miniaig.h 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/**CFile****************************************************************

  FileName    [miniaig.h]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Minimalistic AIG package.]

  Synopsis    [External declarations.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - September 29, 2012.]

  Revision    [$Id: miniaig.h,v 1.00 2012/09/29 00:00:00 alanmi Exp $]

***********************************************************************/
 
#ifndef MINI_AIG__mini_aig_h
#define MINI_AIG__mini_aig_h

////////////////////////////////////////////////////////////////////////
///                          INCLUDES                                ///
////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

33
#ifndef _VERIFIC_DATABASE_H_
34
ABC_NAMESPACE_HEADER_START
35
#endif
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
////////////////////////////////////////////////////////////////////////
///                         PARAMETERS                               ///
////////////////////////////////////////////////////////////////////////

#define MINI_AIG_NULL       (0x7FFFFFFF)
#define MINI_AIG_START_SIZE (0x000000FF)

////////////////////////////////////////////////////////////////////////
///                         BASIC TYPES                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Mini_Aig_t_       Mini_Aig_t;
struct Mini_Aig_t_ 
{
    int           nCap;
    int           nSize;
53
    int           nRegs;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    int *         pArray;
};

////////////////////////////////////////////////////////////////////////
///                      MACRO DEFINITIONS                           ///
////////////////////////////////////////////////////////////////////////

// memory management
#define MINI_AIG_ALLOC(type, num)     ((type *) malloc(sizeof(type) * (num)))
#define MINI_AIG_CALLOC(type, num)    ((type *) calloc((num), sizeof(type)))
#define MINI_AIG_FALLOC(type, num)    ((type *) memset(malloc(sizeof(type) * (num)), 0xff, sizeof(type) * (num)))
#define MINI_AIG_FREE(obj)            ((obj) ? (free((char *) (obj)), (obj) = 0) : 0)
#define MINI_AIG_REALLOC(type, obj, num) \
        ((obj) ? ((type *) realloc((char *)(obj), sizeof(type) * (num))) : \
         ((type *) malloc(sizeof(type) * (num))))

// internal procedures
static void Mini_AigGrow( Mini_Aig_t * p, int nCapMin )
{
    if ( p->nCap >= nCapMin )
        return;
    p->pArray = MINI_AIG_REALLOC( int, p->pArray, nCapMin ); 
    assert( p->pArray );
    p->nCap   = nCapMin;
}
static void Mini_AigPush( Mini_Aig_t * p, int Lit0, int Lit1 )
{
81
    if ( p->nSize + 2 > p->nCap )
82
    {
83
        assert( p->nSize < MINI_AIG_NULL/4 );
84 85 86 87 88 89 90 91 92 93 94 95 96
        if ( p->nCap < MINI_AIG_START_SIZE )
            Mini_AigGrow( p, MINI_AIG_START_SIZE );
        else
            Mini_AigGrow( p, 2 * p->nCap );
    }
    p->pArray[p->nSize++] = Lit0;
    p->pArray[p->nSize++] = Lit1;
}

// accessing fanins
static int Mini_AigNodeFanin0( Mini_Aig_t * p, int Id )
{
    assert( Id >= 0 && 2*Id < p->nSize );
97
    assert( p->pArray[2*Id] == MINI_AIG_NULL || p->pArray[2*Id] < 2*Id );
98 99 100 101 102
    return p->pArray[2*Id];
}
static int Mini_AigNodeFanin1( Mini_Aig_t * p, int Id )
{
    assert( Id >= 0 && 2*Id < p->nSize );
103
    assert( p->pArray[2*Id+1] == MINI_AIG_NULL || p->pArray[2*Id+1] < 2*Id );
104 105
    return p->pArray[2*Id+1];
}
106 107 108 109 110 111
static void Mini_AigFlipLastPo( Mini_Aig_t * p )
{
    assert( p->pArray[p->nSize-1] == MINI_AIG_NULL );
    assert( p->pArray[p->nSize-2] != MINI_AIG_NULL );
    p->pArray[p->nSize-2] ^= 1;
}
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

