irred.c 10.8 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11
/*
 * Revision Control Information
 *
 * $Source$
 * $Author$
 * $Revision$
 * $Date$
 *
 */
#include "espresso.h"

12 13 14
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static void fcube_is_covered();
static void ftautology();
static bool ftaut_special_cases();


static int Rp_current;

/*
 *   irredundant -- Return a minimal subset of F
 */

pcover
irredundant(F, D)
pcover F, D;
{
    mark_irredundant(F, D);
    return sf_inactive(F);
}


/*
 *   mark_irredundant -- find redundant cubes, and mark them "INACTIVE"
 */

void
mark_irredundant(F, D)
pcover F, D;
{
    pcover E, Rt, Rp;
    pset p, p1, last;
    sm_matrix *table;
    sm_row *cover;
    sm_element *pe;

    /* extract a minimum cover */
    irred_split_cover(F, D, &E, &Rt, &Rp);
    table = irred_derive_table(D, E, Rp);
    cover = sm_minimum_cover(table, NIL(int), /* heuristic */ 1, /* debug */ 0);

    /* mark the cubes for the result */
    foreach_set(F, last, p) {
    RESET(p, ACTIVE);
    RESET(p, RELESSEN);
    }
    foreach_set(E, last, p) {
    p1 = GETSET(F, SIZE(p));
    assert(setp_equal(p1, p));
    SET(p1, ACTIVE);
    SET(p1, RELESSEN);        /* for essen(), mark as rel. ess. */
    }
    sm_foreach_row_element(cover, pe) {
    p1 = GETSET(F, pe->col_num);
    SET(p1, ACTIVE);
    }

    if (debug & IRRED) {
    printf("# IRRED: F=%d E=%d R=%d Rt=%d Rp=%d Rc=%d Final=%d Bound=%d\n",
        F->count, E->count, Rt->count+Rp->count, Rt->count, Rp->count,
        cover->length, E->count + cover->length, 0);
    }

    free_cover(E);
    free_cover(Rt);
    free_cover(Rp);
    sm_free(table);
    sm_row_free(cover);
}

/*
 *  irred_split_cover -- find E, Rt, and Rp from the cover F, D
 *
 *    E  -- relatively essential cubes
 *    Rt  -- totally redundant cubes
 *    Rp  -- partially redundant cubes
 */

void
irred_split_cover(F, D, E, Rt, Rp)
pcover F, D;
pcover *E, *Rt, *Rp;
{
    register pcube p, last;
    register int index;
    pcover R;
    pcube *FD, *ED;

    /* number the cubes of F -- these numbers track into E, Rp, Rt, etc. */
    index = 0;
    foreach_set(F, last, p) {
    PUTSIZE(p, index);
    index++;
    }

    *E = new_cover(10);
    *Rt = new_cover(10);
    *Rp = new_cover(10);
    R = new_cover(10);

    /* Split F into E and R */
    FD = cube2list(F, D);
    foreach_set(F, last, p) {
    if (cube_is_covered(FD, p)) {
        R = sf_addset(R, p);
    } else {
        *E = sf_addset(*E, p);
    }
    if (debug & IRRED1) {
        (void) printf("IRRED1: zr=%d ze=%d to-go=%d time=%s\n",
        R->count, (*E)->count, F->count - (R->count + (*E)->count),
        print_time(ptime()));
    }
    }
    free_cubelist(FD);

    /* Split R into Rt and Rp */
    ED = cube2list(*E, D);
    foreach_set(R, last, p) {
    if (cube_is_covered(ED, p)) {
        *Rt = sf_addset(*Rt, p);
    } else {
        *Rp = sf_addset(*Rp, p);
    }
    if (debug & IRRED1) {
        (void) printf("IRRED1: zr=%d zrt=%d to-go=%d time=%s\n",
        (*Rp)->count, (*Rt)->count,
        R->count - ((*Rp)->count +(*Rt)->count), print_time(ptime()));
    }
    }
    free_cubelist(ED);

    free_cover(R);
}

/*
 *  irred_derive_table -- given the covers D, E and the set of
 *  partially redundant primes Rp, build a covering table showing
 *  possible selections of primes to cover Rp.
 */

sm_matrix *
irred_derive_table(D, E, Rp)
pcover D, E, Rp;
{
    register pcube last, p, *list;
    sm_matrix *table;
    int size_last_dominance, i;

