dsdCheck.c 9.73 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/**CFile****************************************************************

  FileName    [dsdCheck.c]

  PackageName [DSD: Disjoint-support decomposition package.]

  Synopsis    [Procedures to check the identity of root functions.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 8.0. Started - September 22, 2003.]

  Revision    [$Id: dsdCheck.c,v 1.0 2002/22/09 00:00:00 alanmi Exp $]

***********************************************************************/

#include "dsdInt.h"

21 22 23
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Dsd_Cache_t_  Dds_Cache_t;
typedef struct Dsd_Entry_t_  Dsd_Entry_t;

struct Dsd_Cache_t_
{
    Dsd_Entry_t *     pTable;
    int               nTableSize;
    int               nSuccess;
    int               nFailure;
};

struct Dsd_Entry_t_
{
    DdNode * bX[5];
};

static Dds_Cache_t * pCache;

static int Dsd_CheckRootFunctionIdentity_rec( DdManager * dd, DdNode * bF1, DdNode * bF2, DdNode * bC1, DdNode * bC2 );

////////////////////////////////////////////////////////////////////////
Alan Mishchenko committed
49
///                     FUNCTION DEFINITIONS                         ///
Alan Mishchenko committed
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
////////////////////////////////////////////////////////////////////////

/**Function********************************************************************

  Synopsis    [(Re)allocates the local cache.]

  Description []

  SideEffects []

  SeeAlso     []

******************************************************************************/
void Dsd_CheckCacheAllocate( int nEntries )
{
    int nRequested;

Alan Mishchenko committed
67
    pCache = ABC_ALLOC( Dds_Cache_t, 1 );
Alan Mishchenko committed
68 69 70
    memset( pCache, 0, sizeof(Dds_Cache_t) );

    // check what is the size of the current cache
71
    nRequested = Abc_PrimeCudd( nEntries );
Alan Mishchenko committed
72 73 74 75 76 77 78
    if ( pCache->nTableSize != nRequested )
    { // the current size is different
        // deallocate the old, allocate the new
        if ( pCache->nTableSize )
            Dsd_CheckCacheDeallocate();
        // allocate memory for the hash table
        pCache->nTableSize = nRequested;
Alan Mishchenko committed
79
        pCache->pTable = ABC_ALLOC( Dsd_Entry_t, nRequested );
Alan Mishchenko committed
80 81 82
    }
    // otherwise, there is no need to allocate, just clean
    Dsd_CheckCacheClear();
83
//  printf( "\nThe number of allocated cache entries = %d.\n\n", pCache->nTableSize );
Alan Mishchenko committed
84 85 86 87
}

/**Function********************************************************************

Alan Mishchenko committed
88
  Synopsis    [Deallocates the local cache.]
Alan Mishchenko committed
89 90 91 92 93 94 95 96 97 98

  Description []

  SideEffects []

  SeeAlso     []

******************************************************************************/
void Dsd_CheckCacheDeallocate()
{
Alan Mishchenko committed
99 100
    ABC_FREE( pCache->pTable );
    ABC_FREE( pCache );
Alan Mishchenko committed
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

/**Function********************************************************************

  Synopsis    [Clears the local cache.]

  Description []

  SideEffects []

  SeeAlso     []

******************************************************************************/
void Dsd_CheckCacheClear()
{
    int i;
    for ( i = 0; i < pCache->nTableSize; i++ )
        pCache->pTable[0].bX[0] = NULL;
}


/**Function********************************************************************

  Synopsis    [Checks whether it is true that bF1(bC1=0) == bF2(bC2=0).]

  Description []

  SideEffects []

  SeeAlso     []

******************************************************************************/
int Dsd_CheckRootFunctionIdentity( DdManager * dd, DdNode * bF1, DdNode * bF2, DdNode * bC1, DdNode * bC2 )
{
    int RetValue;
136 137
//  pCache->nSuccess = 0;
//  pCache->nFailure = 0;
Alan Mishchenko committed
138
    RetValue = Dsd_CheckRootFunctionIdentity_rec(dd, bF1, bF2, bC1, bC2);
139
//  printf( "Cache success = %d. Cache failure = %d.\n", pCache->nSuccess, pCache->nFailure );
Alan Mishchenko committed
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    return RetValue;
}

/**Function********************************************************************

  Synopsis    [Performs the recursive step of Dsd_CheckRootFunctionIdentity().]

  Description []

  SideEffects []

  SeeAlso     []

******************************************************************************/
int Dsd_CheckRootFunctionIdentity_rec( DdManager * dd, DdNode * bF1, DdNode * bF2, DdNode * bC1, DdNode * bC2 )
{
    unsigned HKey;

    // if either bC1 or bC2 is zero, the test is true
159
//  if ( bC1 == b0 || bC2 == b0 )  return 1;
Alan Mishchenko committed
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    assert( bC1 != b0 );
    assert( bC2 != b0 );

    // if both bC1 and bC2 are one - perform comparison
    if ( bC1 == b1 && bC2 == b1 )  return (int)( bF1 == bF2 );

    if ( bF1 == b0 )
        return Cudd_bddLeq( dd, bC2, Cudd_Not(bF2) );

    if ( bF1 == b1 )
        return Cudd_bddLeq( dd, bC2, bF2 );

    if ( bF2 == b0 )
        return Cudd_bddLeq( dd, bC1, Cudd_Not(bF1) );

    if ( bF2 == b1 )
        return Cudd_bddLeq( dd, bC1, bF1 );

