zlib.h 77.8 KB
Newer Older
Alan Mishchenko committed
1
/* zlib.h -- interface of the 'zlib' general purpose compression library
2
  version 1.2.5, April 19th, 2010
Alan Mishchenko committed
3

4
  Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
Alan Mishchenko committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  Jean-loup Gailly        Mark Adler
  jloup@gzip.org          madler@alumni.caltech.edu


  The data format used by the zlib library is described by RFCs (Request for
  Comments) 1950 to 1952 in the files http://www.ietf.org/rfc/rfc1950.txt
  (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
*/

#ifndef ZLIB_H
#define ZLIB_H

34
#include <stdio.h>
35 36 37
#include <stdlib.h>
#include <string.h>

38 39 40 41
#ifndef WIN32
#include <unistd.h>
#endif

42
#include "misc/util/abc_global.h"
43

Alan Mishchenko committed
44 45
#include "zconf.h"

46
ABC_NAMESPACE_HEADER_START
Alan Mishchenko committed
47

48 49 50 51 52 53
#define ZLIB_VERSION "1.2.5"
#define ZLIB_VERNUM 0x1250
#define ZLIB_VER_MAJOR 1
#define ZLIB_VER_MINOR 2
#define ZLIB_VER_REVISION 5
#define ZLIB_VER_SUBREVISION 0
Alan Mishchenko committed
54 55

/*
56 57 58 59 60 61 62 63 64
    The 'zlib' compression library provides in-memory compression and
  decompression functions, including integrity checks of the uncompressed data.
  This version of the library supports only one compression method (deflation)
  but other algorithms will be added later and will have the same stream
  interface.

    Compression can be done in a single step if the buffers are large enough,
  or can be done by repeated calls of the compression function.  In the latter
  case, the application must provide more input and/or consume the output
Alan Mishchenko committed
65 66
  (providing more output space) before each call.

67
    The compressed data format used by default by the in-memory functions is
Alan Mishchenko committed
68 69 70
  the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
  around a deflate stream, which is itself documented in RFC 1951.

71
    The library also supports reading and writing files in gzip (.gz) format
Alan Mishchenko committed
72 73 74 75
  with an interface similar to that of stdio using the functions that start
  with "gz".  The gzip format is different from the zlib format.  gzip is a
  gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.

76
    This library can optionally read and write gzip streams in memory as well.
Alan Mishchenko committed
77

78
    The zlib format was designed to be compact and fast for use in memory
Alan Mishchenko committed
79 80 81 82
  and on communications channels.  The gzip format was designed for single-
  file compression on file systems, has a larger header than zlib to maintain
  directory information, and uses a different, slower check method than zlib.

83 84 85
    The library does not install any signal handler.  The decoder checks
  the consistency of the compressed data, so the library should never crash
  even in case of corrupted input.
Alan Mishchenko committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
*/

typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
typedef void   (*free_func)  OF((voidpf opaque, voidpf address));

struct internal_state;

typedef struct z_stream_s {
    Bytef    *next_in;  /* next input byte */
    uInt     avail_in;  /* number of bytes available at next_in */
    uLong    total_in;  /* total nb of input bytes read so far */

    Bytef    *next_out; /* next output byte should be put there */
    uInt     avail_out; /* remaining free space at next_out */
    uLong    total_out; /* total nb of bytes output so far */

    char     *msg;      /* last error message, NULL if no error */
    struct internal_state FAR *state; /* not visible by applications */

    alloc_func zalloc;  /* used to allocate the internal state */
    free_func  zfree;   /* used to free the internal state */
    voidpf     opaque;  /* private data object passed to zalloc and zfree */

    int     data_type;  /* best guess about the data type: binary or text */
    uLong   adler;      /* adler32 value of the uncompressed data */
    uLong   reserved;   /* reserved for future use */
} z_stream;

typedef z_stream FAR *z_streamp;

/*
     gzip header information passed to and from zlib routines.  See RFC 1952
  for more details on the meanings of these fields.
*/
typedef struct gz_header_s {
    int     text;       /* true if compressed data believed to be text */
    uLong   time;       /* modification time */
    int     xflags;     /* extra flags (not used when writing a gzip file) */
    int     os;         /* operating system */
    Bytef   *extra;     /* pointer to extra field or Z_NULL if none */
    uInt    extra_len;  /* extra field length (valid if extra != Z_NULL) */
    uInt    extra_max;  /* space at extra (only when reading header) */
    Bytef   *name;      /* pointer to zero-terminated file name or Z_NULL */
    uInt    name_max;   /* space at name (only when reading header) */
    Bytef   *comment;   /* pointer to zero-terminated comment or Z_NULL */
    uInt    comm_max;   /* space at comment (only when reading header) */
    int     hcrc;       /* true if there was or will be a header crc */
    int     done;       /* true when done reading gzip header (not used
                           when writing a gzip file) */
} gz_header;

typedef gz_header FAR *gz_headerp;

/*
140 141 142 143 144 145 146 147 148
     The application must update next_in and avail_in when avail_in has dropped
   to zero.  It must update next_out and avail_out when avail_out has dropped
   to zero.  The application must initialize zalloc, zfree and opaque before
   calling the init function.  All other fields are set by the compression
   library and must not be updated by the application.

     The opaque value provided by the application will be passed as the first
   parameter for calls of zalloc and zfree.  This can be useful for custom
   memory management.  The compression library attaches no meaning to the
Alan Mishchenko committed
149 150
   opaque value.

151
     zalloc must return Z_NULL if there is not enough memory for the object.
Alan Mishchenko committed
152 153 154
   If zlib is used in a multi-threaded application, zalloc and zfree must be
   thread safe.

155 156 157 158 159 160 161 162 163 164 165 166 167
     On 16-bit systems, the functions zalloc and zfree must be able to allocate
   exactly 65536 bytes, but will not be required to allocate more than this if
   the symbol MAXSEG_64K is defined (see zconf.h).  WARNING: On MSDOS, pointers
   returned by zalloc for objects of exactly 65536 bytes *must* have their
   offset normalized to zero.  The default allocation function provided by this
   library ensures this (see zutil.c).  To reduce memory requirements and avoid
   any allocation of 64K objects, at the expense of compression ratio, compile
   the library with -DMAX_WBITS=14 (see zconf.h).

     The fields total_in and total_out can be used for statistics or progress
   reports.  After compression, total_in holds the total size of the
   uncompressed data and may be saved for use in the decompressor (particularly
   if the decompressor wants to decompress everything in a single step).
Alan Mishchenko committed
168 169 170 171 172
*/

                        /* constants */

#define Z_NO_FLUSH      0
173
#define Z_PARTIAL_FLUSH 1
Alan Mishchenko committed
174 175 176 177
#define Z_SYNC_FLUSH    2
#define Z_FULL_FLUSH    3
#define Z_FINISH        4
#define Z_BLOCK         5
178
#define Z_TREES         6
Alan Mishchenko committed
179 180 181 182 183 184 185 186 187 188 189
/* Allowed flush values; see deflate() and inflate() below for details */

#define Z_OK            0
#define Z_STREAM_END    1
#define Z_NEED_DICT     2
#define Z_ERRNO        (-1)
#define Z_STREAM_ERROR (-2)
#define Z_DATA_ERROR   (-3)
#define Z_MEM_ERROR    (-4)
#define Z_BUF_ERROR    (-5)
#define Z_VERSION_ERROR (-6)
190 191
/* Return codes for the compression/decompression functions. Negative values
 * are errors, positive values are used for special but normal events.
Alan Mishchenko committed
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
 */

#define Z_NO_COMPRESSION         0
#define Z_BEST_SPEED             1
#define Z_BEST_COMPRESSION       9
#define Z_DEFAULT_COMPRESSION  (-1)
/* compression levels */

#define Z_FILTERED            1
#define Z_HUFFMAN_ONLY        2
#define Z_RLE                 3
#define Z_FIXED               4
#define Z_DEFAULT_STRATEGY    0
/* compression strategy; see deflateInit2() below for details */

#define Z_BINARY   0
#define Z_TEXT     1
#define Z_ASCII    Z_TEXT   /* for compatibility with 1.2.2 and earlier */
#define Z_UNKNOWN  2
/* Possible values of the data_type field (though see inflate()) */

#define Z_DEFLATED   8
/* The deflate compression method (the only one supported in this version) */

#define Z_NULL  0  /* for initializing zalloc, zfree, opaque */

#define zlib_version zlibVersion()
/* for compatibility with versions < 1.0.2 */

221

Alan Mishchenko committed
222 223 224 225
                        /* basic functions */