// working with variables and literals
static int      Mini_AigVar2Lit( int Var, int fCompl )         { return Var + Var + fCompl;   }
static int      Mini_AigLit2Var( int Lit )                     { return Lit >> 1;             }
static int      Mini_AigLitIsCompl( int Lit )                  { return Lit & 1;              }
static int      Mini_AigLitNot( int Lit )                      { return Lit ^ 1;              }
static int      Mini_AigLitNotCond( int Lit, int c )           { return Lit ^ (int)(c > 0);   }
static int      Mini_AigLitRegular( int Lit )                  { return Lit & ~01;            }

static int      Mini_AigLitConst0()                            { return 0;                    }
static int      Mini_AigLitConst1()                            { return 1;                    }
static int      Mini_AigLitIsConst0( int Lit )                 { return Lit == 0;             }
static int      Mini_AigLitIsConst1( int Lit )                 { return Lit == 1;             }
static int      Mini_AigLitIsConst( int Lit )                  { return Lit == 0 || Lit == 1; }

127
static int      Mini_AigNodeNum( Mini_Aig_t * p )              { return p->nSize/2;           }
128 129 130 131 132
static int      Mini_AigNodeIsConst( Mini_Aig_t * p, int Id )  { assert( Id >= 0 ); return Id == 0; }
static int      Mini_AigNodeIsPi( Mini_Aig_t * p, int Id )     { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) == MINI_AIG_NULL; }
static int      Mini_AigNodeIsPo( Mini_Aig_t * p, int Id )     { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) != MINI_AIG_NULL && Mini_AigNodeFanin1( p, Id ) == MINI_AIG_NULL; }
static int      Mini_AigNodeIsAnd( Mini_Aig_t * p, int Id )    { assert( Id >= 0 ); return Id > 0 && Mini_AigNodeFanin0( p, Id ) != MINI_AIG_NULL && Mini_AigNodeFanin1( p, Id ) != MINI_AIG_NULL; }

133 134 135 136 137 138 139 140 141
// working with sequential AIGs
static int      Mini_AigRegNum( Mini_Aig_t * p )               { return p->nRegs;             }
static void     Mini_AigSetRegNum( Mini_Aig_t * p, int n )     { p->nRegs = n;                }

// iterators through objects
#define Mini_AigForEachPi( p, i )  for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsPi(p, i) ) {} else 
#define Mini_AigForEachPo( p, i )  for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsPo(p, i) ) {} else 
#define Mini_AigForEachAnd( p, i ) for (i = 1; i < Mini_AigNodeNum(p); i++) if ( !Mini_AigNodeIsAnd(p, i) ) {} else

142 143

// constructor/destructor
144
static Mini_Aig_t * Mini_AigStart()
145 146
{
    Mini_Aig_t * p;
147
    p = MINI_AIG_CALLOC( Mini_Aig_t, 1 );
148
    p->nCap   = MINI_AIG_START_SIZE;
149 150 151 152
    p->pArray = MINI_AIG_ALLOC( int, p->nCap );
    Mini_AigPush( p, MINI_AIG_NULL, MINI_AIG_NULL );
    return p;
}
153 154 155 156 157 158 159 160 161 162 163 164
static Mini_Aig_t * Mini_AigStartSupport( int nIns, int nObjsAlloc )
{
    Mini_Aig_t * p; int i;
    assert( 1+nIns < nObjsAlloc );
    p = MINI_AIG_CALLOC( Mini_Aig_t, 1 );
    p->nCap   = 2*nObjsAlloc;
    p->nSize  = 2*(1+nIns);
    p->pArray = MINI_AIG_ALLOC( int, p->nCap );
    for ( i = 0; i < p->nSize; i++ )
        p->pArray[i] = MINI_AIG_NULL;
    return p;
}
165 166 167 168 169
static void Mini_AigStop( Mini_Aig_t * p )
{
    MINI_AIG_FREE( p->pArray );
    MINI_AIG_FREE( p );
}
170
static int Mini_AigPiNum( Mini_Aig_t * p )
171
{
172
    int i, nPis = 0;
173 174
    Mini_AigForEachPi( p, i )
        nPis++;
175 176 177 178 179
    return nPis;
}
static int Mini_AigPoNum( Mini_Aig_t * p )
{
    int i, nPos = 0;
180 181
    Mini_AigForEachPo( p, i )
        nPos++;
182 183 184 185 186
    return nPos;
}
static int Mini_AigAndNum( Mini_Aig_t * p )
{
    int i, nNodes = 0;
187 188
    Mini_AigForEachAnd( p, i )
        nNodes++;
189 190
    return nNodes;
}
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static int Mini_AigXorNum( Mini_Aig_t * p )
{
    int i, nNodes = 0;
    Mini_AigForEachAnd( p, i )
        nNodes += p->pArray[2*i] > p->pArray[2*i+1];
    return nNodes;
}
static int Mini_AigLevelNum( Mini_Aig_t * p )
{
    int i, Level = 0;
    int * pLevels = MINI_AIG_CALLOC( int, Mini_AigNodeNum(p) );
    Mini_AigForEachAnd( p, i )
    {
        int Lel0 = pLevels[Mini_AigLit2Var(Mini_AigNodeFanin0(p, i))];
        int Lel1 = pLevels[Mini_AigLit2Var(Mini_AigNodeFanin1(p, i))];
        pLevels[i] = 1 + (Lel0 > Lel1 ? Lel0 : Lel1);
    }
    Mini_AigForEachPo( p, i )
    {
        int Lel0 = pLevels[Mini_AigLit2Var(Mini_AigNodeFanin0(p, i))];
        Level = Level > Lel0 ? Level : Lel0;
    }
    MINI_AIG_FREE( pLevels );
    return Level;
}
216 217
static void Mini_AigPrintStats( Mini_Aig_t * p )
{
218
    printf( "MiniAIG stats:  PI = %d  PO = %d  FF = %d  AND = %d\n", Mini_AigPiNum(p), Mini_AigPoNum(p), Mini_AigRegNum(p), Mini_AigAndNum(p) );
219 220 221 222 223 224 225 226 227 228 229 230 231
}

