fpgaUtils.c 29.4 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/**CFile****************************************************************

  FileName    [fpgaUtils.c]

  PackageName [MVSIS 1.3: Multi-valued logic synthesis system.]

  Synopsis    [Technology mapping for variable-size-LUT FPGAs.]

  Author      [MVSIS Group]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 2.0. Started - August 18, 2004.]

  Revision    [$Id: fpgaUtils.c,v 1.3 2004/07/06 04:55:58 alanmi Exp $]

***********************************************************************/

#include "fpgaInt.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

Alan Mishchenko committed
25 26
#define FPGA_CO_LIST_SIZE  5

Alan Mishchenko committed
27 28
static void  Fpga_MappingDfs_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes, int fCollectEquiv );
static void  Fpga_MappingDfsCuts_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes );
Alan Mishchenko committed
29 30
static int   Fpga_MappingCompareOutputDelay( Fpga_Node_t ** ppNode1, Fpga_Node_t ** ppNode2 );
static void  Fpga_MappingFindLatest( Fpga_Man_t * p, int * pNodes, int nNodesMax );
Alan Mishchenko committed
31
static void  Fpga_DfsLim_rec( Fpga_Node_t * pNode, int Level, Fpga_NodeVec_t * vNodes );
Alan Mishchenko committed
32
static int   Fpga_CollectNodeTfo_rec( Fpga_Node_t * pNode, Fpga_Node_t * pPivot, Fpga_NodeVec_t * vVisited, Fpga_NodeVec_t * vTfo );
Alan Mishchenko committed
33
static Fpga_NodeVec_t * Fpga_MappingOrderCosByLevel( Fpga_Man_t * pMan );
Alan Mishchenko committed
34 35

////////////////////////////////////////////////////////////////////////
Alan Mishchenko committed
36
///                     FUNCTION DEFINITIONS                         ///
Alan Mishchenko committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
////////////////////////////////////////////////////////////////////////


/**Function*************************************************************

  Synopsis    [Computes the DFS ordering of the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingDfs( Fpga_Man_t * pMan, int fCollectEquiv )
{
Alan Mishchenko committed
53
    Fpga_NodeVec_t * vNodes;//, * vNodesCo;
Alan Mishchenko committed
54 55
    Fpga_Node_t * pNode;
    int i;
Alan Mishchenko committed
56 57
    // collect the CO nodes by level
//    vNodesCo = Fpga_MappingOrderCosByLevel( pMan );
Alan Mishchenko committed
58 59 60 61 62 63 64 65 66 67
    // start the array
    vNodes = Fpga_NodeVecAlloc( 100 );
    // collect the PIs
    for ( i = 0; i < pMan->nInputs; i++ )
    {
        pNode = pMan->pInputs[i];
        Fpga_NodeVecPush( vNodes, pNode );
        pNode->fMark0 = 1;
    }
    // perform the traversal
Alan Mishchenko committed
68 69
    for ( i = 0; i < pMan->nOutputs; i++ )
        Fpga_MappingDfs_rec( Fpga_Regular(pMan->pOutputs[i]), vNodes, fCollectEquiv );
Alan Mishchenko committed
70 71 72 73
//    for ( i = vNodesCo->nSize - 1; i >= 0 ; i-- )
//        for ( pNode = vNodesCo->pArray[i]; pNode; pNode = (Fpga_Node_t *)pNode->pData0 )
//            Fpga_MappingDfs_rec( pNode, vNodes, fCollectEquiv );
    // clean the node marks
Alan Mishchenko committed
74 75 76 77
    for ( i = 0; i < vNodes->nSize; i++ )
        vNodes->pArray[i]->fMark0 = 0;
//    for ( i = 0; i < pMan->nOutputs; i++ )
//        Fpga_MappingUnmark_rec( Fpga_Regular(pMan->pOutputs[i]) );
Alan Mishchenko committed
78
//    Fpga_NodeVecFree( vNodesCo );
Alan Mishchenko committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Recursively computes the DFS ordering of the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_MappingDfs_rec( Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes, int fCollectEquiv )
{
    assert( !Fpga_IsComplement(pNode) );
    if ( pNode->fMark0 )
        return;
    // visit the transitive fanin
    if ( Fpga_NodeIsAnd(pNode) )
    {
        Fpga_MappingDfs_rec( Fpga_Regular(pNode->p1), vNodes, fCollectEquiv );
        Fpga_MappingDfs_rec( Fpga_Regular(pNode->p2), vNodes, fCollectEquiv );
    }
    // visit the equivalent nodes
    if ( fCollectEquiv && pNode->pNextE )
        Fpga_MappingDfs_rec( pNode->pNextE, vNodes, fCollectEquiv );
    // make sure the node is not visited through the equivalent nodes
    assert( pNode->fMark0 == 0 );
    // mark the node as visited
    pNode->fMark0 = 1;
    // add the node to the list
    Fpga_NodeVecPush( vNodes, pNode );
}