ZEXTERN const char * ZEXPORT zlibVersion OF((void));
/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
226 227 228
   If the first character differs, the library code actually used is not
   compatible with the zlib.h header file used by the application.  This check
   is automatically made by deflateInit and inflateInit.
Alan Mishchenko committed
229 230 231 232 233
 */

/*
ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));

234 235 236 237
     Initializes the internal stream state for compression.  The fields
   zalloc, zfree and opaque must be initialized before by the caller.  If
   zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
   allocation functions.
Alan Mishchenko committed
238 239

     The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
240 241 242 243
   1 gives best speed, 9 gives best compression, 0 gives no compression at all
   (the input data is simply copied a block at a time).  Z_DEFAULT_COMPRESSION
   requests a default compromise between speed and compression (currently
   equivalent to level 6).
Alan Mishchenko committed
244

245 246
     deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
   memory, Z_STREAM_ERROR if level is not a valid compression level, or
Alan Mishchenko committed
247
   Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
248 249 250
   with the version assumed by the caller (ZLIB_VERSION).  msg is set to null
   if there is no error message.  deflateInit does not perform any compression:
   this will be done by deflate().
Alan Mishchenko committed
251 252 253 254 255 256
*/


ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
/*
    deflate compresses as much data as possible, and stops when the input
257 258
  buffer becomes empty or the output buffer becomes full.  It may introduce
  some output latency (reading input without producing any output) except when
Alan Mishchenko committed
259 260
  forced to flush.

261
    The detailed semantics are as follows.  deflate performs one or both of the
Alan Mishchenko committed
262 263 264
  following actions:

  - Compress more input starting at next_in and update next_in and avail_in
265
    accordingly.  If not all input can be processed (because there is not
Alan Mishchenko committed
266 267 268 269
    enough room in the output buffer), next_in and avail_in are updated and
    processing will resume at this point for the next call of deflate().

  - Provide more output starting at next_out and update next_out and avail_out
270
    accordingly.  This action is forced if the parameter flush is non zero.
Alan Mishchenko committed
271
    Forcing flush frequently degrades the compression ratio, so this parameter
272 273 274 275 276 277 278 279 280 281 282
    should be set only when necessary (in interactive applications).  Some
    output may be provided even if flush is not set.

    Before the call of deflate(), the application should ensure that at least
  one of the actions is possible, by providing more input and/or consuming more
  output, and updating avail_in or avail_out accordingly; avail_out should
  never be zero before the call.  The application can consume the compressed
  output when it wants, for example when the output buffer is full (avail_out
  == 0), or after each call of deflate().  If deflate returns Z_OK and with
  zero avail_out, it must be called again after making room in the output
  buffer because there might be more output pending.
Alan Mishchenko committed
283 284

    Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
285
  decide how much data to accumulate before producing output, in order to
Alan Mishchenko committed
286 287 288 289
  maximize compression.

    If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
  flushed to the output buffer and the output is aligned on a byte boundary, so
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  that the decompressor can get all input data available so far.  (In
  particular avail_in is zero after the call if enough output space has been
  provided before the call.) Flushing may degrade compression for some
  compression algorithms and so it should be used only when necessary.  This
  completes the current deflate block and follows it with an empty stored block
  that is three bits plus filler bits to the next byte, followed by four bytes
  (00 00 ff ff).

    If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
  output buffer, but the output is not aligned to a byte boundary.  All of the
  input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
  This completes the current deflate block and follows it with an empty fixed
  codes block that is 10 bits long.  This assures that enough bytes are output
  in order for the decompressor to finish the block before the empty fixed code
  block.

    If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
  for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
  seven bits of the current block are held to be written as the next byte after
  the next deflate block is completed.  In this case, the decompressor may not
  be provided enough bits at this point in order to complete decompression of
  the data provided so far to the compressor.  It may need to wait for the next
  block to be emitted.  This is for advanced applications that need to control
  the emission of deflate blocks.
Alan Mishchenko committed
314 315 316 317

    If flush is set to Z_FULL_FLUSH, all output is flushed as with
  Z_SYNC_FLUSH, and the compression state is reset so that decompression can
  restart from this point if previous compressed data has been damaged or if
318
  random access is desired.  Using Z_FULL_FLUSH too often can seriously degrade
Alan Mishchenko committed
319 320 321 322 323
  compression.

    If deflate returns with avail_out == 0, this function must be called again
  with the same value of the flush parameter and more output space (updated
  avail_out), until the flush is complete (deflate returns with non-zero
324
  avail_out).  In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
Alan Mishchenko committed
325 326 327 328
  avail_out is greater than six to avoid repeated flush markers due to
  avail_out == 0 on return.

    If the parameter flush is set to Z_FINISH, pending input is processed,
329 330
  pending output is flushed and deflate returns with Z_STREAM_END if there was
  enough output space; if deflate returns with Z_OK, this function must be
Alan Mishchenko committed
331
  called again with Z_FINISH and more output space (updated avail_out) but no
332 333 334
  more input data, until it returns with Z_STREAM_END or an error.  After
  deflate has returned Z_STREAM_END, the only possible operations on the stream
  are deflateReset or deflateEnd.
Alan Mishchenko committed
335 336

    Z_FINISH can be used immediately after deflateInit if all the compression
337 338
  is to be done in a single step.  In this case, avail_out must be at least the
  value returned by deflateBound (see below).  If deflate does not return
Alan Mishchenko committed
339 340 341 342 343 344
  Z_STREAM_END, then it must be called again as described above.

    deflate() sets strm->adler to the adler32 checksum of all input read
  so far (that is, total_in bytes).

    deflate() may update strm->data_type if it can make a good guess about
345 346 347
  the input data type (Z_BINARY or Z_TEXT).  In doubt, the data is considered
  binary.  This field is only for information purposes and does not affect the
  compression algorithm in any manner.
Alan Mishchenko committed
348 349 350 351 352

    deflate() returns Z_OK if some progress has been made (more input
  processed or more output produced), Z_STREAM_END if all input has been
  consumed and all output has been produced (only when flush is set to
  Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
353 354
  if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible
  (for example avail_in or avail_out was zero).  Note that Z_BUF_ERROR is not
Alan Mishchenko committed
355 356 357 358 359 360 361 362
  fatal, and deflate() can be called again with more input and more output
  space to continue compressing.
*/


ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
/*
     All dynamically allocated data structures for this stream are freed.
363 364
   This function discards any unprocessed input and does not flush any pending
   output.
Alan Mishchenko committed
365 366 367

     deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
   stream state was inconsistent, Z_DATA_ERROR if the stream was freed
368 369
   prematurely (some input or output was discarded).  In the error case, msg
   may be set but then points to a static string (which must not be
Alan Mishchenko committed
370 371 372 373 374 375 376
   deallocated).
*/


/*
ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));

377
     Initializes the internal stream state for decompression.  The fields
Alan Mishchenko committed
378
   next_in, avail_in, zalloc, zfree and opaque must be initialized before by
379 380
   the caller.  If next_in is not Z_NULL and avail_in is large enough (the
   exact value depends on the compression method), inflateInit determines the
Alan Mishchenko committed
381 382 383 384 385 386 387
   compression method from the zlib header and allocates all data structures
   accordingly; otherwise the allocation will be deferred to the first call of
   inflate.  If zalloc and zfree are set to Z_NULL, inflateInit updates them to
   use default allocation functions.

     inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
   memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
388 389 390 391 392 393 394 395
   version assumed by the caller, or Z_STREAM_ERROR if the parameters are
   invalid, such as a null pointer to the structure.  msg is set to null if
   there is no error message.  inflateInit does not perform any decompression
   apart from possibly reading the zlib header if present: actual decompression
   will be done by inflate().  (So next_in and avail_in may be modified, but
   next_out and avail_out are unused and unchanged.) The current implementation
   of inflateInit() does not process any header information -- that is deferred
   until inflate() is called.
Alan Mishchenko committed
396 397 398 399 400 401
*/


ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
/*
    inflate decompresses as much data as possible, and stops when the input
402
  buffer becomes empty or the output buffer becomes full.  It may introduce
Alan Mishchenko committed
403 404 405
  some output latency (reading input without producing any output) except when
  forced to flush.

406
  The detailed semantics are as follows.  inflate performs one or both of the
Alan Mishchenko committed
407 408 409
  following actions:

  - Decompress more input starting at next_in and update next_in and avail_in
410 411 412
    accordingly.  If not all input can be processed (because there is not
    enough room in the output buffer), next_in is updated and processing will
    resume at this point for the next call of inflate().
Alan Mishchenko committed
413 414

  - Provide more output starting at next_out and update next_out and avail_out
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    accordingly.  inflate() provides as much output as possible, until there is
    no more input data or no more space in the output buffer (see below about
    the flush parameter).

