex;
    nodeDataPageIndex++;

    /* points to the correct location in the page */
    newEntry->mintermPointer = pmin;
    /* initialize this field of the Node Quality structure */
    newEntry->nodesPointer = NULL;

    /* insert entry for the node in the table */
    if (st_insert(table,(char *)node, (char *)newEntry) == ST_OUT_OF_MEM) {
        memOut = 1;
Alan Mishchenko committed
739 740 741 742
        for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]);
        ABC_FREE(mintermPages);
        for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
        ABC_FREE(nodeDataPages);
Alan Mishchenko committed
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        st_free_table(table);
        return(0.0);
    }
    return(min);
    }

} /* end of SubsetCountMintermAux */


/**Function********************************************************************

  Synopsis    [Counts minterms of each node in the DAG]

  Description [Counts minterms of each node in the DAG. Similar to the
  Cudd_CountMinterm procedure except this returns the minterm count for
  all the nodes in the bdd in an st_table.]

  SideEffects [none]

  SeeAlso     [SubsetCountMintermAux]

******************************************************************************/
static st_table *
SubsetCountMinterm(
  DdNode * node /* function to be analyzed */,
  int nvars /* number of variables node depends on */)
{
    st_table    *table;
    double    num;
    int i;


#ifdef DEBUG
    num_calls = 0;
#endif

    max = pow(2.0,(double) nvars);
    table = st_init_table(st_ptrcmp,st_ptrhash);
    if (table == NULL) goto OUT_OF_MEM;
    maxPages = INITIAL_PAGES;
Alan Mishchenko committed
783
    mintermPages = ABC_ALLOC(double *,maxPages);
Alan Mishchenko committed
784 785 786 787 788
    if (mintermPages == NULL) {
    st_free_table(table);
    goto OUT_OF_MEM;
    }
    page = 0;
Alan Mishchenko committed
789
    currentMintermPage = ABC_ALLOC(double,pageSize);
Alan Mishchenko committed
790 791
    mintermPages[page] = currentMintermPage;
    if (currentMintermPage == NULL) {
Alan Mishchenko committed
792
    ABC_FREE(mintermPages);
Alan Mishchenko committed
793 794 795 796 797
    st_free_table(table);
    goto OUT_OF_MEM;
    }
    pageIndex = 0;
    maxNodeDataPages = INITIAL_PAGES;
Alan Mishchenko committed
798
    nodeDataPages = ABC_ALLOC(NodeData_t *, maxNodeDataPages);
Alan Mishchenko committed
799
    if (nodeDataPages == NULL) {
Alan Mishchenko committed
800 801
    for (i = 0; i <= page ; i++) ABC_FREE(mintermPages[i]);
    ABC_FREE(mintermPages);
Alan Mishchenko committed
802 803 804 805
    st_free_table(table);
    goto OUT_OF_MEM;
    }
    nodeDataPage = 0;
Alan Mishchenko committed
806
    currentNodeDataPage = ABC_ALLOC(NodeData_t ,nodeDataPageSize);
Alan Mishchenko committed
807 808
    nodeDataPages[nodeDataPage] = currentNodeDataPage;
    if (currentNodeDataPage == NULL) {
Alan Mishchenko committed
809 810 811
    for (i = 0; i <= page ; i++) ABC_FREE(mintermPages[i]);
    ABC_FREE(mintermPages);
    ABC_FREE(nodeDataPages);
Alan Mishchenko committed
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    st_free_table(table);
    goto OUT_OF_MEM;
    }
    nodeDataPageIndex = 0;

    num = SubsetCountMintermAux(node,max,table);
    if (memOut) goto OUT_OF_MEM;
    return(table);

OUT_OF_MEM:
    memOut = 1;
    return(NULL);

} /* end of SubsetCountMinterm */


/**Function********************************************************************

  Synopsis    [Recursively counts the number of nodes under the dag.
  Also counts the number of nodes under the lighter child of
  this node.]