    /* Mark each cube in DE as not part of the redundant set */
    foreach_set(D, last, p) {
    RESET(p, REDUND);
    }
    foreach_set(E, last, p) {
    RESET(p, REDUND);
    }

    /* Mark each cube in Rp as partially redundant */
    foreach_set(Rp, last, p) {
    SET(p, REDUND);             /* belongs to redundant set */
    }

    /* For each cube in Rp, find ways to cover its minterms */
    list = cube3list(D, E, Rp);
    table = sm_alloc();
    size_last_dominance = 0;
    i = 0;
    foreach_set(Rp, last, p) {
    Rp_current = SIZE(p);
    fcube_is_covered(list, p, table);
    RESET(p, REDUND);    /* can now consider this cube redundant */
    if (debug & IRRED1) {
        (void) printf("IRRED1: %d of %d to-go=%d, table=%dx%d time=%s\n",
        i, Rp->count, Rp->count - i,
        table->nrows, table->ncols, print_time(ptime()));
    }
    /* try to keep memory limits down by reducing table as we go along */
    if (table->nrows - size_last_dominance > 1000) {
        (void) sm_row_dominance(table);
        size_last_dominance = table->nrows;
        if (debug & IRRED1) {
        (void) printf("IRRED1: delete redundant rows, now %dx%d\n",
            table->nrows, table->ncols);
        }
    }
    i++;
    }
    free_cubelist(list);

    return table;
}

/* cube_is_covered -- determine if a cubelist "covers" a single cube */
bool
cube_is_covered(T, c)
pcube *T, c;
{
    return tautology(cofactor(T,c));
}



/* tautology -- answer the tautology question for T */
bool
tautology(T)
pcube *T;         /* T will be disposed of */
{
    register pcube cl, cr;
    register int best, result;
    static int taut_level = 0;

    if (debug & TAUT) {
    debug_print(T, "TAUTOLOGY", taut_level++);
    }

    if ((result = taut_special_cases(T)) == MAYBE) {
    cl = new_cube();
    cr = new_cube();
    best = binate_split_select(T, cl, cr, TAUT);
    result = tautology(scofactor(T, cl, best)) &&
         tautology(scofactor(T, cr, best));
    free_cubelist(T);
    free_cube(cl);
    free_cube(cr);
    }

    if (debug & TAUT) {
    printf("exit TAUTOLOGY[%d]: %s\n", --taut_level, print_bool(result));
    }
    return result;
}

/*
 *  taut_special_cases -- check special cases for tautology
 */

bool
taut_special_cases(T)
pcube *T;            /* will be disposed if answer is determined */
{
    register pcube *T1, *Tsave, p, ceil=cube.temp[0], temp=cube.temp[1];
    pcube *A, *B;
    int var;

    /* Check for a row of all 1's which implies tautology */
    for(T1 = T+2; (p = *T1++) != NULL; ) {
    if (full_row(p, T[0])) {
        free_cubelist(T);
        return TRUE;
    }
    }

    /* Check for a column of all 0's which implies no tautology */
start:
    INLINEset_copy(ceil, T[0]);
    for(T1 = T+2; (p = *T1++) != NULL; ) {
    INLINEset_or(ceil, ceil, p);
    }
    if (! setp_equal(ceil, cube.fullset)) {
    free_cubelist(T);
    return FALSE;
    }

    /* Collect column counts, determine unate variables, etc. */
    massive_count(T);

    /* If function is unate (and no row of all 1's), then no tautology */
    if (cdata.vars_unate == cdata.vars_active) {
    free_cubelist(T);
    return FALSE;

    /* If active in a single variable (and no column of 0's) then tautology */
    } else if (cdata.vars_active == 1) {
    free_cubelist(T);
    return TRUE;

    /* Check for unate variables, and reduce cover if there are any */
    } else if (cdata.vars_unate != 0) {
    /* Form a cube "ceil" with full variables in the unate variables */
    (void) set_copy(ceil, cube.emptyset);
    for(var = 0; var < cube.num_vars; var++) {
        if (cdata.is_unate[var]) {
        INLINEset_or(ceil, ceil, cube.var_mask[var]);
        }
    }

    /* Save only those cubes that are "full" in all unate variables */
    for(Tsave = T1 = T+2; (p = *T1++) != 0; ) {
        if (setp_implies(ceil, set_or(temp, p, T[0]))) {
        *Tsave++ = p;
        }
    }
    *Tsave++ = NULL;
    T[1] = (pcube) Tsave;

    if (debug & TAUT) {
        printf("UNATE_REDUCTION: %d unate variables, reduced to %d\n",
Alan Mishchenko committed
310
        (int)cdata.vars_unate, (int)CUBELISTSIZE(T));
Alan Mishchenko committed
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    }
    goto start;