    Before the call of inflate(), the application should ensure that at least
  one of the actions is possible, by providing more input and/or consuming more
  output, and updating the next_* and avail_* values accordingly.  The
  application can consume the uncompressed output when it wants, for example
  when the output buffer is full (avail_out == 0), or after each call of
  inflate().  If inflate returns Z_OK and with zero avail_out, it must be
  called again after making room in the output buffer because there might be
  more output pending.

    The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
  Z_BLOCK, or Z_TREES.  Z_SYNC_FLUSH requests that inflate() flush as much
  output as possible to the output buffer.  Z_BLOCK requests that inflate()
  stop if and when it gets to the next deflate block boundary.  When decoding
  the zlib or gzip format, this will cause inflate() to return immediately
  after the header and before the first block.  When doing a raw inflate,
  inflate() will go ahead and process the first block, and will return when it
  gets to the end of that block, or when it runs out of data.
Alan Mishchenko committed
436 437 438

    The Z_BLOCK option assists in appending to or combining deflate streams.
  Also to assist in this, on return inflate() will set strm->data_type to the
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  number of unused bits in the last byte taken from strm->next_in, plus 64 if
  inflate() is currently decoding the last block in the deflate stream, plus
  128 if inflate() returned immediately after decoding an end-of-block code or
  decoding the complete header up to just before the first byte of the deflate
  stream.  The end-of-block will not be indicated until all of the uncompressed
  data from that block has been written to strm->next_out.  The number of
  unused bits may in general be greater than seven, except when bit 7 of
  data_type is set, in which case the number of unused bits will be less than
  eight.  data_type is set as noted here every time inflate() returns for all
  flush options, and so can be used to determine the amount of currently
  consumed input in bits.

    The Z_TREES option behaves as Z_BLOCK does, but it also returns when the
  end of each deflate block header is reached, before any actual data in that
  block is decoded.  This allows the caller to determine the length of the
  deflate block header for later use in random access within a deflate block.
  256 is added to the value of strm->data_type when inflate() returns
  immediately after reaching the end of the deflate block header.
Alan Mishchenko committed
457 458

    inflate() should normally be called until it returns Z_STREAM_END or an
459 460 461 462 463 464 465 466 467
  error.  However if all decompression is to be performed in a single step (a
  single call of inflate), the parameter flush should be set to Z_FINISH.  In
  this case all pending input is processed and all pending output is flushed;
  avail_out must be large enough to hold all the uncompressed data.  (The size
  of the uncompressed data may have been saved by the compressor for this
  purpose.) The next operation on this stream must be inflateEnd to deallocate
  the decompression state.  The use of Z_FINISH is never required, but can be
  used to inform inflate that a faster approach may be used for the single
  inflate() call.
Alan Mishchenko committed
468 469 470

     In this implementation, inflate() always flushes as much output as
  possible to the output buffer, and always uses the faster approach on the
471
  first call.  So the only effect of the flush parameter in this implementation
Alan Mishchenko committed
472
  is on the return value of inflate(), as noted below, or when it returns early
473
  because Z_BLOCK or Z_TREES is used.
Alan Mishchenko committed
474 475 476 477 478 479

     If a preset dictionary is needed after this call (see inflateSetDictionary
  below), inflate sets strm->adler to the adler32 checksum of the dictionary
  chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
  strm->adler to the adler32 checksum of all output produced so far (that is,
  total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
480
  below.  At the end of the stream, inflate() checks that its computed adler32
Alan Mishchenko committed
481 482 483
  checksum is equal to that saved by the compressor and returns Z_STREAM_END
  only if the checksum is correct.

484 485 486 487 488 489
    inflate() can decompress and check either zlib-wrapped or gzip-wrapped
  deflate data.  The header type is detected automatically, if requested when
  initializing with inflateInit2().  Any information contained in the gzip
  header is not retained, so applications that need that information should
  instead use raw inflate, see inflateInit2() below, or inflateBack() and
  perform their own processing of the gzip header and trailer.
Alan Mishchenko committed
490 491 492 493 494 495 496

    inflate() returns Z_OK if some progress has been made (more input processed
  or more output produced), Z_STREAM_END if the end of the compressed data has
  been reached and all uncompressed output has been produced, Z_NEED_DICT if a
  preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
  corrupted (input stream not conforming to the zlib format or incorrect check
  value), Z_STREAM_ERROR if the stream structure was inconsistent (for example
497
  next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory,
Alan Mishchenko committed
498
  Z_BUF_ERROR if no progress is possible or if there was not enough room in the
499
  output buffer when Z_FINISH is used.  Note that Z_BUF_ERROR is not fatal, and
Alan Mishchenko committed
500
  inflate() can be called again with more input and more output space to
501 502 503
  continue decompressing.  If Z_DATA_ERROR is returned, the application may
  then call inflateSync() to look for a good compression block if a partial
  recovery of the data is desired.
Alan Mishchenko committed
504 505 506 507 508 509
*/


ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
/*
     All dynamically allocated data structures for this stream are freed.
510 511
   This function discards any unprocessed input and does not flush any pending
   output.
Alan Mishchenko committed
512 513

     inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
514
   was inconsistent.  In the error case, msg may be set but then points to a
Alan Mishchenko committed
515 516 517
   static string (which must not be deallocated).
*/

518

Alan Mishchenko committed
519 520 521 522 523 524 525 526 527 528 529 530 531 532
                        /* Advanced functions */

/*
    The following functions are needed only in some special applications.
*/

/*
ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
                                     int  level,
                                     int  method,
                                     int  windowBits,
                                     int  memLevel,
                                     int  strategy));

533 534 535
     This is another version of deflateInit with more compression options.  The
   fields next_in, zalloc, zfree and opaque must be initialized before by the
   caller.
Alan Mishchenko committed
536

537
     The method parameter is the compression method.  It must be Z_DEFLATED in
Alan Mishchenko committed
538 539 540
   this version of the library.

     The windowBits parameter is the base two logarithm of the window size
541 542 543
   (the size of the history buffer).  It should be in the range 8..15 for this
   version of the library.  Larger values of this parameter result in better
   compression at the expense of memory usage.  The default value is 15 if
Alan Mishchenko committed
544 545
   deflateInit is used instead.

546 547
     windowBits can also be -8..-15 for raw deflate.  In this case, -windowBits
   determines the window size.  deflate() will then generate raw deflate data
Alan Mishchenko committed
548 549
   with no zlib header or trailer, and will not compute an adler32 check value.

550
     windowBits can also be greater than 15 for optional gzip encoding.  Add
Alan Mishchenko committed
551
   16 to windowBits to write a simple gzip header and trailer around the
552 553 554
   compressed data instead of a zlib wrapper.  The gzip header will have no
   file name, no extra data, no comment, no modification time (set to zero), no
   header crc, and the operating system will be set to 255 (unknown).  If a
Alan Mishchenko committed
555 556 557
   gzip stream is being written, strm->adler is a crc32 instead of an adler32.

     The memLevel parameter specifies how much memory should be allocated
558 559 560 561
   for the internal compression state.  memLevel=1 uses minimum memory but is
   slow and reduces compression ratio; memLevel=9 uses maximum memory for
   optimal speed.  The default value is 8.  See zconf.h for total memory usage
   as a function of windowBits and memLevel.
Alan Mishchenko committed
562

563
     The strategy parameter is used to tune the compression algorithm.  Use the
Alan Mishchenko committed
564 565 566
   value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
   filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
   string match), or Z_RLE to limit match distances to one (run-length
567 568 569
   encoding).  Filtered data consists mostly of small values with a somewhat
   random distribution.  In this case, the compression algorithm is tuned to
   compress them better.  The effect of Z_FILTERED is to force more Huffman
Alan Mishchenko committed
570
   coding and less string matching; it is somewhat intermediate between
571 572 573 574 575 576 577 578 579 580 581 582 583
   Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY.  Z_RLE is designed to be almost as
   fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data.  The
   strategy parameter only affects the compression ratio but not the
   correctness of the compressed output even if it is not set appropriately.
   Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler
   decoder for special applications.

     deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
   memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid
   method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is
   incompatible with the version assumed by the caller (ZLIB_VERSION).  msg is
   set to null if there is no error message.  deflateInit2 does not perform any
   compression: this will be done by deflate().
Alan Mishchenko committed
584 585 586 587 588 589 590
*/

ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
                                             const Bytef *dictionary,
                                             uInt  dictLength));
/*
     Initializes the compression dictionary from the given byte sequence
591 592 593
   without producing any compressed output.  This function must be called
   immediately after deflateInit, deflateInit2 or deflateReset, before any call
   of deflate.  The compressor and decompressor must use exactly the same
Alan Mishchenko committed
594 595 596 597
   dictionary (see inflateSetDictionary).