/**Function*************************************************************

  Synopsis    [Computes the DFS ordering of the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingDfsNodes( Fpga_Man_t * pMan, Fpga_Node_t ** ppNodes, int nNodes, int fEquiv )
{
    Fpga_NodeVec_t * vNodes;
    int i;
    // perform the traversal
    vNodes = Fpga_NodeVecAlloc( 200 );
    for ( i = 0; i < nNodes; i++ )
        Fpga_MappingDfs_rec( ppNodes[i], vNodes, fEquiv );
    for ( i = 0; i < vNodes->nSize; i++ )
        vNodes->pArray[i]->fMark0 = 0;
    return vNodes;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
float Fpga_MappingGetAreaFlow( Fpga_Man_t * p )
{
    float aFlowFlowTotal = 0;
    int i;
    for ( i = 0; i < p->nOutputs; i++ )
    {
        if ( Fpga_NodeIsConst(p->pOutputs[i]) )
            continue;
        aFlowFlowTotal += Fpga_Regular(p->pOutputs[i])->pCutBest->aFlow;
    }
    return aFlowFlowTotal;
}

/**Function*************************************************************

  Synopsis    [Computes the area of the current mapping.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
float Fpga_MappingArea( Fpga_Man_t * pMan )
{
Alan Mishchenko committed
176
    Fpga_Node_t * pNode;
Alan Mishchenko committed
177 178 179 180
    float aTotal;
    int i;
    // perform the traversal
    aTotal = 0;
Alan Mishchenko committed
181
    for ( i = 0; i < pMan->vMapping->nSize; i++ )
Alan Mishchenko committed
182
    {
Alan Mishchenko committed
183
        pNode = pMan->vMapping->pArray[i];
Alan Mishchenko committed
184
        aTotal += pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
Alan Mishchenko committed
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    }
    return aTotal;
}

/**Function*************************************************************

  Synopsis    [Recursively computes the DFS ordering of the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
float Fpga_MappingArea_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, Fpga_NodeVec_t * vNodes )
{
    float aArea;
    int i;
    assert( !Fpga_IsComplement(pNode) );
    if ( !Fpga_NodeIsAnd(pNode) )
        return 0;
    if ( pNode->fMark0 )
        return 0;
    assert( pNode->pCutBest != NULL );
    // visit the transitive fanin of the selected cut
    aArea = 0;
    for ( i = 0; i < pNode->pCutBest->nLeaves; i++ )
        aArea += Fpga_MappingArea_rec( pMan, pNode->pCutBest->ppLeaves[i], vNodes );
    // make sure the node is not visited through the fanin nodes
    assert( pNode->fMark0 == 0 );
    // mark the node as visited
    pNode->fMark0 = 1;
    // add the node to the list
Alan Mishchenko committed
219
    aArea += pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
Alan Mishchenko committed
220 221 222 223 224 225 226
    // add the node to the list
    Fpga_NodeVecPush( vNodes, pNode );
    return aArea;
}

/**Function*************************************************************

Alan Mishchenko committed
227
  Synopsis    [Computes the area of the current mapping.]
Alan Mishchenko committed
228 229 230 231 232 233 234 235