// serialization
static void Mini_AigDump( Mini_Aig_t * p, char * pFileName )
{
    FILE * pFile;
    int RetValue;
    pFile = fopen( pFileName, "wb" );
    if ( pFile == NULL )
    {
        printf( "Cannot open file for writing \"%s\".\n", pFileName );
        return;
    }
Alan Mishchenko committed
232 233 234
    RetValue = (int)fwrite( &p->nSize, sizeof(int), 1, pFile );
    RetValue = (int)fwrite( &p->nRegs, sizeof(int), 1, pFile );
    RetValue = (int)fwrite( p->pArray, sizeof(int), p->nSize, pFile );
235 236 237 238 239 240 241 242 243 244 245 246 247
    fclose( pFile );
}
static Mini_Aig_t * Mini_AigLoad( char * pFileName )
{
    Mini_Aig_t * p;
    FILE * pFile;
    int RetValue, nSize;
    pFile = fopen( pFileName, "rb" );
    if ( pFile == NULL )
    {
        printf( "Cannot open file for reading \"%s\".\n", pFileName );
        return NULL;
    }
Alan Mishchenko committed
248
    RetValue = (int)fread( &nSize, sizeof(int), 1, pFile );
249 250 251
    p = MINI_AIG_CALLOC( Mini_Aig_t, 1 );
    p->nSize = p->nCap = nSize;
    p->pArray = MINI_AIG_ALLOC( int, p->nCap );
Alan Mishchenko committed
252 253
    RetValue = (int)fread( &p->nRegs, sizeof(int), 1, pFile );
    RetValue = (int)fread( p->pArray, sizeof(int), p->nSize, pFile );
254 255 256
    fclose( pFile );
    return p;
}
257 258 259 260 261 262


// creating nodes 
// (constant node is created when AIG manager is created)
static int Mini_AigCreatePi( Mini_Aig_t * p )
{
263
    int Lit = p->nSize;
264 265 266 267 268
    Mini_AigPush( p, MINI_AIG_NULL, MINI_AIG_NULL );
    return Lit;
}
static int Mini_AigCreatePo( Mini_Aig_t * p, int Lit0 )
{
269 270
    int Lit = p->nSize;
    assert( Lit0 >= 0 && Lit0 < Lit );
271 272 273 274 275 276 277
    Mini_AigPush( p, Lit0, MINI_AIG_NULL );
    return Lit;
}