     The dictionary should consist of strings (byte sequences) that are likely
   to be encountered later in the data to be compressed, with the most commonly
598
   used strings preferably put towards the end of the dictionary.  Using a
Alan Mishchenko committed
599 600 601 602 603 604
   dictionary is most useful when the data to be compressed is short and can be
   predicted with good accuracy; the data can then be compressed better than
   with the default empty dictionary.

     Depending on the size of the compression data structures selected by
   deflateInit or deflateInit2, a part of the dictionary may in effect be
605 606 607 608 609
   discarded, for example if the dictionary is larger than the window size
   provided in deflateInit or deflateInit2.  Thus the strings most likely to be
   useful should be put at the end of the dictionary, not at the front.  In
   addition, the current implementation of deflate will use at most the window
   size minus 262 bytes of the provided dictionary.
Alan Mishchenko committed
610 611 612

     Upon return of this function, strm->adler is set to the adler32 value
   of the dictionary; the decompressor may later use this value to determine
613
   which dictionary has been used by the compressor.  (The adler32 value
Alan Mishchenko committed
614 615 616 617 618
   applies to the whole dictionary even if only a subset of the dictionary is
   actually used by the compressor.) If a raw deflate was requested, then the
   adler32 value is not computed and strm->adler is not set.

     deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
619
   parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
Alan Mishchenko committed
620
   inconsistent (for example if deflate has already been called for this stream
621
   or if the compression method is bsort).  deflateSetDictionary does not
Alan Mishchenko committed
622 623 624 625 626 627 628 629 630 631
   perform any compression: this will be done by deflate().
*/

ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
                                    z_streamp source));
/*
     Sets the destination stream as a complete copy of the source stream.

     This function can be useful when several compression strategies will be
   tried, for example when there are several ways of pre-processing the input
632
   data with a filter.  The streams that will be discarded should then be freed
Alan Mishchenko committed
633
   by calling deflateEnd.  Note that deflateCopy duplicates the internal
634 635
   compression state which can be quite large, so this strategy is slow and can
   consume lots of memory.
Alan Mishchenko committed
636 637 638

     deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
   enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
639
   (such as zalloc being Z_NULL).  msg is left unchanged in both source and
Alan Mishchenko committed
640 641 642 643 644 645
   destination.
*/

ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
/*
     This function is equivalent to deflateEnd followed by deflateInit,
646 647 648
   but does not free and reallocate all the internal compression state.  The
   stream will keep the same compression level and any other attributes that
   may have been set by deflateInit2.
Alan Mishchenko committed
649

650 651
     deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
   stream state was inconsistent (such as zalloc or state being Z_NULL).
Alan Mishchenko committed
652 653 654 655 656 657 658 659 660
*/

ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
                                      int level,
                                      int strategy));
/*
     Dynamically update the compression level and compression strategy.  The
   interpretation of level and strategy is as in deflateInit2.  This can be
   used to switch between compression and straight copy of the input data, or
661 662 663 664
   to switch to a different kind of input data requiring a different strategy.
   If the compression level is changed, the input available so far is
   compressed with the old level (and may be flushed); the new level will take
   effect only at the next call of deflate().
Alan Mishchenko committed
665 666

     Before the call of deflateParams, the stream state must be set as for
667 668
   a call of deflate(), since the currently available input may have to be
   compressed and flushed.  In particular, strm->avail_out must be non-zero.
Alan Mishchenko committed
669 670

     deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
671 672
   stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if
   strm->avail_out was zero.
Alan Mishchenko committed
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
*/

ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
                                    int good_length,
                                    int max_lazy,
                                    int nice_length,
                                    int max_chain));
/*
     Fine tune deflate's internal compression parameters.  This should only be
   used by someone who understands the algorithm used by zlib's deflate for
   searching for the best matching string, and even then only by the most
   fanatic optimizer trying to squeeze out the last compressed bit for their
   specific input data.  Read the deflate.c source code for the meaning of the
   max_lazy, good_length, nice_length, and max_chain parameters.

     deflateTune() can be called after deflateInit() or deflateInit2(), and
   returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
 */

ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
                                       uLong sourceLen));
/*
     deflateBound() returns an upper bound on the compressed size after
696 697 698 699
   deflation of sourceLen bytes.  It must be called after deflateInit() or
   deflateInit2(), and after deflateSetHeader(), if used.  This would be used
   to allocate an output buffer for deflation in a single pass, and so would be
   called before deflate().
Alan Mishchenko committed
700 701 702 703 704 705 706
*/

ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
                                     int bits,
                                     int value));
/*
     deflatePrime() inserts bits in the deflate output stream.  The intent
707 708 709 710 711 712 713 714
   is that this function is used to start off the deflate output with the bits
   leftover from a previous deflate stream when appending to it.  As such, this
   function can only be used for raw deflate, and must be used before the first
   deflate() call after a deflateInit2() or deflateReset().  bits must be less
   than or equal to 16, and that many of the least significant bits of value
   will be inserted in the output.

     deflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
Alan Mishchenko committed
715 716 717 718 719 720
   stream state was inconsistent.
*/

ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
                                         gz_headerp head));
/*
721
     deflateSetHeader() provides gzip header information for when a gzip
Alan Mishchenko committed
722 723 724 725 726 727 728 729 730 731 732 733
   stream is requested by deflateInit2().  deflateSetHeader() may be called
   after deflateInit2() or deflateReset() and before the first call of
   deflate().  The text, time, os, extra field, name, and comment information
   in the provided gz_header structure are written to the gzip header (xflag is
   ignored -- the extra flags are set according to the compression level).  The
   caller must assure that, if not Z_NULL, name and comment are terminated with
   a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
   available there.  If hcrc is true, a gzip header crc is included.  Note that
   the current versions of the command-line version of gzip (up through version
   1.3.x) do not support header crc's, and will report that it is a "multi-part
   gzip file" and give up.

734
     If deflateSetHeader is not used, the default gzip header has text false,
Alan Mishchenko committed
735 736 737
   the time set to zero, and os set to 255, with no extra, name, or comment
   fields.  The gzip header is returned to the default state by deflateReset().

738
     deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
Alan Mishchenko committed
739 740 741 742 743 744 745
   stream state was inconsistent.
*/

/*
ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
                                     int  windowBits));

746
     This is another version of inflateInit with an extra parameter.  The
Alan Mishchenko committed
747 748 749 750 751
   fields next_in, avail_in, zalloc, zfree and opaque must be initialized
   before by the caller.

     The windowBits parameter is the base two logarithm of the maximum window
   size (the size of the history buffer).  It should be in the range 8..15 for
752 753
   this version of the library.  The default value is 15 if inflateInit is used
   instead.  windowBits must be greater than or equal to the windowBits value
Alan Mishchenko committed
754
   provided to deflateInit2() while compressing, or it must be equal to 15 if
755
   deflateInit2() was not used.  If a compressed stream with a larger window
Alan Mishchenko committed
756 757 758
   size is given as input, inflate() will return with the error code
   Z_DATA_ERROR instead of trying to allocate a larger window.

759 760 761 762 763
     windowBits can also be zero to request that inflate use the window size in
   the zlib header of the compressed stream.

     windowBits can also be -8..-15 for raw inflate.  In this case, -windowBits
   determines the window size.  inflate() will then process raw deflate data,
Alan Mishchenko committed
764
   not looking for a zlib or gzip header, not generating a check value, and not
765
   looking for any check values for comparison at the end of the stream.  This
Alan Mishchenko committed
766
   is for use with other formats that use the deflate compressed data format
767
   such as zip.  Those formats provide their own check values.  If a custom
Alan Mishchenko committed
768 769 770
   format is developed using the raw deflate format for compressed data, it is
   recommended that a check value such as an adler32 or a crc32 be applied to
   the uncompressed data as is done in the zlib, gzip, and zip formats.  For
771
   most applications, the zlib format should be used as is.  Note that comments
Alan Mishchenko committed
772 773
   above on the use in deflateInit2() applies to the magnitude of windowBits.

