lpkAbcDsd.c 20 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/**CFile****************************************************************

  FileName    [lpkAbcDsd.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Fast Boolean matching for LUT structures.]

  Synopsis    [LUT-decomposition based on recursive DSD.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - April 28, 2007.]

  Revision    [$Id: lpkAbcDsd.c,v 1.00 2007/04/28 00:00:00 alanmi Exp $]

***********************************************************************/

#include "lpkInt.h"

23 24 25
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Cofactors TTs w.r.t. all vars and finds the best var.]

  Description [The best variable is the variable with the minimum 
  sum total of the support sizes of all truth tables. This procedure 
  computes and returns cofactors w.r.t. the best variable.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Lpk_FunComputeMinSuppSizeVar( Lpk_Fun_t * p, unsigned ** ppTruths, int nTruths, unsigned ** ppCofs, unsigned uNonDecSupp )
{
Alan Mishchenko committed
49 50 51 52 53
    int i, Var, VarBest, nSuppSize0, nSuppSize1;
    int nSuppTotalMin = -1; // Suppress "might be used uninitialized"
    int nSuppTotalCur;
    int nSuppMaxMin = -1; // Suppress "might be used uninitialized"
    int nSuppMaxCur;
Alan Mishchenko committed
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    assert( nTruths > 0 );
    VarBest = -1;
    Lpk_SuppForEachVar( p->uSupp, Var )
    {
        if ( (uNonDecSupp & (1 << Var)) == 0 )
            continue;
        nSuppMaxCur = 0;
        nSuppTotalCur = 0;
        for ( i = 0; i < nTruths; i++ )
        {
            if ( nTruths == 1 )
            {
                nSuppSize0 = Kit_WordCountOnes( p->puSupps[2*Var+0] );
                nSuppSize1 = Kit_WordCountOnes( p->puSupps[2*Var+1] );
            }
            else
            {
                Kit_TruthCofactor0New( ppCofs[2*i+0], ppTruths[i], p->nVars, Var );
                Kit_TruthCofactor1New( ppCofs[2*i+1], ppTruths[i], p->nVars, Var );
                nSuppSize0 = Kit_TruthSupportSize( ppCofs[2*i+0], p->nVars );
                nSuppSize1 = Kit_TruthSupportSize( ppCofs[2*i+1], p->nVars );
            }        
76 77
            nSuppMaxCur = Abc_MaxInt( nSuppMaxCur, nSuppSize0 );
            nSuppMaxCur = Abc_MaxInt( nSuppMaxCur, nSuppSize1 );
Alan Mishchenko committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            nSuppTotalCur += nSuppSize0 + nSuppSize1;
        }
        if ( VarBest == -1 || nSuppMaxMin > nSuppMaxCur ||
             (nSuppMaxMin == nSuppMaxCur && nSuppTotalMin > nSuppTotalCur) )
        {
            VarBest = Var;
            nSuppMaxMin = nSuppMaxCur;
            nSuppTotalMin = nSuppTotalCur;
        }
    }
    // recompute cofactors for the best var
    for ( i = 0; i < nTruths; i++ )
    {
        Kit_TruthCofactor0New( ppCofs[2*i+0], ppTruths[i], p->nVars, VarBest );
        Kit_TruthCofactor1New( ppCofs[2*i+1], ppTruths[i], p->nVars, VarBest );
    }
    return VarBest;
}