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Alan Mishchenko committed
236
float Fpga_MappingAreaTrav( Fpga_Man_t * pMan )
Alan Mishchenko committed
237 238
{
    Fpga_NodeVec_t * vNodes;
Alan Mishchenko committed
239
    float aTotal;
Alan Mishchenko committed
240
    int i;
Alan Mishchenko committed
241 242 243 244 245
    // perform the traversal
    aTotal = 0;
    vNodes = Fpga_NodeVecAlloc( 100 );
    for ( i = 0; i < pMan->nOutputs; i++ )
        aTotal += Fpga_MappingArea_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), vNodes );
Alan Mishchenko committed
246
    for ( i = 0; i < vNodes->nSize; i++ )
Alan Mishchenko committed
247
        vNodes->pArray[i]->fMark0 = 0;
Alan Mishchenko committed
248
    Fpga_NodeVecFree( vNodes );
Alan Mishchenko committed
249
    return aTotal;
Alan Mishchenko committed
250 251 252 253 254 255 256 257 258 259 260 261 262 263
}


/**Function*************************************************************

  Synopsis    [Recursively computes the DFS ordering of the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Alan Mishchenko committed
264
float Fpga_MappingSetRefsAndArea_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, Fpga_Node_t ** ppStore )
Alan Mishchenko committed
265 266 267 268 269 270 271 272 273
{
    float aArea;
    int i;
    assert( !Fpga_IsComplement(pNode) );
    if ( pNode->nRefs++ )
        return 0;
    if ( !Fpga_NodeIsAnd(pNode) )
        return 0;
    assert( pNode->pCutBest != NULL );
Alan Mishchenko committed
274 275 276
    // store the node in the structure by level
    pNode->pData0 = (char *)ppStore[pNode->Level]; 
    ppStore[pNode->Level] = pNode;
Alan Mishchenko committed
277
    // visit the transitive fanin of the selected cut
Alan Mishchenko committed
278
    aArea = pMan->pLutLib->pLutAreas[(int)pNode->pCutBest->nLeaves];
Alan Mishchenko committed
279
    for ( i = 0; i < pNode->pCutBest->nLeaves; i++ )
Alan Mishchenko committed
280
        aArea += Fpga_MappingSetRefsAndArea_rec( pMan, pNode->pCutBest->ppLeaves[i], ppStore );
Alan Mishchenko committed
281 282 283 284 285
    return aArea;
}

/**Function*************************************************************

Alan Mishchenko committed
286
  Synopsis    [Sets the correct reference counts for the mapping.]
Alan Mishchenko committed
287

Alan Mishchenko committed
288 289
  Description [Collects the nodes in reverse topological order
  and places in them in array pMan->vMapping.]
Alan Mishchenko committed
290 291 292 293 294 295
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Alan Mishchenko committed
296
float Fpga_MappingSetRefsAndArea( Fpga_Man_t * pMan )
Alan Mishchenko committed
297
{
Alan Mishchenko committed
298 299 300
    Fpga_Node_t * pNode, ** ppStore;
    float aArea;
    int i, LevelMax;
Alan Mishchenko committed
301

Alan Mishchenko committed
302 303 304
    // clean all references
    for ( i = 0; i < pMan->vNodesAll->nSize; i++ )
        pMan->vNodesAll->pArray[i]->nRefs = 0;
Alan Mishchenko committed
305

Alan Mishchenko committed
306 307 308 309
    // allocate place to store the nodes
    LevelMax = Fpga_MappingMaxLevel( pMan );
    ppStore = ALLOC( Fpga_Node_t *, LevelMax + 1 );
    memset( ppStore, 0, sizeof(Fpga_Node_t *) * (LevelMax + 1) );
Alan Mishchenko committed
310

Alan Mishchenko committed
311 312
    // collect nodes reachable from POs in the DFS order through the best cuts
    aArea = 0;
Alan Mishchenko committed
313 314
    for ( i = 0; i < pMan->nOutputs; i++ )
    {
Alan Mishchenko committed
315 316 317 318 319
        pNode = Fpga_Regular(pMan->pOutputs[i]);
        if ( pNode == pMan->pConst1 )
            continue;
        aArea += Fpga_MappingSetRefsAndArea_rec( pMan, pNode, ppStore );
        pNode->nRefs++;
Alan Mishchenko committed
320 321
    }