774
     windowBits can also be greater than 15 for optional gzip decoding.  Add
Alan Mishchenko committed
775 776
   32 to windowBits to enable zlib and gzip decoding with automatic header
   detection, or add 16 to decode only the gzip format (the zlib format will
777 778
   return a Z_DATA_ERROR).  If a gzip stream is being decoded, strm->adler is a
   crc32 instead of an adler32.
Alan Mishchenko committed
779 780

     inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
781 782 783 784 785 786 787 788 789
   memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
   version assumed by the caller, or Z_STREAM_ERROR if the parameters are
   invalid, such as a null pointer to the structure.  msg is set to null if
   there is no error message.  inflateInit2 does not perform any decompression
   apart from possibly reading the zlib header if present: actual decompression
   will be done by inflate().  (So next_in and avail_in may be modified, but
   next_out and avail_out are unused and unchanged.) The current implementation
   of inflateInit2() does not process any header information -- that is
   deferred until inflate() is called.
Alan Mishchenko committed
790 791 792 793 794 795 796
*/

ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
                                             const Bytef *dictionary,
                                             uInt  dictLength));
/*
     Initializes the decompression dictionary from the given uncompressed byte
797 798
   sequence.  This function must be called immediately after a call of inflate,
   if that call returned Z_NEED_DICT.  The dictionary chosen by the compressor
Alan Mishchenko committed
799 800 801 802 803 804 805 806
   can be determined from the adler32 value returned by that call of inflate.
   The compressor and decompressor must use exactly the same dictionary (see
   deflateSetDictionary).  For raw inflate, this function can be called
   immediately after inflateInit2() or inflateReset() and before any call of
   inflate() to set the dictionary.  The application must insure that the
   dictionary that was used for compression is provided.

     inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
807
   parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
Alan Mishchenko committed
808
   inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
809
   expected one (incorrect adler32 value).  inflateSetDictionary does not
Alan Mishchenko committed
810 811 812 813 814 815
   perform any decompression: this will be done by subsequent calls of
   inflate().
*/

ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
/*
816 817 818 819 820 821 822 823 824 825 826
     Skips invalid compressed data until a full flush point (see above the
   description of deflate with Z_FULL_FLUSH) can be found, or until all
   available input is skipped.  No output is provided.

     inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
   if no more input was provided, Z_DATA_ERROR if no flush point has been
   found, or Z_STREAM_ERROR if the stream structure was inconsistent.  In the
   success case, the application may save the current current value of total_in
   which indicates where valid compressed data was found.  In the error case,
   the application may repeatedly call inflateSync, providing more input each
   time, until success or end of the input data.
Alan Mishchenko committed
827 828 829 830 831 832 833 834 835 836 837 838 839 840
*/

ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
                                    z_streamp source));
/*
     Sets the destination stream as a complete copy of the source stream.

     This function can be useful when randomly accessing a large stream.  The
   first pass through the stream can periodically record the inflate state,
   allowing restarting inflate at those points when randomly accessing the
   stream.

     inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
   enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
841
   (such as zalloc being Z_NULL).  msg is left unchanged in both source and
Alan Mishchenko committed
842 843 844 845 846 847
   destination.
*/

ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
/*
     This function is equivalent to inflateEnd followed by inflateInit,
848 849 850 851 852 853 854 855 856 857 858 859 860
   but does not free and reallocate all the internal decompression state.  The
   stream will keep attributes that may have been set by inflateInit2.

     inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
   stream state was inconsistent (such as zalloc or state being Z_NULL).
*/

ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
                                      int windowBits));
/*
     This function is the same as inflateReset, but it also permits changing
   the wrap and window size requests.  The windowBits parameter is interpreted
   the same as it is for inflateInit2.
Alan Mishchenko committed
861

862 863 864
     inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source
   stream state was inconsistent (such as zalloc or state being Z_NULL), or if
   the windowBits parameter is invalid.
Alan Mishchenko committed
865 866 867 868 869 870 871
*/

ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
                                     int bits,
                                     int value));
/*
     This function inserts bits in the inflate input stream.  The intent is
872 873 874 875 876 877 878 879 880 881 882 883 884
   that this function is used to start inflating at a bit position in the
   middle of a byte.  The provided bits will be used before any bytes are used
   from next_in.  This function should only be used with raw inflate, and
   should be used before the first inflate() call after inflateInit2() or
   inflateReset().  bits must be less than or equal to 16, and that many of the
   least significant bits of value will be inserted in the input.

     If bits is negative, then the input stream bit buffer is emptied.  Then
   inflatePrime() can be called again to put bits in the buffer.  This is used
   to clear out bits leftover after feeding inflate a block description prior
   to feeding inflate codes.

     inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
Alan Mishchenko committed
885 886 887
   stream state was inconsistent.
*/

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm));
/*
     This function returns two values, one in the lower 16 bits of the return
   value, and the other in the remaining upper bits, obtained by shifting the
   return value down 16 bits.  If the upper value is -1 and the lower value is
   zero, then inflate() is currently decoding information outside of a block.
   If the upper value is -1 and the lower value is non-zero, then inflate is in
   the middle of a stored block, with the lower value equaling the number of
   bytes from the input remaining to copy.  If the upper value is not -1, then
   it is the number of bits back from the current bit position in the input of
   the code (literal or length/distance pair) currently being processed.  In
   that case the lower value is the number of bytes already emitted for that
   code.

     A code is being processed if inflate is waiting for more input to complete
   decoding of the code, or if it has completed decoding but is waiting for
   more output space to write the literal or match data.

     inflateMark() is used to mark locations in the input data for random
   access, which may be at bit positions, and to note those cases where the
   output of a code may span boundaries of random access blocks.  The current
   location in the input stream can be determined from avail_in and data_type
   as noted in the description for the Z_BLOCK flush parameter for inflate.

     inflateMark returns the value noted above or -1 << 16 if the provided
   source stream state was inconsistent.
*/

Alan Mishchenko committed
916 917 918
ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
                                         gz_headerp head));
/*
919
     inflateGetHeader() requests that gzip header information be stored in the
Alan Mishchenko committed
920 921 922 923 924
   provided gz_header structure.  inflateGetHeader() may be called after
   inflateInit2() or inflateReset(), and before the first call of inflate().
   As inflate() processes the gzip stream, head->done is zero until the header
   is completed, at which time head->done is set to one.  If a zlib stream is
   being decoded, then head->done is set to -1 to indicate that there will be
925 926 927
   no gzip header information forthcoming.  Note that Z_BLOCK or Z_TREES can be
   used to force inflate() to return immediately after header processing is
   complete and before any actual data is decompressed.
Alan Mishchenko committed
928

929
     The text, time, xflags, and os fields are filled in with the gzip header
Alan Mishchenko committed
930
   contents.  hcrc is set to true if there is a header CRC.  (The header CRC
931
   was valid if done is set to one.) If extra is not Z_NULL, then extra_max
Alan Mishchenko committed
932 933 934 935 936 937
   contains the maximum number of bytes to write to extra.  Once done is true,
   extra_len contains the actual extra field length, and extra contains the
   extra field, or that field truncated if extra_max is less than extra_len.
   If name is not Z_NULL, then up to name_max characters are written there,
   terminated with a zero unless the length is greater than name_max.  If
   comment is not Z_NULL, then up to comm_max characters are written there,
938 939 940
   terminated with a zero unless the length is greater than comm_max.  When any
   of extra, name, or comment are not Z_NULL and the respective field is not
   present in the header, then that field is set to Z_NULL to signal its
Alan Mishchenko committed
941 942 943 944 945
   absence.  This allows the use of deflateSetHeader() with the returned
   structure to duplicate the header.  However if those fields are set to
   allocated memory, then the application will need to save those pointers
   elsewhere so that they can be eventually freed.

946
     If inflateGetHeader is not used, then the header information is simply
Alan Mishchenko committed
947 948 949 950 951
   discarded.  The header is always checked for validity, including the header
   CRC if present.  inflateReset() will reset the process to discard the header
   information.  The application would need to call inflateGetHeader() again to
   retrieve the header from the next gzip stream.

952
     inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
Alan Mishchenko committed
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
   stream state was inconsistent.
*/

/*
ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
                                        unsigned char FAR *window));

     Initialize the internal stream state for decompression using inflateBack()
   calls.  The fields zalloc, zfree and opaque in strm must be initialized
   before the call.  If zalloc and zfree are Z_NULL, then the default library-
   derived memory allocation routines are used.  windowBits is the base two
   logarithm of the window size, in the range 8..15.  window is a caller
   supplied buffer of that size.  Except for special applications where it is
   assured that deflate was used with small window sizes, windowBits must be 15
   and a 32K byte window must be supplied to be able to decompress general
   deflate streams.

