cvrm.c 12.5 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Revision Control Information
 *
 * $Source$
 * $Author$
 * $Revision$
 * $Date$
 *
 */
/*
    module: cvrm.c
    Purpose: miscellaneous cover manipulation
    a) verify two covers are equal, check consistency of a cover
    b) unravel a multiple-valued cover into minterms
    c) sort covers
*/

#include "espresso.h"

20 21 22
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

static void cb_unravel(c, start, end, startbase, B1)
IN register pcube c;
IN int start, end;
IN pcube startbase;
INOUT pcover B1;
{
    pcube base = cube.temp[0], p, last;
    int expansion, place, skip, var, size, offset;
    register int i, j, k, n;

    /* Determine how many cubes it will blow up into, and create a mask
    for those parts that have only a single coordinate
    */
    expansion = 1;
    (void) set_copy(base, startbase);
    for(var = start; var <= end; var++) {
    if ((size = set_dist(c, cube.var_mask[var])) < 2) {
        (void) set_or(base, base, cube.var_mask[var]);
    } else {
        expansion *= size;
    }
    }
    (void) set_and(base, c, base);

    /* Add the unravelled sets starting at the last element of B1 */
    offset = B1->count;
    B1->count += expansion;
    foreach_remaining_set(B1, last, GETSET(B1, offset-1), p) {
    INLINEset_copy(p, base);
    }

    place = expansion;
    for(var = start; var <= end; var++) {
    if ((size = set_dist(c, cube.var_mask[var])) > 1) {
        skip = place;
        place = place / size;
        n = 0;
        for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) {
        if (is_in_set(c, i)) {
            for(j = n; j < expansion; j += skip) {
            for(k = 0; k < place; k++) {
                p = GETSET(B1, j+k+offset);
                (void) set_insert(p, i);
            }
            }
            n += place;
        }
        }
    }
    }
}


pcover unravel_range(B, start, end)
IN pcover B;
IN int start, end;
{
    pcover B1;
    int var, total_size, expansion, size;
    register pcube p, last, startbase = cube.temp[1];

    /* Create the starting base for those variables not being unravelled */
    (void) set_copy(startbase, cube.emptyset);
    for(var = 0; var < start; var++)
    (void) set_or(startbase, startbase, cube.var_mask[var]);
    for(var = end+1; var < cube.num_vars; var++)
    (void) set_or(startbase, startbase, cube.var_mask[var]);

    /* Determine how many cubes it will blow up into */
    total_size = 0;
    foreach_set(B, last, p) {
    expansion = 1;
    for(var = start; var <= end; var++)
        if ((size = set_dist(p, cube.var_mask[var])) >= 2)
        if ((expansion *= size) > 1000000)
            fatal("unreasonable expansion in unravel");
    total_size += expansion;
    }

    /* We can now allocate a cover of exactly the correct size */
    B1 = new_cover(total_size);
    foreach_set(B, last, p) {
    cb_unravel(p, start, end, startbase, B1);
    }
    free_cover(B);
    return B1;
}


pcover unravel(B, start)
IN pcover B;
IN int start;
{
    return unravel_range(B, start, cube.num_vars-1);
}

/* lex_sort -- sort cubes in a standard lexical fashion */
pcover lex_sort(T)
pcover T;
{
    pcover T1 = sf_unlist(sf_sort(T, lex_order), T->count, T->sf_size);
    free_cover(T);
    return T1;
}


/* size_sort -- sort cubes by their size */
pcover size_sort(T)
pcover T;
{
    pcover T1 = sf_unlist(sf_sort(T, descend), T->count, T->sf_size);
    free_cover(T);
    return T1;
}


/*  mini_sort -- sort cubes according to the heuristics of mini */
pcover mini_sort(F, compare)
pcover F;
int (*compare)();
{
    register int *count, cnt, n = cube.size, i;
    register pcube p, last;
    pcover F_sorted;
    pcube *F1;

    /* Perform a column sum over the set family */
    count = sf_count(F);

    /* weight is "inner product of the cube and the column sums" */
    foreach_set(F, last, p) {
    cnt = 0;
    for(i = 0; i < n; i++)
        if (is_in_set(p, i))
        cnt += count[i];
    PUTSIZE(p, cnt);
    }
    FREE(count);

    /* use qsort to sort the array */
    qsort((char *) (F1 = sf_list(F)), F->count, sizeof(pcube), compare);
    F_sorted = sf_unlist(F1, F->count, F->sf_size);
    free_cover(F);

    return F_sorted;
}


/* sort_reduce -- Espresso strategy for ordering the cubes before reduction */
pcover sort_reduce(T)
IN pcover T;
{
    register pcube p, last, largest = NULL;
    register int bestsize = -1, size, n = cube.num_vars;
    pcover T_sorted;
    pcube *T1;

    if (T->count == 0)
    return T;