    // otherwise, keep expanding

    // check cache
181
//  HKey = _Hash( ((unsigned)bF1), ((unsigned)bF2), ((unsigned)bC1), ((unsigned)bC2) );
Alan Mishchenko committed
182 183 184 185 186 187 188
    HKey = hashKey4( bF1, bF2, bC1, bC2, pCache->nTableSize );
    if ( pCache->pTable[HKey].bX[0] == bF1 && 
         pCache->pTable[HKey].bX[1] == bF2 && 
         pCache->pTable[HKey].bX[2] == bC1 && 
         pCache->pTable[HKey].bX[3] == bC2 )
    {
        pCache->nSuccess++;
Alan Mishchenko committed
189
        return (int)(ABC_PTRUINT_T)pCache->pTable[HKey].bX[4]; // the last bit records the result (yes/no)
Alan Mishchenko committed
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    }
    else
    {

        // determine the top variables
        int RetValue;
        DdNode * bA[4]  = { bF1, bF2, bC1, bC2 }; // arguments
        DdNode * bAR[4] = { Cudd_Regular(bF1), Cudd_Regular(bF2), Cudd_Regular(bC1), Cudd_Regular(bC2) }; // regular arguments
        int CurLevel[4] = { cuddI(dd,bAR[0]->index), cuddI(dd,bAR[1]->index), cuddI(dd,bAR[2]->index), cuddI(dd,bAR[3]->index) };
        int TopLevel = CUDD_CONST_INDEX;
        int i;
        DdNode * bE[4], * bT[4];
        DdNode * bF1next, * bF2next, * bC1next, * bC2next;

        pCache->nFailure++;

        // determine the top level
        for ( i = 0; i < 4; i++ )
            if ( TopLevel > CurLevel[i] )
                 TopLevel = CurLevel[i];

        // compute the cofactors
        for ( i = 0; i < 4; i++ )
        if ( TopLevel == CurLevel[i] )
        {
            if ( bA[i] != bAR[i] ) // complemented
            {
                bE[i] = Cudd_Not(cuddE(bAR[i]));
                bT[i] = Cudd_Not(cuddT(bAR[i]));
            }
            else
            {
                bE[i] = cuddE(bAR[i]);
                bT[i] = cuddT(bAR[i]);
            }
        }
        else
            bE[i] = bT[i] = bA[i];

        // solve subproblems
        // three cases are possible

        // (1) the top var belongs to both C1 and C2
        //     in this case, any cofactor of F1 and F2 will do, 
        //     as long as the corresponding cofactor of C1 and C2 is not equal to 0
        if ( TopLevel == CurLevel[2] && TopLevel == CurLevel[3] ) 
        {
            if ( bE[2] != b0 ) // C1
            {
                bF1next = bE[0];
                bC1next = bE[2];
            }
            else
            {
                bF1next = bT[0];
                bC1next = bT[2];
            }
            if ( bE[3] != b0 ) // C2
            {
                bF2next = bE[1];
                bC2next = bE[3];
            }
            else
            {
                bF2next = bT[1];
                bC2next = bT[3];
            }
            RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bF1next, bF2next, bC1next, bC2next );
        }
        // (2) the top var belongs to either C1 or C2
        //     in this case normal splitting of cofactors
        else if ( TopLevel == CurLevel[2] && TopLevel != CurLevel[3] ) 
        {
            if ( bE[2] != b0 ) // C1
            {
                bF1next = bE[0];
                bC1next = bE[2];
            }
            else
            {
                bF1next = bT[0];
                bC1next = bT[2];
            }
            // split around this variable
            RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bF1next, bE[1], bC1next, bE[3] );
            if ( RetValue == 1 ) // test another branch; otherwise, there is no need to test
                RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bF1next, bT[1], bC1next, bT[3] );
        }
        else if ( TopLevel != CurLevel[2] && TopLevel == CurLevel[3] ) 
        {
            if ( bE[3] != b0 ) // C2
            {
                bF2next = bE[1];
                bC2next = bE[3];
            }
            else
            {
                bF2next = bT[1];
                bC2next = bT[3];
            }
            // split around this variable
            RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bE[0], bF2next, bE[2], bC2next );
            if ( RetValue == 1 ) // test another branch; otherwise, there is no need to test
                RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bT[0], bF2next, bT[2], bC2next );
        }
        // (3) the top var does not belong to C1 and C2
        //     in this case normal splitting of cofactors
        else // if ( TopLevel != CurLevel[2] && TopLevel != CurLevel[3] )
        {
            // split around this variable
            RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bE[0], bE[1], bE[2], bE[3] );
            if ( RetValue == 1 ) // test another branch; otherwise, there is no need to test
                RetValue = Dsd_CheckRootFunctionIdentity_rec( dd, bT[0], bT[1], bT[2], bT[3] );
        }

        // set cache
        for ( i = 0; i < 4; i++ )
            pCache->pTable[HKey].bX[i] = bA[i];
Alan Mishchenko committed
308
        pCache->pTable[HKey].bX[4] = (DdNode*)(ABC_PTRUINT_T)RetValue;
Alan Mishchenko committed
309 310 311 312 313 314 315 316 317

        return RetValue;
    }
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////

318 319
ABC_NAMESPACE_IMPL_END