reoSift.c 15.3 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/**CFile****************************************************************

  FileName    [reoSift.c]

  PackageName [REO: A specialized DD reordering engine.]

  Synopsis    [Implementation of the sifting algorihtm.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - October 15, 2002.]

  Revision    [$Id: reoSift.c,v 1.0 2002/15/10 03:00:00 alanmi Exp $]

***********************************************************************/

#include "reo.h"

21 22 23
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                    FUNCTION DEFINITIONS                          ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Implements the variable sifting algorithm.]

  Description [Performs a sequence of adjacent variable swaps known as "sifting".
  Uses the cost functions determined by the flag.]

  SideEffects []

  SeeAlso     []

***********************************************************************/
void reoReorderSift( reo_man * p )
{
    double CostCurrent;  // the cost of the current permutation
    double CostLimit;    // the maximum increase in cost that can be tolerated
    double CostBest;     // the best cost
    int BestQ;           // the best position
    int VarCurrent;      // the current variable to move   
    int q;               // denotes the current position of the variable
    int c;               // performs the loops over variables until all of them are sifted
    int v;               // used for other purposes

    assert( p->nSupp > 0 );

    // set the current cost depending on the minimization criteria
    if ( p->fMinWidth )
        CostCurrent = p->nWidthCur;
    else if ( p->fMinApl )
        CostCurrent = p->nAplCur;
    else
        CostCurrent = p->nNodesCur;

    // find the upper bound on tbe cost growth
    CostLimit = 1 + (int)(REO_REORDER_LIMIT * CostCurrent);

    // perform sifting for each of p->nSupp variables
    for ( c = 0; c < p->nSupp; c++ )
    {
        // select the current variable to be the one with the largest number of nodes that is not sifted yet
        VarCurrent = -1;
        CostBest   = -1.0;
        for ( v = 0; v < p->nSupp; v++ )
        {
            p->pVarCosts[v] = REO_HIGH_VALUE;
            if ( !p->pPlanes[v].fSifted )
            {
//                VarCurrent = v;
//                if ( CostBest < p->pPlanes[v].statsCost )
                if ( CostBest < p->pPlanes[v].statsNodes )
                {
//                    CostBest   = p->pPlanes[v].statsCost;
                    CostBest   = p->pPlanes[v].statsNodes;
                    VarCurrent = v;
                }

            }
        }
        assert( VarCurrent != -1 );
        // mark this variable as sifted
        p->pPlanes[VarCurrent].fSifted = 1;

        // set the current value
        p->pVarCosts[VarCurrent] = CostCurrent;

        // set the best cost
        CostBest = CostCurrent;
        BestQ    = VarCurrent; 

        // determine which way to move the variable first (up or down)
        // the rationale is that if we move the shorter way first
        // it is more likely that the best position will be found on the longer way
        // and the reverse movement (to take the best position) will be faster
        if ( VarCurrent < p->nSupp/2 ) // move up first, then down
        {
            // set the total cost on all levels above the current level
            p->pPlanes[0].statsCostAbove = 0;
            for ( v = 1; v <= VarCurrent; v++ )
                p->pPlanes[v].statsCostAbove = p->pPlanes[v-1].statsCostAbove + p->pPlanes[v-1].statsCost;
            // set the total cost on all levels below the current level
            p->pPlanes[p->nSupp].statsCostBelow = 0;
            for ( v = p->nSupp - 1; v >= VarCurrent; v-- )
                p->pPlanes[v].statsCostBelow = p->pPlanes[v+1].statsCostBelow + p->pPlanes[v+1].statsCost;

            assert( CostCurrent == p->pPlanes[VarCurrent].statsCostAbove + 
                                    p->pPlanes[VarCurrent].statsCost +
                                    p->pPlanes[VarCurrent].statsCostBelow );

            // move up
            for ( q = VarCurrent-1; q >= 0; q-- )
            {
                CostCurrent -= reoReorderSwapAdjacentVars( p, q, 1 );
                // now q points to the position of this var in the order
                p->pVarCosts[q] = CostCurrent;
                // update the lower bound (assuming that for level q+1 it is set correctly)
                p->pPlanes[q].statsCostBelow = p->pPlanes[q+1].statsCostBelow + p->pPlanes[q+1].statsCost;
                // check the upper bound
                if ( CostCurrent >= CostLimit )
                    break;
                // check the lower bound
                if ( p->pPlanes[q].statsCostBelow + (REO_QUAL_PAR-1)*p->pPlanes[q].statsCostAbove/REO_QUAL_PAR >= CostBest )
                    break;
                // update the best cost
                if ( CostBest > CostCurrent )
                {
                    CostBest = CostCurrent;
                    BestQ    = q;
                    // adjust node limit
                    CostLimit = ddMin( CostLimit, 1 + (int)(REO_REORDER_LIMIT * CostCurrent) );
                }