/**Function*************************************************************

  Synopsis    [Recursively computes decomposable subsets.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Lpk_ComputeBoundSets_rec( Kit_DsdNtk_t * p, int iLit, Vec_Int_t * vSets, int nSizeMax )
{
    unsigned i, iLitFanin, uSupport, uSuppCur;
    Kit_DsdObj_t * pObj;
    // consider the case of simple gate
113
    pObj = Kit_DsdNtkObj( p, Abc_Lit2Var(iLit) );
Alan Mishchenko committed
114
    if ( pObj == NULL )
115
        return (1 << Abc_Lit2Var(iLit));
Alan Mishchenko committed
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    if ( pObj->Type == KIT_DSD_AND || pObj->Type == KIT_DSD_XOR )
    {
        unsigned uSupps[16], Limit, s;
        uSupport = 0;
        Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
        {
            uSupps[i] = Lpk_ComputeBoundSets_rec( p, iLitFanin, vSets, nSizeMax );
            uSupport |= uSupps[i];
        }
        // create all subsets, except empty and full
        Limit = (1 << pObj->nFans) - 1;
        for ( s = 1; s < Limit; s++ )
        {
            uSuppCur = 0;
            for ( i = 0; i < pObj->nFans; i++ )
                if ( s & (1 << i) )
                    uSuppCur |= uSupps[i];
            if ( Kit_WordCountOnes(uSuppCur) <= nSizeMax )
                Vec_IntPush( vSets, uSuppCur );
        }
        return uSupport;
    }
    assert( pObj->Type == KIT_DSD_PRIME );
    // get the cumulative support of all fanins
    uSupport = 0;
    Kit_DsdObjForEachFanin( p, pObj, iLitFanin, i )
    {
        uSuppCur  = Lpk_ComputeBoundSets_rec( p, iLitFanin, vSets, nSizeMax );
        uSupport |= uSuppCur;
        if ( Kit_WordCountOnes(uSuppCur) <= nSizeMax )
            Vec_IntPush( vSets, uSuppCur );
    }
    return uSupport;
}

/**Function*************************************************************

  Synopsis    [Computes the set of subsets of decomposable variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Lpk_ComputeBoundSets( Kit_DsdNtk_t * p, int nSizeMax )
{
    Vec_Int_t * vSets;
    unsigned uSupport, Entry;
    int Number, i;
    assert( p->nVars <= 16 );
    vSets = Vec_IntAlloc( 100 );
    Vec_IntPush( vSets, 0 );
    if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_CONST1 )
        return vSets;
    if ( Kit_DsdNtkRoot(p)->Type == KIT_DSD_VAR )
    {
174
        uSupport = ( 1 << Abc_Lit2Var(Kit_DsdNtkRoot(p)->pFans[0]) );
Alan Mishchenko committed
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        if ( Kit_WordCountOnes(uSupport) <= nSizeMax )
            Vec_IntPush( vSets, uSupport );
        return vSets;
    }
    uSupport = Lpk_ComputeBoundSets_rec( p, p->Root, vSets, nSizeMax );
    assert( (uSupport & 0xFFFF0000) == 0 );
    // add the total support of the network
    if ( Kit_WordCountOnes(uSupport) <= nSizeMax )
        Vec_IntPush( vSets, uSupport );
    // set the remaining variables
    Vec_IntForEachEntry( vSets, Number, i )
    {
        Entry = Number;
        Vec_IntWriteEntry( vSets, i, Entry | ((uSupport & ~Entry) << 16) );
    }
    return vSets;
}

/**Function*************************************************************

  Synopsis    [Prints the sets of subsets.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static void Lpk_PrintSetOne( int uSupport )
{
    unsigned k;
    for ( k = 0; k < 16; k++ )
        if ( uSupport & (1<<k) )
            printf( "%c", 'a'+k );
    printf( " " );
}
/**Function*************************************************************

  Synopsis    [Prints the sets of subsets.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static void Lpk_PrintSets( Vec_Int_t * vSets )
{
    unsigned uSupport;
    int Number, i;
    printf( "Subsets(%d): ", Vec_IntSize(vSets) );
    Vec_IntForEachEntry( vSets, Number, i )
    {
        uSupport = Number;
        Lpk_PrintSetOne( uSupport );
    }
    printf( "\n" );
}