  Description [Recursively counts the number of nodes under the dag.
  Also counts the number of nodes under the lighter child of
  this node. . Note that the same dag may be the lighter child of two
  different nodes and have different counts. As with the minterm counts,
  the node counts are stored in pages to be space efficient and the
  address for these node counts are stored in an st_table associated
  to each node. ]

  SideEffects [Updates the node data table with node counts]

  SeeAlso     [SubsetCountNodes]

******************************************************************************/
static int
SubsetCountNodesAux(
  DdNode * node /* current node */,
  st_table * table /* table to update node count, also serves as visited table. */,
  double  max /* maximum number of variables */)
{
    int tval, eval, i;
    DdNode *N, *Nv, *Nnv;
    double minNv, minNnv;
    NodeData_t *dummyN, *dummyNv, *dummyNnv, *dummyNBar;
    int *pmin, *pminBar, *val;

    if ((node == NULL) || Cudd_IsConstant(node))
    return(0);

    /* if this node has been processed do nothing */
    if (st_lookup(table, (char *)node, (char **)&dummyN) == 1) {
    val = dummyN->nodesPointer;
    if (val != NULL)
        return(0);
    } else {
    return(0);
    }

    N  = Cudd_Regular(node);
    Nv = Cudd_T(N);
    Nnv = Cudd_E(N);
    
    Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node));
    Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node));

    /* find the minterm counts for the THEN and ELSE branches */
    if (Cudd_IsConstant(Nv)) {
    if (Nv == zero) {
        minNv = 0.0;
    } else {
        minNv = max;
    }
    } else {
    if (st_lookup(table, (char *)Nv, (char **)&dummyNv) == 1)
        minNv = *(dummyNv->mintermPointer);
    else {
        return(0);
    }
    }
    if (Cudd_IsConstant(Nnv)) {
    if (Nnv == zero) {
        minNnv = 0.0;
    } else {
        minNnv = max;
    }
    } else {
    if (st_lookup(table, (char *)Nnv, (char **)&dummyNnv) == 1) {
        minNnv = *(dummyNnv->mintermPointer);
    }
    else {
        return(0);
    }
    }


    /* recur based on which has larger minterm, */
    if (minNv >= minNnv) {
    tval = SubsetCountNodesAux(Nv, table, max);
    if (memOut) return(0);
    eval = SubsetCountNodesAux(Nnv, table, max);
    if (memOut) return(0);

    /* store the node count of the lighter child. */
    if (pageIndex == pageSize) ResizeCountNodePages();
    if (memOut) {
Alan Mishchenko committed
918 919 920 921
        for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]);
        ABC_FREE(mintermPages);
        for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
        ABC_FREE(nodeDataPages);
Alan Mishchenko committed
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
        st_free_table(table);
        return(0);
    }
    pmin = currentLightNodePage + pageIndex;
    *pmin = eval; /* Here the ELSE child is lighter */
    dummyN->lightChildNodesPointer = pmin;

    } else {
    eval = SubsetCountNodesAux(Nnv, table, max);
    if (memOut) return(0);
    tval = SubsetCountNodesAux(Nv, table, max);
    if (memOut) return(0);

    /* store the node count of the lighter child. */
    if (pageIndex == pageSize) ResizeCountNodePages();
    if (memOut) {
Alan Mishchenko committed
938 939 940 941
        for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]);
        ABC_FREE(mintermPages);
        for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
        ABC_FREE(nodeDataPages);
Alan Mishchenko committed
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
        st_free_table(table);
        return(0);
    }
    pmin = currentLightNodePage + pageIndex;
    *pmin = tval; /* Here the THEN child is lighter */
    dummyN->lightChildNodesPointer = pmin;

    }
    /* updating the page index for node count storage. */
    pmin = currentNodePage + pageIndex;
    *pmin = tval + eval + 1;
    dummyN->nodesPointer = pmin;

    /* pageIndex is parallel page index for count_nodes and count_lightNodes */
    pageIndex++;