Alan Mishchenko committed
322 323
    // reconnect the nodes in reverse topological order
    pMan->vMapping->nSize = 0;
Alan Mishchenko committed
324
    for ( i = LevelMax; i >= 0; i-- )
Alan Mishchenko committed
325 326 327 328
        for ( pNode = ppStore[i]; pNode; pNode = (Fpga_Node_t *)pNode->pData0 )
            Fpga_NodeVecPush( pMan->vMapping, pNode );
    free( ppStore );
    return aArea;
Alan Mishchenko committed
329 330 331 332 333
}


/**Function*************************************************************

Alan Mishchenko committed
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  Synopsis    [Compares the outputs by their arrival times.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fpga_MappingCompareOutputDelay( Fpga_Node_t ** ppNode1, Fpga_Node_t ** ppNode2 )
{
    Fpga_Node_t * pNode1 = Fpga_Regular(*ppNode1);
    Fpga_Node_t * pNode2 = Fpga_Regular(*ppNode2);
    float Arrival1 = pNode1->pCutBest? pNode1->pCutBest->tArrival : 0;
    float Arrival2 = pNode2->pCutBest? pNode2->pCutBest->tArrival : 0;
    if ( Arrival1 < Arrival2 )
        return -1;
    if ( Arrival1 > Arrival2 )
        return 1;
    return 0;
}

/**Function*************************************************************

  Synopsis    [Finds given number of latest arriving COs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_MappingFindLatest( Fpga_Man_t * p, int * pNodes, int nNodesMax )
{
    int nNodes, i, k, v;
    assert( p->nOutputs >= nNodesMax );
    pNodes[0] = 0;
    nNodes = 1;
    for ( i = 1; i < p->nOutputs; i++ )
    {
        for ( k = nNodes - 1; k >= 0; k-- )
            if ( Fpga_MappingCompareOutputDelay( &p->pOutputs[pNodes[k]], &p->pOutputs[i] ) >= 0 )
                break;
        if ( k == nNodesMax - 1 )
            continue;
        if ( nNodes < nNodesMax )
            nNodes++;
        for ( v = nNodes - 1; v > k+1; v-- )
            pNodes[v] = pNodes[v-1];
        pNodes[k+1] = i;
    }
}

/**Function*************************************************************

Alan Mishchenko committed
390 391 392 393 394 395 396 397 398 399 400 401
  Synopsis    [Prints a bunch of latest arriving outputs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_MappingPrintOutputArrivals( Fpga_Man_t * p )
{
    Fpga_Node_t * pNode;
Alan Mishchenko committed
402
    int pSorted[FPGA_CO_LIST_SIZE];
Alan Mishchenko committed
403
    int fCompl, Limit, MaxNameSize, i;
Alan Mishchenko committed
404

Alan Mishchenko committed
405 406 407 408 409
    // determine the number of nodes to print
    Limit = (p->nOutputs > FPGA_CO_LIST_SIZE)? FPGA_CO_LIST_SIZE : p->nOutputs;

    // determine the order
    Fpga_MappingFindLatest( p, pSorted, Limit );
Alan Mishchenko committed
410

Alan Mishchenko committed
411 412
    // determine max size of the node's name
    MaxNameSize = 0;
Alan Mishchenko committed
413
    for ( i = 0; i < Limit; i++ )
Alan Mishchenko committed
414 415 416 417 418
        if ( MaxNameSize < (int)strlen(p->ppOutputNames[pSorted[i]]) )
            MaxNameSize = strlen(p->ppOutputNames[pSorted[i]]);

    // print the latest outputs
    for ( i = 0; i < Limit; i++ )
Alan Mishchenko committed
419 420 421 422 423
    {
        // get the i-th latest output
        pNode  = Fpga_Regular(p->pOutputs[pSorted[i]]);
        fCompl = Fpga_IsComplement(p->pOutputs[pSorted[i]]);
        // print out the best arrival time
Alan Mishchenko committed
424
        printf( "Output  %-*s : ", MaxNameSize + 3, p->ppOutputNames[pSorted[i]] );
Alan Mishchenko committed
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        printf( "Delay = %8.2f  ",     (double)pNode->pCutBest->tArrival );
        if ( fCompl )
            printf( "NEG" );
        else
            printf( "POS" );
        printf( "\n" );
    }
}