    /* find largest cube */
    foreach_set(T, last, p)
    if ((size = set_ord(p)) > bestsize)
        largest = p, bestsize = size;

    foreach_set(T, last, p)
    PUTSIZE(p, ((n - cdist(largest,p)) << 7) + MIN(set_ord(p),127));

    qsort((char *) (T1 = sf_list(T)), T->count, sizeof(pcube), (int (*)()) descend);
    T_sorted = sf_unlist(T1, T->count, T->sf_size);
    free_cover(T);

    return T_sorted;
}

pcover random_order(F)
register pcover F;
{
    pset temp;
    register int i, k;
#ifdef RANDOM
    long random();
#endif

    temp = set_new(F->sf_size);
    for(i = F->count - 1; i > 0; i--) {
    /* Choose a random number between 0 and i */
#ifdef RANDOM
    k = random() % i;
#else
    /* this is not meant to be really used; just provides an easy
       "out" if random() and srandom() aren't around
    */
    k = (i*23 + 997) % i;
#endif
    /* swap sets i and k */
    (void) set_copy(temp, GETSET(F, k));
    (void) set_copy(GETSET(F, k), GETSET(F, i));
    (void) set_copy(GETSET(F, i), temp);
    }
    set_free(temp);
    return F;
}

/*
 *  cubelist_partition -- take a cubelist T and see if it has any components;
 *  if so, return cubelist's of the two partitions A and B; the return value
 *  is the size of the partition; if not, A and B
 *  are undefined and the return value is 0
 */
int cubelist_partition(T, A, B, comp_debug)
pcube *T;            /* a list of cubes */
pcube **A, **B;            /* cubelist of partition and remainder */
unsigned int comp_debug;
{
    register pcube *T1, p, seed, cof;
    pcube *A1, *B1;
    bool change;
    int count, numcube;

    numcube = CUBELISTSIZE(T);

    /* Mark all cubes -- covered cubes belong to the partition */
    for(T1 = T+2; (p = *T1++) != NULL; ) {
    RESET(p, COVERED);
    }

    /*
     *  Extract a partition from the cubelist T; start with the first cube as a
     *  seed, and then pull in all cubes which share a variable with the seed;
     *  iterate until no new cubes are brought into the partition.
     */
    seed = set_save(T[2]);
    cof = T[0];
    SET(T[2], COVERED);
    count = 1;

    do {
    change = FALSE;
    for(T1 = T+2; (p = *T1++) != NULL; ) {
        if (! TESTP(p, COVERED) && ccommon(p, seed, cof)) {
        INLINEset_and(seed, seed, p);
        SET(p, COVERED);
        change = TRUE;
        count++;
        }
    
    }
    } while (change);

    set_free(seed);

    if (comp_debug) {
    (void) printf("COMPONENT_REDUCTION: split into %d %d\n",
        count, numcube - count);
    }

    if (count != numcube) {
    /* Allocate and setup the cubelist's for the two partitions */
    *A = A1 = ALLOC(pcube, numcube+3);
    *B = B1 = ALLOC(pcube, numcube+3);
    (*A)[0] = set_save(T[0]);
    (*B)[0] = set_save(T[0]);
    A1 = *A + 2;
    B1 = *B + 2;

    /* Loop over the cubes in T and distribute to A and B */
    for(T1 = T+2; (p = *T1++) != NULL; ) {
        if (TESTP(p, COVERED)) {
        *A1++ = p;
        } else {
        *B1++ = p;
        }
    }

    /* Stuff needed at the end of the cubelist's */
    *A1++ = NULL;
    (*A)[1] = (pcube) A1;
    *B1++ = NULL;
    (*B)[1] = (pcube) B1;
    }

    return numcube - count;
}

/*
 *  quick cofactor against a single output function
 */
pcover cof_output(T, i)
pcover T;
register int i;
{
    pcover T1;
    register pcube p, last, pdest, mask;

    mask = cube.var_mask[cube.output];
    T1 = new_cover(T->count);
    foreach_set(T, last, p) {
    if (is_in_set(p, i)) {
        pdest = GETSET(T1, T1->count++);
        INLINEset_or(pdest, p, mask);
        RESET(pdest, PRIME);
    }
    }
    return T1;
}


/*
 *  quick intersection against a single output function
 */
pcover uncof_output(T, i)
pcover T;
int i;
{
    register pcube p, last, mask;

    if (T == NULL) {
    return T;
    }

    mask = cube.var_mask[cube.output];
    foreach_set(T, last, p) {
    INLINEset_diff(p, p, mask);
    set_insert(p, i);
    }
    return T;
}


/*
 *  A generic routine to perform an operation for each output function
 *
 *  func() is called with a PLA for each output function (with the output
 *  part effectively removed).
 *  func1() is called after reforming the equivalent output function
 *
 *  Each function returns TRUE if process is to continue
 */
Alan Mishchenko committed
363
void foreach_output_function(PLA, func, func1)
Alan Mishchenko committed
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
pPLA PLA;
int (*func)();
int (*func1)();
{
    pPLA PLA1;
    int i;