     See inflateBack() for the usage of these routines.

     inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
973 974 975
   the paramaters are invalid, Z_MEM_ERROR if the internal state could not be
   allocated, or Z_VERSION_ERROR if the version of the library does not match
   the version of the header file.
Alan Mishchenko committed
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
*/

typedef unsigned (*in_func) OF((void FAR *, unsigned char FAR * FAR *));
typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));

ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
                                    in_func in, void FAR *in_desc,
                                    out_func out, void FAR *out_desc));
/*
     inflateBack() does a raw inflate with a single call using a call-back
   interface for input and output.  This is more efficient than inflate() for
   file i/o applications in that it avoids copying between the output and the
   sliding window by simply making the window itself the output buffer.  This
   function trusts the application to not change the output buffer passed by
   the output function, at least until inflateBack() returns.

     inflateBackInit() must be called first to allocate the internal state
   and to initialize the state with the user-provided window buffer.
   inflateBack() may then be used multiple times to inflate a complete, raw
995 996
   deflate stream with each call.  inflateBackEnd() is then called to free the
   allocated state.
Alan Mishchenko committed
997 998 999 1000

     A raw deflate stream is one with no zlib or gzip header or trailer.
   This routine would normally be used in a utility that reads zip or gzip
   files and writes out uncompressed files.  The utility would decode the
1001 1002 1003
   header and process the trailer on its own, hence this routine expects only
   the raw deflate stream to decompress.  This is different from the normal
   behavior of inflate(), which expects either a zlib or gzip header and
Alan Mishchenko committed
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
   trailer around the deflate stream.

     inflateBack() uses two subroutines supplied by the caller that are then
   called by inflateBack() for input and output.  inflateBack() calls those
   routines until it reads a complete deflate stream and writes out all of the
   uncompressed data, or until it encounters an error.  The function's
   parameters and return types are defined above in the in_func and out_func
   typedefs.  inflateBack() will call in(in_desc, &buf) which should return the
   number of bytes of provided input, and a pointer to that input in buf.  If
   there is no input available, in() must return zero--buf is ignored in that
   case--and inflateBack() will return a buffer error.  inflateBack() will call
   out(out_desc, buf, len) to write the uncompressed data buf[0..len-1].  out()
   should return zero on success, or non-zero on failure.  If out() returns
   non-zero, inflateBack() will return with an error.  Neither in() nor out()
   are permitted to change the contents of the window provided to
   inflateBackInit(), which is also the buffer that out() uses to write from.
   The length written by out() will be at most the window size.  Any non-zero
   amount of input may be provided by in().

     For convenience, inflateBack() can be provided input on the first call by
   setting strm->next_in and strm->avail_in.  If that input is exhausted, then
   in() will be called.  Therefore strm->next_in must be initialized before
   calling inflateBack().  If strm->next_in is Z_NULL, then in() will be called
   immediately for input.  If strm->next_in is not Z_NULL, then strm->avail_in
   must also be initialized, and then if strm->avail_in is not zero, input will
1029
   initially be taken from strm->next_in[0 ..  strm->avail_in - 1].
Alan Mishchenko committed
1030 1031 1032 1033 1034 1035 1036 1037 1038

     The in_desc and out_desc parameters of inflateBack() is passed as the
   first parameter of in() and out() respectively when they are called.  These
   descriptors can be optionally used to pass any information that the caller-
   supplied in() and out() functions need to do their job.

     On return, inflateBack() will set strm->next_in and strm->avail_in to
   pass back any unused input that was provided by the last in() call.  The
   return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
1039 1040 1041 1042 1043 1044 1045 1046 1047
   if in() or out() returned an error, Z_DATA_ERROR if there was a format error
   in the deflate stream (in which case strm->msg is set to indicate the nature
   of the error), or Z_STREAM_ERROR if the stream was not properly initialized.
   In the case of Z_BUF_ERROR, an input or output error can be distinguished
   using strm->next_in which will be Z_NULL only if in() returned an error.  If
   strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning
   non-zero.  (in() will always be called before out(), so strm->next_in is
   assured to be defined if out() returns non-zero.) Note that inflateBack()
   cannot return Z_OK.
Alan Mishchenko committed
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
*/

ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
/*
     All memory allocated by inflateBackInit() is freed.

     inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
   state was inconsistent.
*/

ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
/* Return flags indicating compile-time options.

    Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
     1.0: size of uInt
     3.2: size of uLong
     5.4: size of voidpf (pointer)
     7.6: size of z_off_t

    Compiler, assembler, and debug options:
     8: DEBUG
     9: ASMV or ASMINF -- use ASM code
     10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention
     11: 0 (reserved)

    One-time table building (smaller code, but not thread-safe if true):
     12: BUILDFIXED -- build static block decoding tables when needed
     13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed
     14,15: 0 (reserved)

    Library content (indicates missing functionality):
     16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking
                          deflate code when not needed)
     17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect
                    and decode gzip streams (to avoid linking crc code)
     18-19: 0 (reserved)

    Operation variations (changes in library functionality):
     20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate
     21: FASTEST -- deflate algorithm with only one, lowest compression level
     22,23: 0 (reserved)

    The sprintf variant used by gzprintf (zero is best):
     24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format
     25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure!
     26: 0 = returns value, 1 = void -- 1 means inferred string length returned

    Remainder:
     27-31: 0 (reserved)
 */


                        /* utility functions */

/*
1103 1104 1105 1106 1107
     The following utility functions are implemented on top of the basic
   stream-oriented functions.  To simplify the interface, some default options
   are assumed (compression level and memory usage, standard memory allocation
   functions).  The source code of these utility functions can be modified if
   you need special options.
Alan Mishchenko committed
1108 1109 1110 1111 1112 1113
*/

ZEXTERN int ZEXPORT compress OF((Bytef *dest,   uLongf *destLen,
                                 const Bytef *source, uLong sourceLen));
/*
     Compresses the source buffer into the destination buffer.  sourceLen is
1114 1115 1116
   the byte length of the source buffer.  Upon entry, destLen is the total size
   of the destination buffer, which must be at least the value returned by
   compressBound(sourceLen).  Upon exit, destLen is the actual size of the
Alan Mishchenko committed
1117
   compressed buffer.
1118

Alan Mishchenko committed
1119 1120 1121 1122 1123 1124 1125 1126 1127
     compress returns Z_OK if success, Z_MEM_ERROR if there was not
   enough memory, Z_BUF_ERROR if there was not enough room in the output
   buffer.
*/

ZEXTERN int ZEXPORT compress2 OF((Bytef *dest,   uLongf *destLen,
                                  const Bytef *source, uLong sourceLen,
                                  int level));
/*
1128
     Compresses the source buffer into the destination buffer.  The level
Alan Mishchenko committed
1129
   parameter has the same meaning as in deflateInit.  sourceLen is the byte
1130
   length of the source buffer.  Upon entry, destLen is the total size of the
Alan Mishchenko committed
1131
   destination buffer, which must be at least the value returned by
1132
   compressBound(sourceLen).  Upon exit, destLen is the actual size of the
Alan Mishchenko committed
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
   compressed buffer.

     compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
   memory, Z_BUF_ERROR if there was not enough room in the output buffer,
   Z_STREAM_ERROR if the level parameter is invalid.
*/

ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen));
/*
     compressBound() returns an upper bound on the compressed size after
1143 1144
   compress() or compress2() on sourceLen bytes.  It would be used before a
   compress() or compress2() call to allocate the destination buffer.
Alan Mishchenko committed
1145 1146 1147 1148 1149 1150
*/

ZEXTERN int ZEXPORT uncompress OF((Bytef *dest,   uLongf *destLen,
                                   const Bytef *source, uLong sourceLen));
/*
     Decompresses the source buffer into the destination buffer.  sourceLen is
1151 1152 1153 1154 1155 1156
   the byte length of the source buffer.  Upon entry, destLen is the total size
   of the destination buffer, which must be large enough to hold the entire
   uncompressed data.  (The size of the uncompressed data must have been saved
   previously by the compressor and transmitted to the decompressor by some
   mechanism outside the scope of this compression library.) Upon exit, destLen
   is the actual size of the uncompressed buffer.
Alan Mishchenko committed
1157 1158 1159 1160 1161 1162 1163

     uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
   enough memory, Z_BUF_ERROR if there was not enough room in the output
   buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete.
*/


1164
                        /* gzip file access functions */
Alan Mishchenko committed
1165 1166

/*
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
     This library supports reading and writing files in gzip (.gz) format with
   an interface similar to that of stdio, using the functions that start with
   "gz".  The gzip format is different from the zlib format.  gzip is a gzip
   wrapper, documented in RFC 1952, wrapped around a deflate stream.
*/

typedef voidp gzFile;       /* opaque gzip file descriptor */

/*
ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));

     Opens a gzip (.gz) file for reading or writing.  The mode parameter is as
   in fopen ("rb" or "wb") but can also include a compression level ("wb9") or
   a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only
   compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F'
   for fixed code compression as in "wb9F".  (See the description of
   deflateInit2 for more information about the strategy parameter.) Also "a"
   can be used instead of "w" to request that the gzip stream that will be
   written be appended to the file.  "+" will result in an error, since reading
   and writing to the same gzip file is not supported.
Alan Mishchenko committed
1187 1188 1189 1190

     gzopen can be used to read a file which is not in gzip format; in this
   case gzread will directly read from the file without decompression.