// boolean operations
static int Mini_AigAnd( Mini_Aig_t * p, int Lit0, int Lit1 )
{
278 279 280
    int Lit = p->nSize;
    assert( Lit0 >= 0 && Lit0 < Lit );
    assert( Lit1 >= 0 && Lit1 < Lit );
281 282 283 284
    if ( Lit0 < Lit1 )
        Mini_AigPush( p, Lit0, Lit1 );
    else
        Mini_AigPush( p, Lit1, Lit0 );
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    return Lit;
}
static int Mini_AigOr( Mini_Aig_t * p, int Lit0, int Lit1 )
{
    return Mini_AigLitNot( Mini_AigAnd( p, Mini_AigLitNot(Lit0), Mini_AigLitNot(Lit1) ) );
}
static int Mini_AigMux( Mini_Aig_t * p, int LitC, int Lit1, int Lit0 )
{
    int Res0 = Mini_AigAnd( p, LitC, Lit1 );
    int Res1 = Mini_AigAnd( p, Mini_AigLitNot(LitC), Lit0 );
    return Mini_AigOr( p, Res0, Res1 );
}
static int Mini_AigXor( Mini_Aig_t * p, int Lit0, int Lit1 )
{
    return Mini_AigMux( p, Lit0, Mini_AigLitNot(Lit1), Lit1 );
}
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static int Mini_AigXorSpecial( Mini_Aig_t * p, int Lit0, int Lit1 )
{
    int Lit = p->nSize;
    assert( Lit0 >= 0 && Lit0 < Lit );
    assert( Lit1 >= 0 && Lit1 < Lit );
    if ( Lit0 > Lit1 )
        Mini_AigPush( p, Lit0, Lit1 );
    else
        Mini_AigPush( p, Lit1, Lit0 );
    return Lit;
}
static int Mini_AigAndMulti( Mini_Aig_t * p, int * pLits, int nLits )
{
    int i;
    assert( nLits > 0 );
    while ( nLits > 1 )
    {
        for ( i = 0; i < nLits/2; i++ )
            pLits[i] = Mini_AigAnd(p, pLits[2*i], pLits[2*i+1]);
        if ( nLits & 1 )
            pLits[i++] = pLits[nLits-1];
        nLits = i;
    }
    return pLits[0];
}
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static int Mini_AigMuxMulti( Mini_Aig_t * p, int * pCtrl, int nCtrl, int * pData, int nData )
{
    int i, c;
    assert( nData > 0 );
    if ( nCtrl == 0 )
        return pData[0];
    assert( nData <= (1 << nCtrl) );
    for ( c = 0; c < nCtrl; c++ )
    {
        for ( i = 0; i < nData/2; i++ )
            pData[i] = Mini_AigMux( p, pCtrl[c], pData[2*i+1], pData[2*i] );
        if ( nData & 1 )
            pData[i++] = Mini_AigMux( p, pCtrl[c], 0, pData[nData-1] );
        nData = i;
    }
    assert( nData == 1 );
    return pData[0];
}
static int Mini_AigMuxMulti_rec( Mini_Aig_t * p, int * pCtrl, int * pData, int nData )
345 346 347 348 349 350
{
    int Res0, Res1;
    assert( nData > 0 );
    if ( nData == 1 )
        return pData[0];
    assert( nData % 2 == 0 );
351 352
    Res0 = Mini_AigMuxMulti_rec( p, pCtrl+1, pData,         nData/2 );
    Res1 = Mini_AigMuxMulti_rec( p, pCtrl+1, pData+nData/2, nData/2 );
353 354
    return Mini_AigMux( p, pCtrl[0], Res1, Res0 );
}
355