/**Function*************************************************************

  Synopsis    [Merges two bound sets.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Int_t * Lpk_MergeBoundSets( Vec_Int_t * vSets0, Vec_Int_t * vSets1, int nSizeMax )
{
    Vec_Int_t * vSets;
    int Entry0, Entry1, Entry;
    int i, k;
    vSets = Vec_IntAlloc( 100 );
    Vec_IntForEachEntry( vSets0, Entry0, i )
    Vec_IntForEachEntry( vSets1, Entry1, k )
    {
        Entry = Entry0 | Entry1;
        if ( (Entry & (Entry >> 16)) )
            continue;
        if ( Kit_WordCountOnes(Entry & 0xffff) <= nSizeMax )
            Vec_IntPush( vSets, Entry );
    }
    return vSets;
}

/**Function*************************************************************

  Synopsis    [Performs DSD-based decomposition of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Lpk_FunCompareBoundSets( Lpk_Fun_t * p, Vec_Int_t * vBSets, int nCofDepth, unsigned uNonDecSupp, unsigned uLateArrSupp, Lpk_Res_t * pRes )
{
    int fVerbose = 0;
    unsigned uBoundSet;
    int i, nVarsBS, nVarsRem, Delay, Area;

    // compare the resulting boundsets
    memset( pRes, 0, sizeof(Lpk_Res_t) );
    Vec_IntForEachEntry( vBSets, uBoundSet, i )
    {
        if ( (uBoundSet & 0xFFFF) == 0 ) // skip empty boundset
            continue;
        if ( (uBoundSet & uNonDecSupp) == 0 ) // skip those boundsets that are not in the domain of interest
            continue;
        if ( (uBoundSet & uLateArrSupp) ) // skip those boundsets that are late arriving
            continue;
if ( fVerbose )
Alan Mishchenko committed
293 294 295 296 297 298
{
Lpk_PrintSetOne( uBoundSet & 0xFFFF );
//printf( "\n" );
//Lpk_PrintSetOne( uBoundSet >> 16 );
//printf( "\n" );
}
Alan Mishchenko committed
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        assert( (uBoundSet & (uBoundSet >> 16)) == 0 );
        nVarsBS = Kit_WordCountOnes( uBoundSet & 0xFFFF );
        if ( nVarsBS == 1 )
            continue;
        assert( nVarsBS <= (int)p->nLutK - nCofDepth );
        nVarsRem = p->nVars - nVarsBS + 1;
        Area = 1 + Lpk_LutNumLuts( nVarsRem, p->nLutK );
        Delay = 1 + Lpk_SuppDelay( uBoundSet & 0xFFFF, p->pDelays );
if ( fVerbose )
printf( "area = %d limit = %d  delay = %d limit = %d\n", Area, (int)p->nAreaLim, Delay, (int)p->nDelayLim );
        if ( Area > (int)p->nAreaLim || Delay > (int)p->nDelayLim )
            continue;
        if ( pRes->BSVars == 0 || pRes->nSuppSizeL > nVarsRem || (pRes->nSuppSizeL == nVarsRem && pRes->DelayEst > Delay) )
        {
            pRes->nBSVars = nVarsBS;
            pRes->BSVars = (uBoundSet & 0xFFFF);
            pRes->nSuppSizeS = nVarsBS + nCofDepth;
            pRes->nSuppSizeL = nVarsRem;
            pRes->DelayEst = Delay;
            pRes->AreaEst = Area;
        }
    }
if ( fVerbose )
{
if ( pRes->BSVars )
{
printf( "Found bound set " );
Lpk_PrintSetOne( pRes->BSVars );
printf( "\n" );
}
else
printf( "Did not find boundsets.\n" );
printf( "\n" );
}
    if ( pRes->BSVars )
    {
        assert( pRes->DelayEst <= (int)p->nDelayLim );
        assert( pRes->AreaEst <= (int)p->nAreaLim );
    }
}


/**Function*************************************************************

  Synopsis    [Finds late arriving inputs, which cannot be in the bound set.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
unsigned Lpk_DsdLateArriving( Lpk_Fun_t * p )
{
    unsigned i, uLateArrSupp = 0;
    Lpk_SuppForEachVar( p->uSupp, i )
        if ( p->pDelays[i] > (int)p->nDelayLim - 2 )
            uLateArrSupp |= (1 << i);  
    return uLateArrSupp;
}

