miniaig.h 9.91 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/**CFile****************************************************************

  FileName    [miniaig.h]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Minimalistic AIG package.]

  Synopsis    [External declarations.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - September 29, 2012.]

  Revision    [$Id: miniaig.h,v 1.00 2012/09/29 00:00:00 alanmi Exp $]

***********************************************************************/
 
#ifndef MINI_AIG__mini_aig_h
#define MINI_AIG__mini_aig_h

////////////////////////////////////////////////////////////////////////
///                          INCLUDES                                ///
////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

////////////////////////////////////////////////////////////////////////
///                         PARAMETERS                               ///
////////////////////////////////////////////////////////////////////////

#define MINI_AIG_NULL       (0x7FFFFFFF)
#define MINI_AIG_START_SIZE (0x000000FF)

////////////////////////////////////////////////////////////////////////
///                         BASIC TYPES                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Mini_Aig_t_       Mini_Aig_t;
struct Mini_Aig_t_ 
{
    int           nCap;
    int           nSize;
49
    int           nRegs;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    int *         pArray;
};

////////////////////////////////////////////////////////////////////////
///                      MACRO DEFINITIONS                           ///
////////////////////////////////////////////////////////////////////////

// memory management
#define MINI_AIG_ALLOC(type, num)     ((type *) malloc(sizeof(type) * (num)))
#define MINI_AIG_CALLOC(type, num)    ((type *) calloc((num), sizeof(type)))
#define MINI_AIG_FALLOC(type, num)    ((type *) memset(malloc(sizeof(type) * (num)), 0xff, sizeof(type) * (num)))
#define MINI_AIG_FREE(obj)            ((obj) ? (free((char *) (obj)), (obj) = 0) : 0)
#define MINI_AIG_REALLOC(type, obj, num) \
        ((obj) ? ((type *) realloc((char *)(obj), sizeof(type) * (num))) : \
         ((type *) malloc(sizeof(type) * (num))))

// internal procedures
static void Mini_AigGrow( Mini_Aig_t * p, int nCapMin )
{
    if ( p->nCap >= nCapMin )
        return;
    p->pArray = MINI_AIG_REALLOC( int, p->pArray, nCapMin ); 
    assert( p->pArray );
    p->nCap   = nCapMin;
}
static void Mini_AigPush( Mini_Aig_t * p, int Lit0, int Lit1 )
{
77
    if ( p->nSize + 2 > p->nCap )
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    {
        if ( p->nCap < MINI_AIG_START_SIZE )
            Mini_AigGrow( p, MINI_AIG_START_SIZE );
        else
            Mini_AigGrow( p, 2 * p->nCap );
    }
    p->pArray[p->nSize++] = Lit0;
    p->pArray[p->nSize++] = Lit1;
}

// accessing fanins
static int Mini_AigNodeFanin0( Mini_Aig_t * p, int Id )
{
    assert( Id >= 0 && 2*Id < p->nSize );
    return p->pArray[2*Id];
}
static int Mini_AigNodeFanin1( Mini_Aig_t * p, int Id )
{
    assert( Id >= 0 && 2*Id < p->nSize );
    return p->pArray[2*Id+1];
}

// working with variables and literals
static int      Mini_AigVar2Lit( int Var, int fCompl )         { return Var + Var + fCompl;   }
static int      Mini_AigLit2Var( int Lit )                     { return Lit >> 1;             }
static int      Mini_AigLitIsCompl( int Lit )                  { return Lit & 1;              }
static int      Mini_AigLitNot( int Lit )                      { return Lit ^ 1;              }
static int      Mini_AigLitNotCond( int Lit, int c )           { return Lit ^ (int)(c > 0);   }
static int      Mini_AigLitRegular( int Lit )                  { return Lit & ~01;            }

static int      Mini_AigLitConst0()                            { return 0;                    }
static int      Mini_AigLitConst1()                            { return 1;                    }
static int      Mini_AigLitIsConst0( int Lit )                 { return Lit == 0;             }
static int      Mini_AigLitIsConst1( int Lit )                 { return Lit == 1;             }
static int      Mini_AigLitIsConst( int Lit )                  { return Lit == 0 || Lit == 1; }

114
static int      Mini_AigNodeNum( Mini_Aig_t * p )              { return p->nSize/2;           }
115 116 117 118 119
static int      Mini_AigNodeIsConst( Mini_Aig_t * p, int Id )  { assert( Id >= 0 ); return Id == 0; }
static int      Mini_AigNodeIsPi( Mini_Aig_t * p, int Id )     { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) == MINI_AIG_NULL; }
static int      Mini_AigNodeIsPo( Mini_Aig_t * p, int Id )     { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) != MINI_AIG_NULL && Mini_AigNodeFanin1( p, Id ) == MINI_AIG_NULL; }
static int      Mini_AigNodeIsAnd( Mini_Aig_t * p, int Id )    { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) != MINI_AIG_NULL && Mini_AigNodeFanin1( p, Id ) != MINI_AIG_NULL; }

120 121 122 123 124 125 126 127 128
// working with sequential AIGs
static int      Mini_AigRegNum( Mini_Aig_t * p )               { return p->nRegs;             }
static void     Mini_AigSetRegNum( Mini_Aig_t * p, int n )     { p->nRegs = n;                }

// iterators through objects
#define Mini_AigForEachPi( p, i )  for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsPi(p, i) ) {} else 
#define Mini_AigForEachPo( p, i )  for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsPo(p, i) ) {} else 
#define Mini_AigForEachAnd( p, i ) for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsAnd(p, i) ) {} else