356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static unsigned s_MiniTruths5[5] = {
    0xAAAAAAAA,
    0xCCCCCCCC,
    0xF0F0F0F0,
    0xFF00FF00,
    0xFFFF0000,
};
static inline int Mini_AigTt5HasVar( unsigned t, int iVar )
{
    return ((t << (1<<iVar)) & s_MiniTruths5[iVar]) != (t & s_MiniTruths5[iVar]);
}
static inline unsigned Mini_AigTt5Cofactor0( unsigned t, int iVar )
{
    assert( iVar >= 0 && iVar < 6 );
    return (t & ~s_MiniTruths5[iVar]) | ((t & ~s_MiniTruths5[iVar]) << (1<<iVar));
}
static inline unsigned Mini_AigTt5Cofactor1( unsigned t, int iVar )
{
    assert( iVar >= 0 && iVar < 6 );
    return (t & s_MiniTruths5[iVar]) | ((t & s_MiniTruths5[iVar]) >> (1<<iVar));
}
static inline int Mini_AigAndProp( Mini_Aig_t * p, int iLit0, int iLit1 )  
{ 
    if ( iLit0 < 2 )
        return iLit0 ? iLit1 : 0;
    if ( iLit1 < 2 )
        return iLit1 ? iLit0 : 0;
    if ( iLit0 == iLit1 )
        return iLit1;
386
    if ( iLit0 == Mini_AigLitNot(iLit1) )
387 388 389 390 391 392 393
        return 0;
    return Mini_AigAnd( p, iLit0, iLit1 );
}
static inline int Mini_AigMuxProp( Mini_Aig_t * p, int iCtrl, int iData1, int iData0 )  
{ 
    int iTemp0 = Mini_AigAndProp( p, Mini_AigLitNot(iCtrl), iData0 );
    int iTemp1 = Mini_AigAndProp( p, iCtrl, iData1 );
394
    return Mini_AigLitNot( Mini_AigAndProp( p, Mini_AigLitNot(iTemp0), Mini_AigLitNot(iTemp1) ) );
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
}
static inline int Mini_AigTruth( Mini_Aig_t * p, int * pVarLits, int nVars, unsigned Truth )
{
    int Var, Lit0, Lit1; 
    if ( Truth == 0 )
        return 0;
    if ( ~Truth == 0 )
        return 1;
    assert( nVars > 0 );
    // find the topmost var
    for ( Var = nVars-1; Var >= 0; Var-- )
        if ( Mini_AigTt5HasVar( Truth, Var ) )
             break;
    assert( Var >= 0 );
    // cofactor
    Lit0 = Mini_AigTruth( p, pVarLits, Var, Mini_AigTt5Cofactor0(Truth, Var) );
    Lit1 = Mini_AigTruth( p, pVarLits, Var, Mini_AigTt5Cofactor1(Truth, Var) );
    return Mini_AigMuxProp( p, pVarLits[Var], Lit1, Lit0 );
}
414 415 416 417 418 419 420 421 422 423 424 425 426 427
static char * Mini_AigPhase( Mini_Aig_t * p )
{
    char * pRes = MINI_AIG_CALLOC( char, Mini_AigNodeNum(p) );
    int i;
    Mini_AigForEachAnd( p, i )
    {
        int iFaninLit0 = Mini_AigNodeFanin0( p, i );
        int iFaninLit1 = Mini_AigNodeFanin1( p, i );
        int Phase0 = pRes[Mini_AigLit2Var(iFaninLit0)] ^ Mini_AigLitIsCompl(iFaninLit0);
        int Phase1 = pRes[Mini_AigLit2Var(iFaninLit1)] ^ Mini_AigLitIsCompl(iFaninLit1);
        pRes[i] = Phase0 & Phase1;
    }
    return pRes;
}
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
// procedure to check the topological order during AIG construction
static int Mini_AigCheck( Mini_Aig_t * p )
{
    int status = 1;
    int i, iFaninLit0, iFaninLit1;
    Mini_AigForEachAnd( p, i )
    {
        // get the fanin literals of this AND node
        iFaninLit0 = Mini_AigNodeFanin0( p, i );
        iFaninLit1 = Mini_AigNodeFanin1( p, i );
        // compare the fanin literals with the literal of the current node (2 * i)
        if ( iFaninLit0 >= 2 * i )
            printf( "Fanin0 of AND node %d is not in a topological order.\n", i ), status = 0;
        if ( iFaninLit1 >= 2 * i )
            printf( "Fanin0 of AND node %d is not in a topological order.\n", i ), status = 0;
    }
    Mini_AigForEachPo( p, i )
    {
        // get the fanin literal of this PO node
        iFaninLit0 = Mini_AigNodeFanin0( p, i );
        // compare the fanin literal with the literal of the current node (2 * i)
        if ( iFaninLit0 >= 2 * i )
            printf( "Fanin0 of PO node %d is not in a topological order.\n", i ), status = 0;
    }
    return status;
}