/**Function*************************************************************

  Synopsis    [Performs DSD-based decomposition of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Lpk_DsdAnalizeOne( Lpk_Fun_t * p, unsigned * ppTruths[5][16], Kit_DsdNtk_t * pNtks[], char pCofVars[], int nCofDepth, Lpk_Res_t * pRes )
{
    int fVerbose = 0;
    Vec_Int_t * pvBSets[4][8];
    unsigned uNonDecSupp, uLateArrSupp;
    int i, k, nNonDecSize, nNonDecSizeMax;
    assert( nCofDepth >= 1 && nCofDepth <= 3 );
    assert( nCofDepth < (int)p->nLutK - 1 );
    assert( p->fSupports );

    // find the support of the largest non-DSD block
    nNonDecSizeMax = 0;
    uNonDecSupp = p->uSupp;
    for ( i = 0; i < (1<<(nCofDepth-1)); i++ )
    {
        nNonDecSize = Kit_DsdNonDsdSizeMax( pNtks[i] );
        if ( nNonDecSizeMax < nNonDecSize )
        {
            nNonDecSizeMax = nNonDecSize;
            uNonDecSupp = Kit_DsdNonDsdSupports( pNtks[i] );
        }
        else if ( nNonDecSizeMax == nNonDecSize )
            uNonDecSupp |= Kit_DsdNonDsdSupports( pNtks[i] );
    }

    // remove those variables that cannot be used because of delay constraints
    // if variables arrival time is more than p->DelayLim - 2, it cannot be used
    uLateArrSupp = Lpk_DsdLateArriving( p );
    if ( (uNonDecSupp & ~uLateArrSupp) == 0 )
    {
        memset( pRes, 0, sizeof(Lpk_Res_t) );
        return 0;
    }

    // find the next cofactoring variable
    pCofVars[nCofDepth-1] = Lpk_FunComputeMinSuppSizeVar( p, ppTruths[nCofDepth-1], 1<<(nCofDepth-1), ppTruths[nCofDepth], uNonDecSupp & ~uLateArrSupp );

    // derive decomposed networks
    for ( i = 0; i < (1<<nCofDepth); i++ )
    {
        if ( pNtks[i] )
            Kit_DsdNtkFree( pNtks[i] );
        pNtks[i] = Kit_DsdDecomposeExpand( ppTruths[nCofDepth][i], p->nVars );
if ( fVerbose )
Kit_DsdPrint( stdout, pNtks[i] );
        pvBSets[nCofDepth][i] = Lpk_ComputeBoundSets( pNtks[i], p->nLutK - nCofDepth ); // try restricting to those in uNonDecSupp!!!
    }

    // derive the set of feasible boundsets
    for ( i = nCofDepth - 1; i >= 0; i-- )
        for ( k = 0; k < (1<<i); k++ )
            pvBSets[i][k] = Lpk_MergeBoundSets( pvBSets[i+1][2*k+0], pvBSets[i+1][2*k+1], p->nLutK - nCofDepth );
    // compare bound-sets
    Lpk_FunCompareBoundSets( p, pvBSets[0][0], nCofDepth, uNonDecSupp, uLateArrSupp, pRes );
Alan Mishchenko committed
426
    // free the bound sets
Alan Mishchenko committed
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    for ( i = nCofDepth; i >= 0; i-- )
        for ( k = 0; k < (1<<i); k++ )
            Vec_IntFree( pvBSets[i][k] );
 
    // copy the cofactoring variables
    if ( pRes->BSVars )
    {
        pRes->nCofVars = nCofDepth;
        for ( i = 0; i < nCofDepth; i++ )
            pRes->pCofVars[i] = pCofVars[i];
    }
    return 1;
}