/**Function*************************************************************

  Synopsis    [Sets up the truth tables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_MappingSetupTruthTables( unsigned uTruths[][2] )
{
    int m, v;
    // set up the truth tables
    for ( m = 0; m < 32; m++ )
        for ( v = 0; v < 5; v++ )
            if ( m & (1 << v) )
                uTruths[v][0] |= (1 << m);
    // make adjustments for the case of 6 variables
    for ( v = 0; v < 5; v++ )
        uTruths[v][1] = uTruths[v][0];
    uTruths[5][0] = 0;
    uTruths[5][1] = FPGA_FULL;
}

/**Function*************************************************************

  Synopsis    [Sets up the mask.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_MappingSetupMask( unsigned uMask[], int nVarsMax )
{
    if ( nVarsMax == 6 )
        uMask[0] = uMask[1] = FPGA_FULL;
    else
    {
        uMask[0] = FPGA_MASK(1 << nVarsMax);
        uMask[1] = 0;
    }
}

/**Function*************************************************************

  Synopsis    [Verify one useful property.]

  Description [This procedure verifies one useful property. After 
  the FRAIG construction with choice nodes is over, each primary node 
  should have fanins that are primary nodes. The primary nodes is the 
  one that does not have pNode->pRepr set to point to another node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fpga_ManCheckConsistency( Fpga_Man_t * p )
{
    Fpga_Node_t * pNode;
    Fpga_NodeVec_t * pVec;
    int i;
    pVec = Fpga_MappingDfs( p, 0 );
    for ( i = 0; i < pVec->nSize; i++ )
    {
        pNode = pVec->pArray[i];
        if ( Fpga_NodeIsVar(pNode) )
        {
            if ( pNode->pRepr )
                printf( "Primary input %d is a secondary node.\n", pNode->Num );
        }
        else if ( Fpga_NodeIsConst(pNode) )
        {
            if ( pNode->pRepr )
                printf( "Constant 1 %d is a secondary node.\n", pNode->Num );
        }
        else
        {
            if ( pNode->pRepr )
                printf( "Internal node %d is a secondary node.\n", pNode->Num );
            if ( Fpga_Regular(pNode->p1)->pRepr )
                printf( "Internal node %d has first fanin that is a secondary node.\n", pNode->Num );
            if ( Fpga_Regular(pNode->p2)->pRepr )
                printf( "Internal node %d has second fanin that is a secondary node.\n", pNode->Num );
        }
    }
    Fpga_NodeVecFree( pVec );
    return 1;
}

/**Function*************************************************************

  Synopsis    [Compares the supergates by their level.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fpga_CompareNodesByLevelDecreasing( Fpga_Node_t ** ppS1, Fpga_Node_t ** ppS2 )
{
    if ( Fpga_Regular(*ppS1)->Level > Fpga_Regular(*ppS2)->Level )
        return -1;
    if ( Fpga_Regular(*ppS1)->Level < Fpga_Regular(*ppS2)->Level )
        return 1;
    return 0;
}

/**Function*************************************************************

  Synopsis    [Compares the supergates by their level.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fpga_CompareNodesByLevelIncreasing( Fpga_Node_t ** ppS1, Fpga_Node_t ** ppS2 )
{
    if ( Fpga_Regular(*ppS1)->Level < Fpga_Regular(*ppS2)->Level )
        return -1;
    if ( Fpga_Regular(*ppS1)->Level > Fpga_Regular(*ppS2)->Level )
        return 1;
    return 0;
}

/**Function*************************************************************

  Synopsis    [Orders the nodes in the decreasing order of levels.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_MappingSortByLevel( Fpga_Man_t * pMan, Fpga_NodeVec_t * vNodes, int fIncreasing )
{
    if ( fIncreasing )
        qsort( (void *)vNodes->pArray, vNodes->nSize, sizeof(Fpga_Node_t *), 
                (int (*)(const void *, const void *)) Fpga_CompareNodesByLevelIncreasing );
    else
        qsort( (void *)vNodes->pArray, vNodes->nSize, sizeof(Fpga_Node_t *), 
                (int (*)(const void *, const void *)) Fpga_CompareNodesByLevelDecreasing );
//    assert( Fpga_CompareNodesByLevel( vNodes->pArray, vNodes->pArray + vNodes->nSize - 1 ) <= 0 );
}