    /* if this node has been reached first, it belongs to a heavier
       branch. Its complement will be reached later on a lighter branch.
       Hence the complement has zero node count. */

    if (st_lookup(table, (char *)Cudd_Not(node), (char **)&dummyNBar) == 1)  {
    if (pageIndex == pageSize) ResizeCountNodePages();
    if (memOut) {
Alan Mishchenko committed
965 966 967 968
        for (i = 0; i < page; i++) ABC_FREE(mintermPages[i]);
        ABC_FREE(mintermPages);
        for (i = 0; i < nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
        ABC_FREE(nodeDataPages);
Alan Mishchenko committed
969 970 971 972 973 974 975 976 977 978 979
        st_free_table(table);
        return(0);
    }
    pminBar = currentLightNodePage + pageIndex;
    *pminBar = 0;
    dummyNBar->lightChildNodesPointer = pminBar;
    /* The lighter child has less nodes than the parent.
     * So if parent 0 then lighter child zero
     */
    if (pageIndex == pageSize) ResizeCountNodePages();
    if (memOut) {
Alan Mishchenko committed
980 981 982 983
        for (i = 0; i < page; i++) ABC_FREE(mintermPages[i]);
        ABC_FREE(mintermPages);
        for (i = 0; i < nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
        ABC_FREE(nodeDataPages);
Alan Mishchenko committed
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        st_free_table(table);
        return(0);
    }
    pminBar = currentNodePage + pageIndex;
    *pminBar = 0;
    dummyNBar->nodesPointer = pminBar ; /* maybe should point to zero */

    pageIndex++;
    }
    return(*pmin);
} /*end of SubsetCountNodesAux */


/**Function********************************************************************

  Synopsis    [Counts the nodes under the current node and its lighter child]

  Description [Counts the nodes under the current node and its lighter
  child. Calls a recursive procedure to count the number of nodes of
  a DAG rooted at a particular node and the number of nodes taken by its
  lighter child.]

  SideEffects [None]

  SeeAlso     [SubsetCountNodesAux]

******************************************************************************/
static int
SubsetCountNodes(
  DdNode * node /* function to be analyzed */,
  st_table * table /* node quality table */,
  int  nvars /* number of variables node depends on */)
{
    int    num;
    int i;

#ifdef DEBUG
    num_calls = 0;
#endif

    max = pow(2.0,(double) nvars);
    maxPages = INITIAL_PAGES;
Alan Mishchenko committed
1026
    nodePages = ABC_ALLOC(int *,maxPages);
Alan Mishchenko committed
1027 1028 1029 1030
    if (nodePages == NULL)  {
    goto OUT_OF_MEM;
    }

Alan Mishchenko committed
1031
    lightNodePages = ABC_ALLOC(int *,maxPages);
Alan Mishchenko committed
1032
    if (lightNodePages == NULL) {
Alan Mishchenko committed
1033 1034 1035 1036 1037
    for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]);
    ABC_FREE(mintermPages);
    for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
    ABC_FREE(nodeDataPages);
    ABC_FREE(nodePages);
Alan Mishchenko committed
1038 1039 1040 1041
    goto OUT_OF_MEM;
    }

    page = 0;
Alan Mishchenko committed
1042
    currentNodePage = nodePages[page] = ABC_ALLOC(int,pageSize);
Alan Mishchenko committed
1043
    if (currentNodePage == NULL) {
Alan Mishchenko committed
1044 1045 1046 1047 1048 1049
    for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]);
    ABC_FREE(mintermPages);
    for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
    ABC_FREE(nodeDataPages);
    ABC_FREE(lightNodePages);
    ABC_FREE(nodePages);
Alan Mishchenko committed
1050 1051 1052
    goto OUT_OF_MEM;
    }

Alan Mishchenko committed
1053
    currentLightNodePage = lightNodePages[page] = ABC_ALLOC(int,pageSize);
Alan Mishchenko committed
1054
    if (currentLightNodePage == NULL) {
Alan Mishchenko committed
1055 1056 1057 1058 1059 1060 1061
    for (i = 0; i <= page; i++) ABC_FREE(mintermPages[i]);
    ABC_FREE(mintermPages);
    for (i = 0; i <= nodeDataPage; i++) ABC_FREE(nodeDataPages[i]);
    ABC_FREE(nodeDataPages);
    ABC_FREE(currentNodePage);
    ABC_FREE(lightNodePages);
    ABC_FREE(nodePages);
Alan Mishchenko committed
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    goto OUT_OF_MEM;
    }

    pageIndex = 0;
    num = SubsetCountNodesAux(node,table,max);
    if (memOut) goto OUT_OF_MEM;
    return(num);