/**Function*************************************************************

  Synopsis    [Performs DSD-based decomposition of the function.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Lpk_Res_t * Lpk_DsdAnalize( Lpk_Man_t * pMan, Lpk_Fun_t * p, int nShared )
{ 
    static Lpk_Res_t Res0, * pRes0 = &Res0;
    static Lpk_Res_t Res1, * pRes1 = &Res1;
    static Lpk_Res_t Res2, * pRes2 = &Res2;
    static Lpk_Res_t Res3, * pRes3 = &Res3;
    int fUseBackLooking = 1;
    Lpk_Res_t * pRes = NULL;
    Vec_Int_t * vBSets;
    Kit_DsdNtk_t * pNtks[8] = {NULL};
    char pCofVars[5];
    int i;

    assert( p->nLutK >= 3 );
    assert( nShared >= 0 && nShared <= 3 );
    assert( p->uSupp == Kit_BitMask(p->nVars) );

    // try decomposition without cofactoring
    pNtks[0] = Kit_DsdDecomposeExpand( Lpk_FunTruth( p, 0 ), p->nVars );
    if ( pMan->pPars->fVerbose )
        pMan->nBlocks[ Kit_DsdNonDsdSizeMax(pNtks[0]) ]++;
    vBSets = Lpk_ComputeBoundSets( pNtks[0], p->nLutK );
    Lpk_FunCompareBoundSets( p, vBSets, 0, 0xFFFF, Lpk_DsdLateArriving(p), pRes0 );
    Vec_IntFree( vBSets );

    // check the result
    if ( pRes0->nBSVars == (int)p->nLutK )
        { pRes = pRes0; goto finish; }
    if ( pRes0->nBSVars == (int)p->nLutK - 1 )
        { pRes = pRes0; goto finish; }
    if ( nShared == 0 )
        goto finish;

    // prepare storage
    Kit_TruthCopy( pMan->ppTruths[0][0], Lpk_FunTruth( p, 0 ), p->nVars );

    // cofactor 1 time
    if ( !Lpk_DsdAnalizeOne( p, pMan->ppTruths, pNtks, pCofVars, 1, pRes1 ) )
        goto finish;
    assert( pRes1->nBSVars <= (int)p->nLutK - 1 );
    if ( pRes1->nBSVars == (int)p->nLutK - 1 )
        { pRes = pRes1; goto finish; }
    if ( pRes0->nBSVars == (int)p->nLutK - 2 )
        { pRes = pRes0; goto finish; }
    if ( pRes1->nBSVars == (int)p->nLutK - 2 )
        { pRes = pRes1; goto finish; }
    if ( nShared == 1 )
        goto finish;

    // cofactor 2 times
    if ( p->nLutK >= 4 ) 
    {
        if ( !Lpk_DsdAnalizeOne( p, pMan->ppTruths, pNtks, pCofVars, 2, pRes2 ) )
            goto finish;
        assert( pRes2->nBSVars <= (int)p->nLutK - 2 );
        if ( pRes2->nBSVars == (int)p->nLutK - 2 )
            { pRes = pRes2; goto finish; }
        if ( fUseBackLooking )
        {
            if ( pRes0->nBSVars == (int)p->nLutK - 3 )
                { pRes = pRes0; goto finish; }
            if ( pRes1->nBSVars == (int)p->nLutK - 3 )
                { pRes = pRes1; goto finish; }
        }
        if ( pRes2->nBSVars == (int)p->nLutK - 3 )
            { pRes = pRes2; goto finish; }
        if ( nShared == 2 )
            goto finish;
        assert( nShared == 3 );
    }