456 457 458 459
// procedure to dump MiniAIG into a Verilog file
static void Mini_AigDumpVerilog( char * pFileName, char * pModuleName, Mini_Aig_t * p )
{
    int i, k, iFaninLit0, iFaninLit1, Length = strlen(pModuleName), nPos = Mini_AigPoNum(p); 
460
    char * pObjIsPi = MINI_AIG_CALLOC( char, Mini_AigNodeNum(p) );
461
    FILE * pFile = fopen( pFileName, "wb" );
462
    if ( pFile == NULL ) { printf( "Cannot open output file %s\n", pFileName ); MINI_AIG_FREE( pObjIsPi ); return; }
463
    // write interface
464
    //fprintf( pFile, "// This MiniAIG dump was produced by ABC on %s\n\n", Extra_TimeStamp() );
465 466 467 468 469 470 471 472 473
    fprintf( pFile, "module %s (\n", pModuleName );
    if ( Mini_AigPiNum(p) > 0 )
    {
        fprintf( pFile, "%*sinput wire", Length+10, "" );
        k = 0;
        Mini_AigForEachPi( p, i )
        {
            if ( k++ % 12 == 0 ) fprintf( pFile, "\n%*s", Length+10, "" );
            fprintf( pFile, "i%d, ", i );
474
            pObjIsPi[i] = 1;
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        }
    }
    fprintf( pFile, "\n%*soutput wire", Length+10, "" );
    k = 0;
    Mini_AigForEachPo( p, i )
    {
        if ( k++ % 12 == 0 ) fprintf( pFile, "\n%*s", Length+10, "" );
        fprintf( pFile, "o%d%s", i, k==nPos ? "":", " );
    }
    fprintf( pFile, "\n%*s);\n\n", Length+8, "" );
    // write LUTs
    Mini_AigForEachAnd( p, i )
    {
        iFaninLit0 = Mini_AigNodeFanin0( p, i );
        iFaninLit1 = Mini_AigNodeFanin1( p, i );
        fprintf( pFile, "  assign n%d = ", i );
491
        fprintf( pFile, "%s%c%d", (iFaninLit0 & 1) ? "~":"", pObjIsPi[iFaninLit0 >> 1] ? 'i':'n', iFaninLit0 >> 1 );
492
        fprintf( pFile, " & " );
493
        fprintf( pFile, "%s%c%d", (iFaninLit1 & 1) ? "~":"", pObjIsPi[iFaninLit1 >> 1] ? 'i':'n', iFaninLit1 >> 1  );
494 495 496 497 498 499 500 501
        fprintf( pFile, ";\n" );
    }
    // write assigns
    fprintf( pFile, "\n" );
    Mini_AigForEachPo( p, i )
    {
        iFaninLit0 = Mini_AigNodeFanin0( p, i );
        fprintf( pFile, "  assign o%d = ", i );
502
        fprintf( pFile, "%s%c%d", (iFaninLit0 & 1) ? "~":"", pObjIsPi[iFaninLit0 >> 1] ? 'i':'n', iFaninLit0 >> 1 );
503 504 505
        fprintf( pFile, ";\n" );
    }
    fprintf( pFile, "\nendmodule // %s \n\n\n", pModuleName );
506
    MINI_AIG_FREE( pObjIsPi );
507 508
    fclose( pFile );
}
509

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
// checks if MiniAIG is normalized (first inputs, then internal nodes, then outputs)
static int Mini_AigIsNormalized( Mini_Aig_t * p )
{
    int nCiNum = Mini_AigPiNum(p);
    int nCoNum = Mini_AigPoNum(p);
    int i, nOffset = 1;
    for ( i = 0; i < nCiNum; i++ )
        if ( !Mini_AigNodeIsPi( p, nOffset+i ) )
            return 0;
    nOffset = Mini_AigNodeNum(p) - nCoNum;
    for ( i = 0; i < nCoNum; i++ )
        if ( !Mini_AigNodeIsPo( p, nOffset+i ) )
            return 0;
    return 1;
}