/**Function*************************************************************

  Synopsis    [Computes the limited DFS ordering for one node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fpga_NodeVec_t * Fpga_DfsLim( Fpga_Man_t * pMan, Fpga_Node_t * pNode, int nLevels )
{
    Fpga_NodeVec_t * vNodes;
    int i;
    // perform the traversal
    vNodes = Fpga_NodeVecAlloc( 100 );
    Fpga_DfsLim_rec( pNode, nLevels, vNodes );
    for ( i = 0; i < vNodes->nSize; i++ )
        vNodes->pArray[i]->fMark0 = 0;
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Recursively computes the DFS ordering of the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_DfsLim_rec( Fpga_Node_t * pNode, int Level, Fpga_NodeVec_t * vNodes )
{
    assert( !Fpga_IsComplement(pNode) );
    if ( pNode->fMark0 )
        return;
    pNode->fMark0 = 1;
    // visit the transitive fanin
    Level--;
    if ( Level > 0 && Fpga_NodeIsAnd(pNode) )
    {
        Fpga_DfsLim_rec( Fpga_Regular(pNode->p1), Level, vNodes );
        Fpga_DfsLim_rec( Fpga_Regular(pNode->p2), Level, vNodes );
    }
    // add the node to the list
    Fpga_NodeVecPush( vNodes, pNode );
}

/**Function*************************************************************

  Synopsis    [Computes the limited DFS ordering for one node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_ManCleanData0( Fpga_Man_t * pMan )
{
    int i;
    for ( i = 0; i < pMan->vNodesAll->nSize; i++ )
        pMan->vNodesAll->pArray[i]->pData0 = 0;
}

/**Function*************************************************************

  Synopsis    [Collects the TFO of the node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fpga_NodeVec_t * Fpga_CollectNodeTfo( Fpga_Man_t * pMan, Fpga_Node_t * pNode )
{
    Fpga_NodeVec_t * vVisited, * vTfo;
    int i;
    // perform the traversal
    vVisited = Fpga_NodeVecAlloc( 100 );
    vTfo     = Fpga_NodeVecAlloc( 100 );
    for ( i = 0; i < pMan->nOutputs; i++ )
        Fpga_CollectNodeTfo_rec( Fpga_Regular(pMan->pOutputs[i]), pNode, vVisited, vTfo );
    for ( i = 0; i < vVisited->nSize; i++ )
        vVisited->pArray[i]->fMark0 = vVisited->pArray[i]->fMark1 = 0;
    Fpga_NodeVecFree( vVisited );
    return vTfo;
}

/**Function*************************************************************

  Synopsis    [Collects the TFO of the node.]

  Description [Returns 1 if the node should be collected.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fpga_CollectNodeTfo_rec( Fpga_Node_t * pNode, Fpga_Node_t * pPivot, Fpga_NodeVec_t * vVisited, Fpga_NodeVec_t * vTfo )
{
    int Ret1, Ret2;
    assert( !Fpga_IsComplement(pNode) );
    // skip visited nodes
    if ( pNode->fMark0 )
        return pNode->fMark1;
    pNode->fMark0 = 1;
    Fpga_NodeVecPush( vVisited, pNode );

    // return the pivot node
    if ( pNode == pPivot )
    {
        pNode->fMark1 = 1;
        return 1;
    }
    if ( pNode->Level < pPivot->Level )
    {
        pNode->fMark1 = 0;
        return 0;
    }
    // visit the transitive fanin
    assert( Fpga_NodeIsAnd(pNode) );
    Ret1 = Fpga_CollectNodeTfo_rec( Fpga_Regular(pNode->p1), pPivot, vVisited, vTfo );
    Ret2 = Fpga_CollectNodeTfo_rec( Fpga_Regular(pNode->p2), pPivot, vVisited, vTfo );
    if ( Ret1 || Ret2 )
    {
        pNode->fMark1 = 1;
        Fpga_NodeVecPush( vTfo, pNode );
    }
    else
        pNode->fMark1 = 0;
    return pNode->fMark1;
}