    // cofactor 3 times
    if ( p->nLutK >= 5 ) 
    {
        if ( !Lpk_DsdAnalizeOne( p, pMan->ppTruths, pNtks, pCofVars, 3, pRes3 ) )
            goto finish;
        assert( pRes3->nBSVars <= (int)p->nLutK - 3 );
        if ( pRes3->nBSVars == (int)p->nLutK - 3 )
            { pRes = pRes3; goto finish; }
        if ( fUseBackLooking )
        {
            if ( pRes0->nBSVars == (int)p->nLutK - 4 )
                { pRes = pRes0; goto finish; }
            if ( pRes1->nBSVars == (int)p->nLutK - 4 )
                { pRes = pRes1; goto finish; }
            if ( pRes2->nBSVars == (int)p->nLutK - 4 )
                { pRes = pRes2; goto finish; }
        }
        if ( pRes3->nBSVars == (int)p->nLutK - 4 )
            { pRes = pRes3; goto finish; }
    }

finish:
Alan Mishchenko committed
545
    // free the networks
Alan Mishchenko committed
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    for ( i = 0; i < (1<<nShared); i++ )
        if ( pNtks[i] )
            Kit_DsdNtkFree( pNtks[i] );
    // choose the best under these conditions
    return pRes;
}

/**Function*************************************************************

  Synopsis    [Splits the function into two subfunctions using DSD.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Lpk_Fun_t * Lpk_DsdSplit( Lpk_Man_t * pMan, Lpk_Fun_t * p, char * pCofVars, int nCofVars, unsigned uBoundSet )
{
    Lpk_Fun_t * pNew;
    Kit_DsdNtk_t * pNtkDec;
    int i, k, iVacVar, nCofs;
    // prepare storage
    Kit_TruthCopy( pMan->ppTruths[0][0], Lpk_FunTruth(p, 0), p->nVars );
    // get the vacuous variable
    iVacVar = Kit_WordFindFirstBit( uBoundSet );
    // compute the cofactors
    for ( i = 0; i < nCofVars; i++ )
        for ( k = 0; k < (1<<i); k++ )
        {
            Kit_TruthCofactor0New( pMan->ppTruths[i+1][2*k+0], pMan->ppTruths[i][k], p->nVars, pCofVars[i] );
            Kit_TruthCofactor1New( pMan->ppTruths[i+1][2*k+1], pMan->ppTruths[i][k], p->nVars, pCofVars[i] );
        }
    // decompose each cofactor w.r.t. the bound set
    nCofs = (1<<nCofVars);
    for ( k = 0; k < nCofs; k++ )
    {
        pNtkDec = Kit_DsdDecomposeExpand( pMan->ppTruths[nCofVars][k], p->nVars );
        Kit_DsdTruthPartialTwo( pMan->pDsdMan, pNtkDec, uBoundSet, iVacVar, pMan->ppTruths[nCofVars+1][k], pMan->ppTruths[nCofVars+1][nCofs+k] );
        Kit_DsdNtkFree( pNtkDec );
    }
    // compute the composition/decomposition functions (they will be in pMan->ppTruths[1][0]/pMan->ppTruths[1][1])
    for ( i = nCofVars; i >= 1; i-- )
        for ( k = 0; k < (1<<i); k++ )
            Kit_TruthMuxVar( pMan->ppTruths[i][k], pMan->ppTruths[i+1][2*k+0], pMan->ppTruths[i+1][2*k+1], p->nVars, pCofVars[i-1] );

    // derive the new component (decomposition function)
    pNew = Lpk_FunDup( p, pMan->ppTruths[1][1] );
    // update the old component (composition function)
    Kit_TruthCopy( Lpk_FunTruth(p, 0), pMan->ppTruths[1][0], p->nVars );
    p->uSupp = Kit_TruthSupport( Lpk_FunTruth(p, 0), p->nVars );
    p->pFanins[iVacVar] = pNew->Id;
    p->pDelays[iVacVar] = Lpk_SuppDelay( pNew->uSupp, pNew->pDelays );
    // support minimize both
    p->fSupports = 0;
    Lpk_FunSuppMinimize( p );
    Lpk_FunSuppMinimize( pNew );
    // update delay and area requirements
    pNew->nDelayLim = p->pDelays[iVacVar];
    pNew->nAreaLim = 1;
    p->nAreaLim = p->nAreaLim - 1;
    return pNew;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


616 617
ABC_NAMESPACE_IMPL_END