    /* Check for component reduction */
    } else if (cdata.var_zeros[cdata.best] < CUBELISTSIZE(T) / 2) {
    if (cubelist_partition(T, &A, &B, debug & TAUT) == 0) {
        return MAYBE;
    } else {
        free_cubelist(T);
        if (tautology(A)) {
        free_cubelist(B);
        return TRUE;
        } else {
        return tautology(B);
        }
    }
    }

    /* We tried as hard as we could, but must recurse from here on */
    return MAYBE;
}

/* fcube_is_covered -- determine exactly how a cubelist "covers" a cube */
static void
fcube_is_covered(T, c, table)
pcube *T, c;
sm_matrix *table;
{
    ftautology(cofactor(T,c), table);
}


/* ftautology -- find ways to make a tautology */
static void
ftautology(T, table)
pcube *T;             /* T will be disposed of */
sm_matrix *table;
{
    register pcube cl, cr;
    register int best;
    static int ftaut_level = 0;

    if (debug & TAUT) {
    debug_print(T, "FIND_TAUTOLOGY", ftaut_level++);
    }

    if (ftaut_special_cases(T, table) == MAYBE) {
    cl = new_cube();
    cr = new_cube();
    best = binate_split_select(T, cl, cr, TAUT);

    ftautology(scofactor(T, cl, best), table);
    ftautology(scofactor(T, cr, best), table);

    free_cubelist(T);
    free_cube(cl);
    free_cube(cr);
    }

    if (debug & TAUT) {
    (void) printf("exit FIND_TAUTOLOGY[%d]: table is %d by %d\n",
        --ftaut_level, table->nrows, table->ncols);
    }
}

static bool
ftaut_special_cases(T, table)
pcube *T;                 /* will be disposed if answer is determined */
sm_matrix *table;
{
    register pcube *T1, *Tsave, p, temp = cube.temp[0], ceil = cube.temp[1];
    int var, rownum;

    /* Check for a row of all 1's in the essential cubes */
    for(T1 = T+2; (p = *T1++) != 0; ) {
    if (! TESTP(p, REDUND)) {
        if (full_row(p, T[0])) {
        /* subspace is covered by essentials -- no new rows for table */
        free_cubelist(T);
        return TRUE;
        }
    }
    }

    /* Collect column counts, determine unate variables, etc. */
start:
    massive_count(T);

    /* If function is unate, find the rows of all 1's */
    if (cdata.vars_unate == cdata.vars_active) {
    /* find which nonessentials cover this subspace */
    rownum = table->last_row ? table->last_row->row_num+1 : 0;
    (void) sm_insert(table, rownum, Rp_current);
    for(T1 = T+2; (p = *T1++) != 0; ) {
        if (TESTP(p, REDUND)) {
        /* See if a redundant cube covers this leaf */
        if (full_row(p, T[0])) {
            (void) sm_insert(table, rownum, (int) SIZE(p));
        }
        }
    }
    free_cubelist(T);
    return TRUE;

    /* Perform unate reduction if there are any unate variables */
    } else if (cdata.vars_unate != 0) {
    /* Form a cube "ceil" with full variables in the unate variables */
    (void) set_copy(ceil, cube.emptyset);
    for(var = 0; var < cube.num_vars; var++) {
        if (cdata.is_unate[var]) {
        INLINEset_or(ceil, ceil, cube.var_mask[var]);
        }
    }

    /* Save only those cubes that are "full" in all unate variables */
    for(Tsave = T1 = T+2; (p = *T1++) != 0; ) {
        if (setp_implies(ceil, set_or(temp, p, T[0]))) {
        *Tsave++ = p;
        }
    }
    *Tsave++ = 0;
    T[1] = (pcube) Tsave;

    if (debug & TAUT) {
        printf("UNATE_REDUCTION: %d unate variables, reduced to %d\n",
Alan Mishchenko committed
436
        (int)cdata.vars_unate, (int)CUBELISTSIZE(T));
Alan Mishchenko committed
437 438 439 440 441 442 443
    }
    goto start;
    }

    /* Not much we can do about it */
    return MAYBE;
}
444 445
ABC_NAMESPACE_IMPL_END