    /* Loop for each output function */
    for(i = 0; i < cube.part_size[cube.output]; i++) {

    /* cofactor on the output part */
    PLA1 = new_PLA();
    PLA1->F = cof_output(PLA->F, i + cube.first_part[cube.output]);
    PLA1->R = cof_output(PLA->R, i + cube.first_part[cube.output]);
    PLA1->D = cof_output(PLA->D, i + cube.first_part[cube.output]);

    /* Call a routine to do something with the cover */
    if ((*func)(PLA1, i) == 0) {
        free_PLA(PLA1);
        return;
    }

    /* intersect with the particular output part again */
    PLA1->F = uncof_output(PLA1->F, i + cube.first_part[cube.output]);
    PLA1->R = uncof_output(PLA1->R, i + cube.first_part[cube.output]);
    PLA1->D = uncof_output(PLA1->D, i + cube.first_part[cube.output]);

    /* Call a routine to do something with the final result */
    if ((*func1)(PLA1, i) == 0) {
        free_PLA(PLA1);
        return;
    }

    /* Cleanup for next go-around */
    free_PLA(PLA1);
    

    }
}

static pcover Fmin;
static pcube phase;

/*
 *  minimize each output function individually
 */
void so_espresso(PLA, strategy)
pPLA PLA;
int strategy;
{
    Fmin = new_cover(PLA->F->count);
    if (strategy == 0) {
    foreach_output_function(PLA, so_do_espresso, so_save);
    } else {
    foreach_output_function(PLA, so_do_exact, so_save);
    }
    sf_free(PLA->F);
    PLA->F = Fmin;
}


/*
 *  minimize each output function, choose function or complement based on the
 *  one with the fewer number of terms
 */
void so_both_espresso(PLA, strategy)
pPLA PLA;
int strategy;
{
    phase = set_save(cube.fullset);
    Fmin = new_cover(PLA->F->count);
    if (strategy == 0) {
    foreach_output_function(PLA, so_both_do_espresso, so_both_save);
    } else {
    foreach_output_function(PLA, so_both_do_exact, so_both_save);
    }
    sf_free(PLA->F);
    PLA->F = Fmin;
    PLA->phase = phase;
}


int so_do_espresso(PLA, i)
pPLA PLA;
int i;
{
    char word[32];

    /* minimize the single-output function (on-set) */
    skip_make_sparse = 1;
    (void) sprintf(word, "ESPRESSO-POS(%d)", i);
    EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), word, PLA->F);
    return 1;
}


int so_do_exact(PLA, i)
pPLA PLA;
int i;
{
    char word[32];

    /* minimize the single-output function (on-set) */
    skip_make_sparse = 1;
    (void) sprintf(word, "EXACT-POS(%d)", i);
    EXEC_S(PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1), word, PLA->F);
    return 1;
}


/*ARGSUSED*/
int so_save(PLA, i)
pPLA PLA;
int i;
{
    Fmin = sf_append(Fmin, PLA->F);    /* disposes of PLA->F */
    PLA->F = NULL;
    return 1;
}


int so_both_do_espresso(PLA, i)
pPLA PLA;
int i;
{
    char word[32];

    /* minimize the single-output function (on-set) */
    (void) sprintf(word, "ESPRESSO-POS(%d)", i);
    skip_make_sparse = 1;
    EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), word, PLA->F);

    /* minimize the single-output function (off-set) */
    (void) sprintf(word, "ESPRESSO-NEG(%d)", i);
    skip_make_sparse = 1;
    EXEC_S(PLA->R = espresso(PLA->R, PLA->D, PLA->F), word, PLA->R);

    return 1;
}


int so_both_do_exact(PLA, i)
pPLA PLA;
int i;
{
    char word[32];

    /* minimize the single-output function (on-set) */
    (void) sprintf(word, "EXACT-POS(%d)", i);
    skip_make_sparse = 1;
    EXEC_S(PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1), word, PLA->F);

    /* minimize the single-output function (off-set) */
    (void) sprintf(word, "EXACT-NEG(%d)", i);
    skip_make_sparse = 1;
    EXEC_S(PLA->R = minimize_exact(PLA->R, PLA->D, PLA->F, 1), word, PLA->R);

    return 1;
}


int so_both_save(PLA, i)
pPLA PLA;
int i;
{
    if (PLA->F->count > PLA->R->count) {
    sf_free(PLA->F);
    PLA->F = PLA->R;
    PLA->R = NULL;
    i += cube.first_part[cube.output];
    set_remove(phase, i);
    } else {
    sf_free(PLA->R);
    PLA->R = NULL;
    }
    Fmin = sf_append(Fmin, PLA->F);
    PLA->F = NULL;
    return 1;
}
543 544
ABC_NAMESPACE_IMPL_END