/**Function*************************************************************

  Synopsis    [Levelizes the nodes accessible from the POs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingLevelize( Fpga_Man_t * pMan, Fpga_NodeVec_t * vNodes )
{
    Fpga_NodeVec_t * vLevels;
    Fpga_Node_t ** ppNodes;
    Fpga_Node_t * pNode;
    int nNodes, nLevelsMax, i;

    // reassign the levels (this may be necessary for networks which choices)
    ppNodes = vNodes->pArray;
    nNodes  = vNodes->nSize;
    for ( i = 0; i < nNodes; i++ )
    {
        pNode = ppNodes[i];
        if ( !Fpga_NodeIsAnd(pNode) )
        {
            pNode->Level = 0;
            continue;
        }
        pNode->Level = 1 + FPGA_MAX( Fpga_Regular(pNode->p1)->Level, Fpga_Regular(pNode->p2)->Level );
    }

    // get the max levels
    nLevelsMax = 0;
    for ( i = 0; i < pMan->nOutputs; i++ )
        nLevelsMax = FPGA_MAX( nLevelsMax, (int)Fpga_Regular(pMan->pOutputs[i])->Level );
    nLevelsMax++;

    // allocate storage for levels
    vLevels = Fpga_NodeVecAlloc( nLevelsMax );
    for ( i = 0; i < nLevelsMax; i++ )
        Fpga_NodeVecPush( vLevels, NULL );

    // go through the nodes and add them to the levels
    for ( i = 0; i < nNodes; i++ )
    {
        pNode = ppNodes[i];
        pNode->pLevel = NULL;
        if ( !Fpga_NodeIsAnd(pNode) )
            continue;
        // attach the node to this level
        pNode->pLevel = Fpga_NodeVecReadEntry( vLevels, pNode->Level );
        Fpga_NodeVecWriteEntry( vLevels, pNode->Level, pNode );
    }
    return vLevels;
}

/**Function*************************************************************

  Synopsis    [Sets up the mask.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Alan Mishchenko committed
801
int Fpga_MappingMaxLevel( Fpga_Man_t * pMan )
Alan Mishchenko committed
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
{
    int nLevelMax, i;
    nLevelMax = 0;
    for ( i = 0; i < pMan->nOutputs; i++ )
        nLevelMax = nLevelMax > (int)Fpga_Regular(pMan->pOutputs[i])->Level? 
                nLevelMax : (int)Fpga_Regular(pMan->pOutputs[i])->Level;
    return nLevelMax;
}


/**Function*************************************************************

  Synopsis    [Analyses choice nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fpga_MappingUpdateLevel_rec( Fpga_Man_t * pMan, Fpga_Node_t * pNode, int fMaximum )
{
    Fpga_Node_t * pTemp;
    int Level1, Level2, LevelE;
    assert( !Fpga_IsComplement(pNode) );
    if ( !Fpga_NodeIsAnd(pNode) )
        return pNode->Level;
    // skip the visited node
    if ( pNode->TravId == pMan->nTravIds )
        return pNode->Level;
    pNode->TravId = pMan->nTravIds;
    // compute levels of the children nodes
    Level1 = Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pNode->p1), fMaximum );
    Level2 = Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pNode->p2), fMaximum );
    pNode->Level = 1 + FPGA_MAX( Level1, Level2 );
    if ( pNode->pNextE )
    {
        LevelE = Fpga_MappingUpdateLevel_rec( pMan, pNode->pNextE, fMaximum );
        if ( fMaximum )
        {
            if ( pNode->Level < (unsigned)LevelE )
                pNode->Level = LevelE;
        }
        else
        {
            if ( pNode->Level > (unsigned)LevelE )
                pNode->Level = LevelE;
        }
        // set the level of all equivalent nodes to be the same minimum
        if ( pNode->pRepr == NULL ) // the primary node
            for ( pTemp = pNode->pNextE; pTemp; pTemp = pTemp->pNextE )
                pTemp->Level = pNode->Level;
    }
    return pNode->Level;
}

/**Function*************************************************************

  Synopsis    [Resets the levels of the nodes in the choice graph.]