////////////////////////////////////////////////////////////////////////
///         MiniAIG reading from / write into AIGER                  ///
////////////////////////////////////////////////////////////////////////

static unsigned Mini_AigerReadUnsigned( FILE * pFile )
{
    unsigned x = 0, i = 0;
    unsigned char ch;
    while ((ch = fgetc(pFile)) & 0x80)
        x |= (ch & 0x7f) << (7 * i++);
    return x | (ch << (7 * i));
}
static void Mini_AigerWriteUnsigned( FILE * pFile, unsigned x )
{
    unsigned char ch;
    while (x & ~0x7f)
    {
        ch = (x & 0x7f) | 0x80;
        fputc( ch, pFile );
        x >>= 7;
    }
    ch = x;
    fputc( ch, pFile );
}
static int * Mini_AigerReadInt( char * pFileName, int * pnObjs, int * pnIns, int * pnLatches, int * pnOuts, int * pnAnds )
{
    int i, Temp, nTotal, nObjs, nIns, nLatches, nOuts, nAnds, * pObjs;
    FILE * pFile = fopen( pFileName, "rb" );
    if ( pFile == NULL )
    {
        fprintf( stdout, "Mini_AigerRead(): Cannot open the output file \"%s\".\n", pFileName );
        return NULL;
    }
    if ( fgetc(pFile) != 'a' || fgetc(pFile) != 'i' || fgetc(pFile) != 'g' )
    {
        fprintf( stdout, "Mini_AigerRead(): Can only read binary AIGER.\n" );
        fclose( pFile );
        return NULL;
    }
    if ( fscanf(pFile, "%d %d %d %d %d", &nTotal, &nIns, &nLatches, &nOuts, &nAnds) != 5 )
    {
        fprintf( stdout, "Mini_AigerRead(): Cannot read the header line.\n" );
        fclose( pFile );
        return NULL;
    }
    if ( nTotal != nIns + nLatches + nAnds )
    {
        fprintf( stdout, "The number of objects does not match.\n" );
        fclose( pFile );
        return NULL;
    }
    nObjs = 1 + nIns + 2*nLatches + nOuts + nAnds;
    pObjs = MINI_AIG_CALLOC( int, nObjs * 2 );
    for ( i = 0; i <= nIns + nLatches; i++ )
        pObjs[2*i] = pObjs[2*i+1] = MINI_AIG_NULL;
    // read flop input literals
    for ( i = 0; i < nLatches; i++ )
    {
        while ( fgetc(pFile) != '\n' );
        fscanf( pFile, "%d", &Temp );
        pObjs[2*(nObjs-nLatches+i)+0] = Temp;
        pObjs[2*(nObjs-nLatches+i)+1] = MINI_AIG_NULL;
    }
    // read output literals
    for ( i = 0; i < nOuts; i++ )
    {
        while ( fgetc(pFile) != '\n' );
        fscanf( pFile, "%d", &Temp );
        pObjs[2*(nObjs-nOuts-nLatches+i)+0] = Temp;
        pObjs[2*(nObjs-nOuts-nLatches+i)+1] = MINI_AIG_NULL;
    }
    // read the binary part
    while ( fgetc(pFile) != '\n' );
    for ( i = 0; i < nAnds; i++ )
    {
        int uLit  = 2*(1+nIns+nLatches+i);
        int uLit1 = uLit  - Mini_AigerReadUnsigned( pFile );
        int uLit0 = uLit1 - Mini_AigerReadUnsigned( pFile );
        pObjs[uLit+0] = uLit0;
        pObjs[uLit+1] = uLit1;
    }
    fclose( pFile );
    if ( pnObjs )    *pnObjs = nObjs;
    if ( pnIns )     *pnIns  = nIns;
    if ( pnLatches ) *pnLatches = nLatches;
    if ( pnOuts )    *pnOuts = nOuts;
    if ( pnAnds )    *pnAnds = nAnds;
    return pObjs;
}
static Mini_Aig_t * Mini_AigerRead( char * pFileName, int fVerbose )
{
    Mini_Aig_t * p;
    int nObjs, nIns, nLatches, nOuts, nAnds, * pObjs = Mini_AigerReadInt( pFileName, &nObjs, &nIns, &nLatches, &nOuts, &nAnds );
    if ( pObjs == NULL )
        return NULL;
    p = MINI_AIG_CALLOC( Mini_Aig_t, 1 );
    p->nCap   = 2*nObjs;
    p->nSize  = 2*nObjs;
    p->nRegs  = nLatches;
    p->pArray = pObjs;
    if ( fVerbose )
        printf( "Loaded MiniAIG from the AIGER file \"%s\".\n", pFileName );
    return p;
}