OUT_OF_MEM:
    memOut = 1;
    return(0);

} /* end of SubsetCountNodes */


/**Function********************************************************************

  Synopsis    [Procedure to recursively store nodes that are retained in the subset.]

  Description [rocedure to recursively store nodes that are retained in the subset.]

  SideEffects [None]

  SeeAlso     [StoreNodes]

******************************************************************************/
static void
StoreNodes(
  st_table * storeTable,
  DdManager * dd,
  DdNode * node)
{
    char *dummy;
    DdNode *N, *Nt, *Ne;
    if (Cudd_IsConstant(dd)) {
    return;
    }
    N = Cudd_Regular(node);
    if (st_lookup(storeTable, (char *)N, (char **)&dummy)) {
    return;
    }
    cuddRef(N);
    if (st_insert(storeTable, (char *)N, NIL(char)) == ST_OUT_OF_MEM) {
    fprintf(dd->err,"Something wrong, st_table insert failed\n");
    }

    Nt = Cudd_T(N);
    Ne = Cudd_E(N);

    StoreNodes(storeTable, dd, Nt);
    StoreNodes(storeTable, dd, Ne);
    return;

}


/**Function********************************************************************

  Synopsis    [Builds the subset BDD using the heavy branch method.] 

  Description [The procedure carries out the building of the subset BDD
  starting at the root. Using the three different counts labelling each node,
  the procedure chooses the heavier branch starting from the root and keeps
  track of the number of nodes it discards at each step, thus keeping count
  of the size of the subset BDD dynamically. Once the threshold is satisfied,
  the procedure then calls ITE to build the BDD.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdNode *
BuildSubsetBdd(
  DdManager * dd /* DD manager */,
  DdNode * node /* current node */,
  int * size /* current size of the subset */,
  st_table * visitedTable /* visited table storing all node data */,
  int  threshold,
  st_table * storeTable,
  st_table * approxTable)
{

    DdNode *Nv, *Nnv, *N, *topv, *neW;
    double minNv, minNnv;
    NodeData_t *currNodeQual;
    NodeData_t *currNodeQualT;
    NodeData_t *currNodeQualE;
    DdNode *ThenBranch, *ElseBranch;
    unsigned int topid;
    char *dummy;

#ifdef DEBUG
    num_calls++;
#endif
    /*If the size of the subset is below the threshold, dont do
      anything. */
    if ((*size) <= threshold) {
      /* store nodes below this, so we can recombine if possible */
      StoreNodes(storeTable, dd, node);
      return(node);
    }

    if (Cudd_IsConstant(node))
    return(node);

    /* Look up minterm count for this node. */
    if (!st_lookup(visitedTable, (char *)node, (char **)&currNodeQual)) {
    fprintf(dd->err,
        "Something is wrong, ought to be in node quality table\n");
    }

    /* Get children. */
    N = Cudd_Regular(node);
    Nv = Cudd_T(N);
    Nnv = Cudd_E(N);

    /* complement if necessary */
    Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node));
    Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node));