                // when we are reordering for width or APL, it may happen that
                // the number of nodes has grown above certain limit,
                // in which case we have to resize the data structures
                if ( p->fMinWidth || p->fMinApl )
                {
                    if ( p->nNodesCur >= 2 * p->nNodesMaxAlloc )
                    {
//                        printf( "Resizing data structures. Old size = %6d. New size = %6d.\n",  p->nNodesMaxAlloc, p->nNodesCur );
                        reoResizeStructures( p, 0, p->nNodesCur, 0 );
                    }
                }
            }
            // fix the plane index
            if ( q == -1 )
                q++;
            // now p points to the position of this var in the order

            // move down
            for ( ; q < p->nSupp-1; )
            {
                CostCurrent -= reoReorderSwapAdjacentVars( p, q, 0 );
                q++;    // change q to point to the position of this var in the order
                // sanity check: the number of nodes on the back pass should be the same
                if ( p->pVarCosts[q] != REO_HIGH_VALUE && fabs( p->pVarCosts[q] - CostCurrent ) > REO_COST_EPSILON )
                    printf("reoReorderSift(): Error! On the backward move, the costs are different.\n");
                p->pVarCosts[q] = CostCurrent;
                // update the lower bound (assuming that for level q-1 it is set correctly)
                p->pPlanes[q].statsCostAbove = p->pPlanes[q-1].statsCostAbove + p->pPlanes[q-1].statsCost;
                // check the bounds only if the variable already reached its previous position
                if ( q >= BestQ )
                {
                    // check the upper bound
                    if ( CostCurrent >= CostLimit )
                        break;
                    // check the lower bound
                    if ( p->pPlanes[q].statsCostAbove + (REO_QUAL_PAR-1)*p->pPlanes[q].statsCostBelow/REO_QUAL_PAR >= CostBest )
                        break;
                }
                // update the best cost
                if ( CostBest >= CostCurrent )
                {
                    CostBest = CostCurrent;
                    BestQ    = q;
                    // adjust node limit
                    CostLimit = ddMin( CostLimit, 1 + (int)(REO_REORDER_LIMIT * CostCurrent) );
                }

                // when we are reordering for width or APL, it may happen that
                // the number of nodes has grown above certain limit,
                // in which case we have to resize the data structures
                if ( p->fMinWidth || p->fMinApl )
                {
                    if ( p->nNodesCur >= 2 * p->nNodesMaxAlloc )
                    {
//                        printf( "Resizing data structures. Old size = %6d. New size = %6d.\n",  p->nNodesMaxAlloc, p->nNodesCur );
                        reoResizeStructures( p, 0, p->nNodesCur, 0 );
                    }
                }
            }
            // move the variable up from the given position (q) to the best position (BestQ)
            assert( q >= BestQ );
            for ( ; q > BestQ; q-- )
            {
                CostCurrent -= reoReorderSwapAdjacentVars( p, q-1, 1 );
                // sanity check: the number of nodes on the back pass should be the same
                if ( fabs( p->pVarCosts[q-1] - CostCurrent ) > REO_COST_EPSILON )
                {
                    printf("reoReorderSift():  Error! On the return move, the costs are different.\n" );
                    fflush(stdout);
                }
            }
        }
        else // move down first, then up
        {
            // set the current number of nodes on all levels above the given level
            p->pPlanes[0].statsCostAbove = 0;
            for ( v = 1; v <= VarCurrent; v++ )
                p->pPlanes[v].statsCostAbove = p->pPlanes[v-1].statsCostAbove + p->pPlanes[v-1].statsCost;
            // set the current number of nodes on all levels below the given level
            p->pPlanes[p->nSupp].statsCostBelow = 0;
            for ( v = p->nSupp - 1; v >= VarCurrent; v-- )
                p->pPlanes[v].statsCostBelow = p->pPlanes[v+1].statsCostBelow + p->pPlanes[v+1].statsCost;
            
            assert( CostCurrent == p->pPlanes[VarCurrent].statsCostAbove + 
                                    p->pPlanes[VarCurrent].statsCost +
                                    p->pPlanes[VarCurrent].statsCostBelow );