static void Mini_AigerWriteInt( char * pFileName, int * pObjs, int nObjs, int nIns, int nLatches, int nOuts, int nAnds )
{
    FILE * pFile = fopen( pFileName, "wb" ); int i;
    if ( pFile == NULL )
    {
        fprintf( stdout, "Mini_AigerWrite(): Cannot open the output file \"%s\".\n", pFileName );
        return;
    }
    fprintf( pFile, "aig %d %d %d %d %d\n", nIns + nLatches + nAnds, nIns, nLatches, nOuts, nAnds );
    for ( i = 0; i < nLatches; i++ )
        fprintf( pFile, "%d\n", pObjs[2*(nObjs-nLatches+i)+0] );
    for ( i = 0; i < nOuts; i++ )
        fprintf( pFile, "%d\n", pObjs[2*(nObjs-nOuts-nLatches+i)+0] );
    for ( i = 0; i < nAnds; i++ )
    {
        int uLit  = 2*(1+nIns+nLatches+i);
        int uLit0 = pObjs[uLit+0];
        int uLit1 = pObjs[uLit+1];
        Mini_AigerWriteUnsigned( pFile, uLit  - uLit1 );
        Mini_AigerWriteUnsigned( pFile, uLit1 - uLit0 );
    }
    fprintf( pFile, "c\n" );
    fclose( pFile );
}
static void Mini_AigerWrite( char * pFileName, Mini_Aig_t * p, int fVerbose )
{
    int i, nIns = 0, nOuts = 0, nAnds = 0;
    assert( Mini_AigIsNormalized(p) );
    for ( i = 1; i < Mini_AigNodeNum(p); i++ )
    {
        if ( Mini_AigNodeIsPi(p, i) )
            nIns++;
        else if ( Mini_AigNodeIsPo(p, i) )
            nOuts++;
        else 
            nAnds++;
    }
    Mini_AigerWriteInt( pFileName, p->pArray, p->nSize/2, nIns - p->nRegs, p->nRegs, nOuts - p->nRegs, nAnds );
    if ( fVerbose )
        printf( "Written MiniAIG into the AIGER file \"%s\".\n", pFileName );
}
static void Mini_AigerTest( char * pFileNameIn, char * pFileNameOut )
{
    Mini_Aig_t * p = Mini_AigerRead( pFileNameIn, 1 );
    if ( p == NULL )
        return;
    printf( "Finished reading input file \"%s\".\n", pFileNameIn );
    Mini_AigerWrite( pFileNameOut, p, 1 );
    printf( "Finished writing output file \"%s\".\n", pFileNameOut );
    Mini_AigStop( p );
}

/*
int main( int argc, char ** argv )
{
    if ( argc != 3 )
        return 0;
    Mini_AigerTest( argv[1], argv[2] );
    return 1;
}
*/

Alan Mishchenko committed
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/*
#include "aig/miniaig/miniaig.h"

// this procedure creates a MiniAIG for function F = a*b + ~c and writes it into a file "test.aig"
void Mini_AigTest()
{
    Mini_Aig_t * p = Mini_AigStart();    // create empty AIG manager (contains only const0 node)
    int litApos = Mini_AigCreatePi( p ); // create input A (returns pos lit of A)
    int litBpos = Mini_AigCreatePi( p ); // create input B (returns pos lit of B)
    int litCpos = Mini_AigCreatePi( p ); // create input C (returns pos lit of C)
    int litCneg = Mini_AigLitNot( litCpos ); // neg lit of C
    int litAnd  = Mini_AigAnd( p, litApos, litBpos ); // lit for a*b
    int litOr   = Mini_AigOr( p, litAnd, litCneg );   // lit for a*b + ~c
    Mini_AigCreatePo( p, litOr );                     // create primary output
    Mini_AigerWrite( "test.aig", p, 1 );              // write the result into a file
    Mini_AigStop( p );                                // deallocate MiniAIG
}
*/

713 714 715 716
////////////////////////////////////////////////////////////////////////
///                    FUNCTION DECLARATIONS                         ///
////////////////////////////////////////////////////////////////////////

717
#ifndef _VERIFIC_DATABASE_H_
718
ABC_NAMESPACE_HEADER_END
719
#endif
720

721 722 723 724 725 726
#endif

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////