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
     gzopen returns NULL if the file could not be opened, if there was
   insufficient memory to allocate the gzFile state, or if an invalid mode was
   specified (an 'r', 'w', or 'a' was not provided, or '+' was provided).
   errno can be checked to determine if the reason gzopen failed was that the
   file could not be opened.
*/

ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
/*
     gzdopen associates a gzFile with the file descriptor fd.  File descriptors
   are obtained from calls like open, dup, creat, pipe or fileno (if the file
   has been previously opened with fopen).  The mode parameter is as in gzopen.

     The next call of gzclose on the returned gzFile will also close the file
   descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor
   fd.  If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd,
   mode);.  The duplicated descriptor should be saved to avoid a leak, since
   gzdopen does not close fd if it fails.

     gzdopen returns NULL if there was insufficient memory to allocate the
   gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not
   provided, or '+' was provided), or if fd is -1.  The file descriptor is not
   used until the next gz* read, write, seek, or close operation, so gzdopen
   will not detect if fd is invalid (unless fd is -1).
*/
Alan Mishchenko committed
1216

1217
ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
Alan Mishchenko committed
1218
/*
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
     Set the internal buffer size used by this library's functions.  The
   default buffer size is 8192 bytes.  This function must be called after
   gzopen() or gzdopen(), and before any other calls that read or write the
   file.  The buffer memory allocation is always deferred to the first read or
   write.  Two buffers are allocated, either both of the specified size when
   writing, or one of the specified size and the other twice that size when
   reading.  A larger buffer size of, for example, 64K or 128K bytes will
   noticeably increase the speed of decompression (reading).

     The new buffer size also affects the maximum length for gzprintf().

     gzbuffer() returns 0 on success, or -1 on failure, such as being called
   too late.
Alan Mishchenko committed
1232 1233 1234 1235
*/

ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
/*
1236
     Dynamically update the compression level or strategy.  See the description
Alan Mishchenko committed
1237
   of deflateInit2 for the meaning of these parameters.
1238

Alan Mishchenko committed
1239 1240 1241 1242
     gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not
   opened for writing.
*/

1243
ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
Alan Mishchenko committed
1244
/*
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
     Reads the given number of uncompressed bytes from the compressed file.  If
   the input file was not in gzip format, gzread copies the given number of
   bytes into the buffer.

     After reaching the end of a gzip stream in the input, gzread will continue
   to read, looking for another gzip stream, or failing that, reading the rest
   of the input file directly without decompression.  The entire input file
   will be read if gzread is called until it returns less than the requested
   len.

     gzread returns the number of uncompressed bytes actually read, less than
   len for end of file, or -1 for error.
*/
Alan Mishchenko committed
1258

1259 1260
ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
                                voidpc buf, unsigned len));
Alan Mishchenko committed
1261 1262
/*
     Writes the given number of uncompressed bytes into the compressed file.
1263 1264
   gzwrite returns the number of uncompressed bytes written or 0 in case of
   error.
Alan Mishchenko committed
1265 1266
*/

1267
ZEXTERN int ZEXPORTVA gzprintf OF((gzFile file, const char *format, ...));
Alan Mishchenko committed
1268
/*
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
     Converts, formats, and writes the arguments to the compressed file under
   control of the format string, as in fprintf.  gzprintf returns the number of
   uncompressed bytes actually written, or 0 in case of error.  The number of
   uncompressed bytes written is limited to 8191, or one less than the buffer
   size given to gzbuffer().  The caller should assure that this limit is not
   exceeded.  If it is exceeded, then gzprintf() will return an error (0) with
   nothing written.  In this case, there may also be a buffer overflow with
   unpredictable consequences, which is possible only if zlib was compiled with
   the insecure functions sprintf() or vsprintf() because the secure snprintf()
   or vsnprintf() functions were not available.  This can be determined using
   zlibCompileFlags().
Alan Mishchenko committed
1280 1281 1282 1283
*/

ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
/*
1284
     Writes the given null-terminated string to the compressed file, excluding
Alan Mishchenko committed
1285
   the terminating null character.
1286 1287

     gzputs returns the number of characters written, or -1 in case of error.
Alan Mishchenko committed
1288 1289 1290 1291
*/

ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
/*
1292 1293 1294 1295 1296 1297 1298 1299 1300
     Reads bytes from the compressed file until len-1 characters are read, or a
   newline character is read and transferred to buf, or an end-of-file
   condition is encountered.  If any characters are read or if len == 1, the
   string is terminated with a null character.  If no characters are read due
   to an end-of-file or len < 1, then the buffer is left untouched.

     gzgets returns buf which is a null-terminated string, or it returns NULL
   for end-of-file or in case of error.  If there was an error, the contents at
   buf are indeterminate.
Alan Mishchenko committed
1301 1302
*/

1303
ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
Alan Mishchenko committed
1304
/*
1305 1306
     Writes c, converted to an unsigned char, into the compressed file.  gzputc
   returns the value that was written, or -1 in case of error.
Alan Mishchenko committed
1307 1308
*/

1309
ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
Alan Mishchenko committed
1310
/*
1311 1312
     Reads one byte from the compressed file.  gzgetc returns this byte or -1
   in case of end of file or error.
Alan Mishchenko committed
1313 1314
*/

1315
ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
Alan Mishchenko committed
1316
/*
1317 1318 1319 1320 1321 1322 1323 1324
     Push one character back onto the stream to be read as the first character
   on the next read.  At least one character of push-back is allowed.
   gzungetc() returns the character pushed, or -1 on failure.  gzungetc() will
   fail if c is -1, and may fail if a character has been pushed but not read
   yet.  If gzungetc is used immediately after gzopen or gzdopen, at least the
   output buffer size of pushed characters is allowed.  (See gzbuffer above.)
   The pushed character will be discarded if the stream is repositioned with
   gzseek() or gzrewind().
Alan Mishchenko committed
1325 1326
*/

1327
ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
Alan Mishchenko committed
1328
/*
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
     Flushes all pending output into the compressed file.  The parameter flush
   is as in the deflate() function.  The return value is the zlib error number
   (see function gzerror below).  gzflush is only permitted when writing.

     If the flush parameter is Z_FINISH, the remaining data is written and the
   gzip stream is completed in the output.  If gzwrite() is called again, a new
   gzip stream will be started in the output.  gzread() is able to read such
   concatented gzip streams.

     gzflush should be called only when strictly necessary because it will
   degrade compression if called too often.
Alan Mishchenko committed
1340 1341 1342
*/

/*
1343 1344 1345 1346 1347 1348
ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
                                   z_off_t offset, int whence));

     Sets the starting position for the next gzread or gzwrite on the given
   compressed file.  The offset represents a number of bytes in the
   uncompressed data stream.  The whence parameter is defined as in lseek(2);
Alan Mishchenko committed
1349
   the value SEEK_END is not supported.
1350

Alan Mishchenko committed
1351
     If the file is opened for reading, this function is emulated but can be
1352
   extremely slow.  If the file is opened for writing, only forward seeks are
Alan Mishchenko committed
1353 1354 1355
   supported; gzseek then compresses a sequence of zeroes up to the new
   starting position.

1356
     gzseek returns the resulting offset location as measured in bytes from
Alan Mishchenko committed
1357 1358 1359 1360 1361 1362 1363 1364 1365
   the beginning of the uncompressed stream, or -1 in case of error, in
   particular if the file is opened for writing and the new starting position
   would be before the current position.
*/

ZEXTERN int ZEXPORT    gzrewind OF((gzFile file));
/*
     Rewinds the given file. This function is supported only for reading.