    if (!Cudd_IsConstant(Nv)) {
        /* find out minterms and nodes contributed by then child */
        if (!st_lookup(visitedTable, (char *)Nv,
               (char **)&currNodeQualT)) {
        fprintf(dd->out,"Something wrong, couldnt find nodes in node quality table\n");
        dd->errorCode = CUDD_INTERNAL_ERROR;
        return(NULL);
        }
    else {
        minNv = *(((NodeData_t *)currNodeQualT)->mintermPointer);
    }
    } else {
    if (Nv == zero) {
        minNv = 0;
    } else  {
        minNv = max;
    }
    }
    if (!Cudd_IsConstant(Nnv)) {
        /* find out minterms and nodes contributed by else child */
    if (!st_lookup(visitedTable, (char *)Nnv, (char **)&currNodeQualE)) {
        fprintf(dd->out,"Something wrong, couldnt find nodes in node quality table\n");
        dd->errorCode = CUDD_INTERNAL_ERROR;
        return(NULL);
    } else {
        minNnv = *(((NodeData_t *)currNodeQualE)->mintermPointer);
    }
    } else {
    if (Nnv == zero) {
        minNnv = 0;
    } else {
        minNnv = max;
    }
    }

    /* keep track of size of subset by subtracting the number of
     * differential nodes contributed by lighter child
     */
    *size = (*(size)) - (int)*(currNodeQual->lightChildNodesPointer);
    if (minNv >= minNnv) { /*SubsetCountNodesAux procedure takes
                 the Then branch in case of a tie */

        /* recur with the Then branch */
    ThenBranch = (DdNode *)BuildSubsetBdd(dd, Nv, size,
          visitedTable, threshold, storeTable, approxTable);
    if (ThenBranch == NULL) {
        return(NULL);
    }
    cuddRef(ThenBranch);
    /* The Else branch is either a node that already exists in the
     * subset, or one whose approximation has been computed, or
     * Zero.
     */
    if (st_lookup(storeTable, (char *)Cudd_Regular(Nnv), (char **)&dummy)) {
      ElseBranch = Nnv;
      cuddRef(ElseBranch);
    } else {
      if (st_lookup(approxTable, (char *)Nnv, (char **)&dummy)) {
        ElseBranch = (DdNode *)dummy;
        cuddRef(ElseBranch);
      } else {
        ElseBranch = zero;
        cuddRef(ElseBranch);
      }
    }
    
    }
    else {
        /* recur with the Else branch */
        ElseBranch = (DdNode *)BuildSubsetBdd(dd, Nnv, size,
              visitedTable, threshold, storeTable, approxTable);
    if (ElseBranch == NULL) {
        return(NULL);
    }
    cuddRef(ElseBranch);
    /* The Then branch is either a node that already exists in the
     * subset, or one whose approximation has been computed, or
     * Zero.
     */
    if (st_lookup(storeTable, (char *)Cudd_Regular(Nv), (char **)&dummy)) {
      ThenBranch = Nv;
      cuddRef(ThenBranch);
    } else {
      if (st_lookup(approxTable, (char *)Nv, (char **)&dummy)) {
        ThenBranch = (DdNode *)dummy;
        cuddRef(ThenBranch);
      } else {
        ThenBranch = zero;
        cuddRef(ThenBranch);
      }
    }
    }

    /* construct the Bdd with the top variable and the two children */
    topid = Cudd_NodeReadIndex(N);
    topv = Cudd_ReadVars(dd, topid);
    cuddRef(topv);
    neW =  cuddBddIteRecur(dd, topv, ThenBranch, ElseBranch);
    if (neW != NULL) {
      cuddRef(neW);
    }
    Cudd_RecursiveDeref(dd, topv);
    Cudd_RecursiveDeref(dd, ThenBranch);
    Cudd_RecursiveDeref(dd, ElseBranch);

      
    if (neW == NULL)
    return(NULL);
    else {
        /* store this node in the store table */
        if (!st_lookup(storeTable, (char *)Cudd_Regular(neW), (char **)&dummy)) {
      cuddRef(neW);
      st_insert(storeTable, (char *)Cudd_Regular(neW), (char *)NIL(char));
      
        }
    /* store the approximation for this node */
    if (N !=  Cudd_Regular(neW)) {
          if (st_lookup(approxTable, (char *)node, (char **)&dummy)) {
            fprintf(dd->err, "This node should not be in the approximated table\n");
        } else {
            cuddRef(neW);
            st_insert(approxTable, (char *)node, (char *)neW);
        }
    }
        cuddDeref(neW);
        return(neW);
    }
} /* end of BuildSubsetBdd */