129 130

// constructor/destructor
131
static Mini_Aig_t * Mini_AigStart()
132 133
{
    Mini_Aig_t * p;
134
    p = MINI_AIG_CALLOC( Mini_Aig_t, 1 );
135
    p->nCap   = MINI_AIG_START_SIZE;
136 137 138 139 140 141 142 143 144
    p->pArray = MINI_AIG_ALLOC( int, p->nCap );
    Mini_AigPush( p, MINI_AIG_NULL, MINI_AIG_NULL );
    return p;
}
static void Mini_AigStop( Mini_Aig_t * p )
{
    MINI_AIG_FREE( p->pArray );
    MINI_AIG_FREE( p );
}
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static void Mini_AigPrintStats( Mini_Aig_t * p )
{
    int i, nPis, nPos, nNodes;
    nPis = 0;
    Mini_AigForEachPi( p, i )
        nPis++;
    nPos = 0;
    Mini_AigForEachPo( p, i )
        nPos++;
    nNodes = 0;
    Mini_AigForEachAnd( p, i )
        nNodes++;
    printf( "PI = %d. PO = %d. Node = %d.\n", nPis, nPos, nNodes );
}

// serialization
static void Mini_AigDump( Mini_Aig_t * p, char * pFileName )
{
    FILE * pFile;
    int RetValue;
    pFile = fopen( pFileName, "wb" );
    if ( pFile == NULL )
    {
        printf( "Cannot open file for writing \"%s\".\n", pFileName );
        return;
    }
    RetValue = fwrite( &p->nSize, sizeof(int), 1, pFile );
    RetValue = fwrite( &p->nRegs, sizeof(int), 1, pFile );
    RetValue = fwrite( p->pArray, sizeof(int), p->nSize, pFile );
    fclose( pFile );
}
static Mini_Aig_t * Mini_AigLoad( char * pFileName )
{
    Mini_Aig_t * p;
    FILE * pFile;
    int RetValue, nSize;
    pFile = fopen( pFileName, "rb" );
    if ( pFile == NULL )
    {
        printf( "Cannot open file for reading \"%s\".\n", pFileName );
        return NULL;
    }
    RetValue = fread( &nSize, sizeof(int), 1, pFile );
    p = MINI_AIG_CALLOC( Mini_Aig_t, 1 );
    p->nSize = p->nCap = nSize;
    p->pArray = MINI_AIG_ALLOC( int, p->nCap );
    RetValue = fread( &p->nRegs, sizeof(int), 1, pFile );
    RetValue = fread( p->pArray, sizeof(int), p->nSize, pFile );
    fclose( pFile );
    return p;
}
196 197 198 199 200 201


// creating nodes 
// (constant node is created when AIG manager is created)
static int Mini_AigCreatePi( Mini_Aig_t * p )
{
202
    int Lit = p->nSize;
203 204 205 206 207
    Mini_AigPush( p, MINI_AIG_NULL, MINI_AIG_NULL );
    return Lit;
}
static int Mini_AigCreatePo( Mini_Aig_t * p, int Lit0 )
{
208 209
    int Lit = p->nSize;
    assert( Lit0 >= 0 && Lit0 < Lit );
210 211 212 213 214 215 216
    Mini_AigPush( p, Lit0, MINI_AIG_NULL );
    return Lit;
}

// boolean operations
static int Mini_AigAnd( Mini_Aig_t * p, int Lit0, int Lit1 )
{
217 218 219
    int Lit = p->nSize;
    assert( Lit0 >= 0 && Lit0 < Lit );
    assert( Lit1 >= 0 && Lit1 < Lit );
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    Mini_AigPush( p, Lit0, Lit1 );
    return Lit;
}
static int Mini_AigOr( Mini_Aig_t * p, int Lit0, int Lit1 )
{
    return Mini_AigLitNot( Mini_AigAnd( p, Mini_AigLitNot(Lit0), Mini_AigLitNot(Lit1) ) );
}
static int Mini_AigMux( Mini_Aig_t * p, int LitC, int Lit1, int Lit0 )
{
    int Res0 = Mini_AigAnd( p, LitC, Lit1 );
    int Res1 = Mini_AigAnd( p, Mini_AigLitNot(LitC), Lit0 );
    return Mini_AigOr( p, Res0, Res1 );
}
static int Mini_AigXor( Mini_Aig_t * p, int Lit0, int Lit1 )
{
    return Mini_AigMux( p, Lit0, Mini_AigLitNot(Lit1), Lit1 );
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// procedure to check the topological order during AIG construction
static int Mini_AigCheck( Mini_Aig_t * p )
{
    int status = 1;
    int i, iFaninLit0, iFaninLit1;
    Mini_AigForEachAnd( p, i )
    {
        // get the fanin literals of this AND node
        iFaninLit0 = Mini_AigNodeFanin0( p, i );
        iFaninLit1 = Mini_AigNodeFanin1( p, i );
        // compare the fanin literals with the literal of the current node (2 * i)
        if ( iFaninLit0 >= 2 * i )
            printf( "Fanin0 of AND node %d is not in a topological order.\n", i ), status = 0;
        if ( iFaninLit1 >= 2 * i )
            printf( "Fanin0 of AND node %d is not in a topological order.\n", i ), status = 0;
    }
    Mini_AigForEachPo( p, i )
    {
        // get the fanin literal of this PO node
        iFaninLit0 = Mini_AigNodeFanin0( p, i );
        // compare the fanin literal with the literal of the current node (2 * i)
        if ( iFaninLit0 >= 2 * i )
            printf( "Fanin0 of PO node %d is not in a topological order.\n", i ), status = 0;
    }
    return status;
}

265 266


267 268 269 270 271 272 273 274 275 276
////////////////////////////////////////////////////////////////////////
///                    FUNCTION DECLARATIONS                         ///
////////////////////////////////////////////////////////////////////////

#endif

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////