1366
     gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
Alan Mishchenko committed
1367 1368
*/

1369
/*
Alan Mishchenko committed
1370
ZEXTERN z_off_t ZEXPORT    gztell OF((gzFile file));
1371 1372 1373 1374 1375 1376 1377 1378 1379

     Returns the starting position for the next gzread or gzwrite on the given
   compressed file.  This position represents a number of bytes in the
   uncompressed data stream, and is zero when starting, even if appending or
   reading a gzip stream from the middle of a file using gzdopen().

     gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
*/

Alan Mishchenko committed
1380
/*
1381
ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
Alan Mishchenko committed
1382

1383 1384 1385 1386 1387
     Returns the current offset in the file being read or written.  This offset
   includes the count of bytes that precede the gzip stream, for example when
   appending or when using gzdopen() for reading.  When reading, the offset
   does not include as yet unused buffered input.  This information can be used
   for a progress indicator.  On error, gzoffset() returns -1.
Alan Mishchenko committed
1388 1389 1390 1391
*/

ZEXTERN int ZEXPORT gzeof OF((gzFile file));
/*
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
     Returns true (1) if the end-of-file indicator has been set while reading,
   false (0) otherwise.  Note that the end-of-file indicator is set only if the
   read tried to go past the end of the input, but came up short.  Therefore,
   just like feof(), gzeof() may return false even if there is no more data to
   read, in the event that the last read request was for the exact number of
   bytes remaining in the input file.  This will happen if the input file size
   is an exact multiple of the buffer size.

     If gzeof() returns true, then the read functions will return no more data,
   unless the end-of-file indicator is reset by gzclearerr() and the input file
   has grown since the previous end of file was detected.
Alan Mishchenko committed
1403 1404 1405 1406
*/

ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
/*
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
     Returns true (1) if file is being copied directly while reading, or false
   (0) if file is a gzip stream being decompressed.  This state can change from
   false to true while reading the input file if the end of a gzip stream is
   reached, but is followed by data that is not another gzip stream.

     If the input file is empty, gzdirect() will return true, since the input
   does not contain a gzip stream.

     If gzdirect() is used immediately after gzopen() or gzdopen() it will
   cause buffers to be allocated to allow reading the file to determine if it
   is a gzip file.  Therefore if gzbuffer() is used, it should be called before
   gzdirect().
Alan Mishchenko committed
1419 1420 1421 1422
*/

ZEXTERN int ZEXPORT    gzclose OF((gzFile file));
/*
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
     Flushes all pending output if necessary, closes the compressed file and
   deallocates the (de)compression state.  Note that once file is closed, you
   cannot call gzerror with file, since its structures have been deallocated.
   gzclose must not be called more than once on the same file, just as free
   must not be called more than once on the same allocation.

     gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a
   file operation error, or Z_OK on success.
*/

ZEXTERN int ZEXPORT gzclose_r OF((gzFile file));
ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
/*
     Same as gzclose(), but gzclose_r() is only for use when reading, and
   gzclose_w() is only for use when writing or appending.  The advantage to
   using these instead of gzclose() is that they avoid linking in zlib
   compression or decompression code that is not used when only reading or only
   writing respectively.  If gzclose() is used, then both compression and
   decompression code will be included the application when linking to a static
   zlib library.
Alan Mishchenko committed
1443 1444 1445 1446
*/

ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
/*
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
     Returns the error message for the last error which occurred on the given
   compressed file.  errnum is set to zlib error number.  If an error occurred
   in the file system and not in the compression library, errnum is set to
   Z_ERRNO and the application may consult errno to get the exact error code.

     The application must not modify the returned string.  Future calls to
   this function may invalidate the previously returned string.  If file is
   closed, then the string previously returned by gzerror will no longer be
   available.

     gzerror() should be used to distinguish errors from end-of-file for those
   functions above that do not distinguish those cases in their return values.
Alan Mishchenko committed
1459 1460 1461 1462
*/

ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
/*
1463 1464
     Clears the error and end-of-file flags for file.  This is analogous to the
   clearerr() function in stdio.  This is useful for continuing to read a gzip
Alan Mishchenko committed
1465 1466 1467
   file that is being written concurrently.
*/

1468

Alan Mishchenko committed
1469 1470 1471 1472
                        /* checksum functions */

/*
     These functions are not related to compression but are exported
1473 1474
   anyway because they might be useful in applications using the compression
   library.
Alan Mishchenko committed
1475 1476 1477 1478 1479
*/

ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
/*
     Update a running Adler-32 checksum with the bytes buf[0..len-1] and
1480 1481 1482 1483 1484 1485 1486
   return the updated checksum.  If buf is Z_NULL, this function returns the
   required initial value for the checksum.

     An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
   much faster.

   Usage example:
Alan Mishchenko committed
1487 1488 1489 1490 1491 1492 1493 1494 1495

     uLong adler = adler32(0L, Z_NULL, 0);

     while (read_buffer(buffer, length) != EOF) {
       adler = adler32(adler, buffer, length);
     }
     if (adler != original_adler) error();
*/

1496
/*
Alan Mishchenko committed
1497 1498
ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
                                          z_off_t len2));
1499

Alan Mishchenko committed
1500 1501 1502 1503 1504 1505 1506 1507 1508
     Combine two Adler-32 checksums into one.  For two sequences of bytes, seq1
   and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
   each, adler1 and adler2.  adler32_combine() returns the Adler-32 checksum of
   seq1 and seq2 concatenated, requiring only adler1, adler2, and len2.
*/

ZEXTERN uLong ZEXPORT crc32   OF((uLong crc, const Bytef *buf, uInt len));
/*
     Update a running CRC-32 with the bytes buf[0..len-1] and return the
1509 1510 1511 1512 1513
   updated CRC-32.  If buf is Z_NULL, this function returns the required
   initial value for the for the crc.  Pre- and post-conditioning (one's
   complement) is performed within this function so it shouldn't be done by the
   application.

Alan Mishchenko committed
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
   Usage example:

     uLong crc = crc32(0L, Z_NULL, 0);

     while (read_buffer(buffer, length) != EOF) {
       crc = crc32(crc, buffer, length);
     }
     if (crc != original_crc) error();
*/

1524
/*
Alan Mishchenko committed
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));

     Combine two CRC-32 check values into one.  For two sequences of bytes,
   seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
   calculated for each, crc1 and crc2.  crc32_combine() returns the CRC-32
   check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
   len2.
*/


                        /* various hacks, don't look :) */

/* deflateInit and inflateInit are macros to allow checking the zlib version
 * and the compiler's view of z_stream:
 */
ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level,
                                     const char *version, int stream_size));
ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm,
                                     const char *version, int stream_size));
ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int  level, int  method,
                                      int windowBits, int memLevel,
                                      int strategy, const char *version,
                                      int stream_size));
ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int  windowBits,
                                      const char *version, int stream_size));
ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
                                         unsigned char FAR *window,
                                         const char *version,
                                         int stream_size));
#define deflateInit(strm, level) \
        deflateInit_((strm), (level),       ZLIB_VERSION, sizeof(z_stream))
#define inflateInit(strm) \
        inflateInit_((strm),                ZLIB_VERSION, sizeof(z_stream))
#define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
        deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
                      (strategy),           ZLIB_VERSION, sizeof(z_stream))
#define inflateInit2(strm, windowBits) \
        inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))
#define inflateBackInit(strm, windowBits, window) \
        inflateBackInit_((strm), (windowBits), (window), \
1565
                                            ZLIB_VERSION, sizeof(z_stream))
Alan Mishchenko committed
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or
 * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if
 * both are true, the application gets the *64 functions, and the regular
 * functions are changed to 64 bits) -- in case these are set on systems
 * without large file support, _LFS64_LARGEFILE must also be true
 */
#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
   ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
   ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
   ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
   ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
   ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t));
   ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t));
#endif
Alan Mishchenko committed
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
#if !defined(ZLIB_INTERNAL) && _FILE_OFFSET_BITS-0 == 64 && _LFS64_LARGEFILE-0
#  define gzopen gzopen64
#  define gzseek gzseek64
#  define gztell gztell64
#  define gzoffset gzoffset64
#  define adler32_combine adler32_combine64
#  define crc32_combine crc32_combine64
#  ifdef _LARGEFILE64_SOURCE
     ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
     ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int));
     ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile));
     ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile));
     ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
     ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
#  endif
#else
   ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *));
   ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int));
   ZEXTERN z_off_t ZEXPORT gztell OF((gzFile));
   ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile));
   ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
   ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
#endif

/* hack for buggy compilers */
Alan Mishchenko committed
1607
#if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL)
1608
    struct internal_state {int dummy;};
Alan Mishchenko committed
1609 1610
#endif

1611
/* undocumented functions */
Alan Mishchenko committed
1612
ZEXTERN const char   * ZEXPORT zError           OF((int));
1613
ZEXTERN int            ZEXPORT inflateSyncPoint OF((z_streamp));
Alan Mishchenko committed
1614
ZEXTERN const uLongf * ZEXPORT get_crc_table    OF((void));
1615
ZEXTERN int            ZEXPORT inflateUndermine OF((z_streamp, int));
Alan Mishchenko committed
1616

1617
ABC_NAMESPACE_HEADER_END
Alan Mishchenko committed
1618 1619

#endif /* ZLIB_H */