            // move down
            for ( q = VarCurrent; q < p->nSupp-1; )
            {
                CostCurrent -= reoReorderSwapAdjacentVars( p, q, 0 );
                q++;    // change q to point to the position of this var in the order
                p->pVarCosts[q] = CostCurrent;
                // update the lower bound (assuming that for level q-1 it is set correctly)
                p->pPlanes[q].statsCostAbove = p->pPlanes[q-1].statsCostAbove + p->pPlanes[q-1].statsCost;
                // check the upper bound
                if ( CostCurrent >= CostLimit )
                    break;
                // check the lower bound
                if ( p->pPlanes[q].statsCostAbove + (REO_QUAL_PAR-1)*p->pPlanes[q].statsCostBelow/REO_QUAL_PAR >= CostBest )
                    break;
                // update the best cost
                if ( CostBest > CostCurrent )
                {
                    CostBest = CostCurrent;
                    BestQ    = q;
                    // adjust node limit
                    CostLimit = ddMin( CostLimit, 1 + (int)(REO_REORDER_LIMIT * CostCurrent) );
                }

                // when we are reordering for width or APL, it may happen that
                // the number of nodes has grown above certain limit,
                // in which case we have to resize the data structures
                if ( p->fMinWidth || p->fMinApl )
                {
                    if ( p->nNodesCur >= 2 * p->nNodesMaxAlloc )
                    {
//                        printf( "Resizing data structures. Old size = %6d. New size = %6d.\n",  p->nNodesMaxAlloc, p->nNodesCur );
                        reoResizeStructures( p, 0, p->nNodesCur, 0 );
                    }
                }
            }

            // move up
            for ( --q; q >= 0; q-- )
            {
                CostCurrent -= reoReorderSwapAdjacentVars( p, q, 1 );
                // now q points to the position of this var in the order
                // sanity check: the number of nodes on the back pass should be the same
                if ( p->pVarCosts[q] != REO_HIGH_VALUE && fabs( p->pVarCosts[q] - CostCurrent ) > REO_COST_EPSILON )
                    printf("reoReorderSift(): Error! On the backward move, the costs are different.\n");
                p->pVarCosts[q] = CostCurrent;
                // update the lower bound (assuming that for level q+1 it is set correctly)
                p->pPlanes[q].statsCostBelow = p->pPlanes[q+1].statsCostBelow + p->pPlanes[q+1].statsCost;
                // check the bounds only if the variable already reached its previous position
                if ( q <= BestQ )
                {
                    // check the upper bound
                    if ( CostCurrent >= CostLimit )
                        break;
                    // check the lower bound
                    if ( p->pPlanes[q].statsCostBelow + (REO_QUAL_PAR-1)*p->pPlanes[q].statsCostAbove/REO_QUAL_PAR >= CostBest )
                        break;
                }
                // update the best cost
                if ( CostBest >= CostCurrent )
                {
                    CostBest = CostCurrent;
                    BestQ    = q;
                    // adjust node limit
                    CostLimit = ddMin( CostLimit, 1 + (int)(REO_REORDER_LIMIT * CostCurrent) );
                }

                // when we are reordering for width or APL, it may happen that
                // the number of nodes has grown above certain limit,
                // in which case we have to resize the data structures
                if ( p->fMinWidth || p->fMinApl )
                {
                    if ( p->nNodesCur >= 2 * p->nNodesMaxAlloc )
                    {
//                        printf( "Resizing data structures. Old size = %6d. New size = %6d.\n",  p->nNodesMaxAlloc, p->nNodesCur );
                        reoResizeStructures( p, 0, p->nNodesCur, 0 );
                    }
                }
            }
            // fix the plane index
            if ( q == -1 )
                q++;
            // now q points to the position of this var in the order
            // move the variable down from the given position (q) to the best position (BestQ)
            assert( q <= BestQ );
            for ( ; q < BestQ; q++ )
            {
                CostCurrent -= reoReorderSwapAdjacentVars( p, q, 0 );
                // sanity check: the number of nodes on the back pass should be the same
                if ( fabs( p->pVarCosts[q+1] - CostCurrent ) > REO_COST_EPSILON )
                {
                    printf("reoReorderSift(): Error! On the return move, the costs are different.\n" );
                    fflush(stdout);
                }
            }
        }
        assert( fabs( CostBest - CostCurrent ) < REO_COST_EPSILON );

        // update the cost 
        if ( p->fMinWidth )
            p->nWidthCur = (int)CostBest;
        else if ( p->fMinApl )
            p->nAplCur = CostCurrent;
        else
            p->nNodesCur = (int)CostBest;
    }

    // remove the sifted attributes if any
    for ( v = 0; v < p->nSupp; v++ )
        p->pPlanes[v].fSifted = 0;
}

////////////////////////////////////////////////////////////////////////
///                         END OF FILE                              ///
////////////////////////////////////////////////////////////////////////

345 346
ABC_NAMESPACE_IMPL_END