  Description [Makes the level of the choice nodes to be equal to the
  maximum of the level of the nodes in the equivalence class. This way
  sorting by level leads to the reverse topological order, which is
  needed for the required time computation.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_MappingSetChoiceLevels( Fpga_Man_t * pMan )
{
    int i;
    pMan->nTravIds++;
    for ( i = 0; i < pMan->nOutputs; i++ )
        Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), 1 );
}

/**Function*************************************************************

  Synopsis    [Reports statistics on choice nodes.]

  Description [The number of choice nodes is the number of primary nodes,
  which has pNextE set to a pointer. The number of choices is the number
  of entries in the equivalent-node lists of the primary nodes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Fpga_ManReportChoices( Fpga_Man_t * pMan )
{
    Fpga_Node_t * pNode, * pTemp;
    int nChoiceNodes, nChoices;
    int i, LevelMax1, LevelMax2;

    // report the number of levels
Alan Mishchenko committed
901
    LevelMax1 = Fpga_MappingMaxLevel( pMan );
Alan Mishchenko committed
902 903 904
    pMan->nTravIds++;
    for ( i = 0; i < pMan->nOutputs; i++ )
        Fpga_MappingUpdateLevel_rec( pMan, Fpga_Regular(pMan->pOutputs[i]), 0 );
Alan Mishchenko committed
905
    LevelMax2 = Fpga_MappingMaxLevel( pMan );
Alan Mishchenko committed
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

    // report statistics about choices
    nChoiceNodes = nChoices = 0;
    for ( i = 0; i < pMan->vAnds->nSize; i++ )
    {
        pNode = pMan->vAnds->pArray[i];
        if ( pNode->pRepr == NULL && pNode->pNextE != NULL )
        { // this is a choice node = the primary node that has equivalent nodes
            nChoiceNodes++;
            for ( pTemp = pNode; pTemp; pTemp = pTemp->pNextE )
                nChoices++;
        }
    }
    if ( pMan->fVerbose )
    {
    printf( "Maximum level: Original = %d. Reduced due to choices = %d.\n", LevelMax1, LevelMax2 );
    printf( "Choice stats:  Choice nodes = %d. Total choices = %d.\n", nChoiceNodes, nChoices );
    }
/*
    {
        FILE * pTable;
        pTable = fopen( "stats_choice.txt", "a+" );
        fprintf( pTable, "%s ", pMan->pFileName );
        fprintf( pTable, "%4d ", LevelMax1 );
        fprintf( pTable, "%4d ", pMan->vAnds->nSize - pMan->nInputs );
        fprintf( pTable, "%4d ", LevelMax2 );
        fprintf( pTable, "%7d ", nChoiceNodes );
        fprintf( pTable, "%7d ", nChoices + nChoiceNodes );
        fprintf( pTable, "\n" );
        fclose( pTable );
    }
*/
}

Alan Mishchenko committed
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/**Function*************************************************************

  Synopsis    [Returns the array of CO nodes sorted by level.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fpga_NodeVec_t * Fpga_MappingOrderCosByLevel( Fpga_Man_t * pMan )
{
    Fpga_Node_t * pNode;
    Fpga_NodeVec_t * vNodes;
    int i, nLevels;
    // get the largest level of a CO
    nLevels = Fpga_MappingMaxLevel( pMan );
    // allocate the array of nodes
    vNodes = Fpga_NodeVecAlloc( nLevels + 1 );
    for ( i = 0; i <= nLevels; i++ )
        Fpga_NodeVecPush( vNodes, NULL );
    // clean the marks
    for ( i = 0; i < pMan->nOutputs; i++ )
        Fpga_Regular(pMan->pOutputs[i])->fMark0 = 0;
    // put the nodes into the structure
    for ( i = 0; i < pMan->nOutputs; i++ )
    {
        pNode = Fpga_Regular(pMan->pOutputs[i]);
        if ( pNode->fMark0 )
            continue;
        pNode->fMark0 = 1;
        pNode->pData0 = (char *)Fpga_NodeVecReadEntry( vNodes, pNode->Level );
        Fpga_NodeVecWriteEntry( vNodes, pNode->Level, pNode );
    }
    for ( i = 0; i < pMan->nOutputs; i++ )
        Fpga_Regular(pMan->pOutputs[i])->fMark0 = 0;
    return vNodes;

}

Alan Mishchenko committed
981 982 983 984 985
////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////