llb3Image.c 32.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/**CFile****************************************************************

  FileName    [llb3Image.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [BDD based reachability.]

  Synopsis    [Computes image using partitioned structure.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: llb3Image.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "llbInt.h"

ABC_NAMESPACE_IMPL_START

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

typedef struct Llb_Var_t_ Llb_Var_t;
struct Llb_Var_t_ 
{
    int           iVar;      // variable number
    int           nScore;    // variable score
    Vec_Int_t *   vParts;    // partitions
};

typedef struct Llb_Prt_t_ Llb_Prt_t;
struct Llb_Prt_t_ 
{
    int           iPart;     // partition number
    int           nSize;     // the number of BDD nodes
    DdNode *      bFunc;     // the partition
    Vec_Int_t *   vVars;     // support
};

typedef struct Llb_Mgr_t_ Llb_Mgr_t;
struct Llb_Mgr_t_
{
    Aig_Man_t *   pAig;      // AIG manager
    Vec_Ptr_t *   vLeaves;   // leaves in the AIG manager
    Vec_Ptr_t *   vRoots;    // roots in the AIG manager
    DdManager *   dd;        // working BDD manager
    int *         pVars2Q;   // variables to quantify
    // internal
    Llb_Prt_t **  pParts;    // partitions
    Llb_Var_t **  pVars;     // variables
    int           iPartFree; // next free partition
    int           nVars;     // the number of BDD variables
    int           nSuppMax;  // maximum support size
    // temporary
    int *         pSupp;     // temporary support storage
};

static inline Llb_Var_t * Llb_MgrVar( Llb_Mgr_t * p, int i )   { return p->pVars[i];  }
static inline Llb_Prt_t * Llb_MgrPart( Llb_Mgr_t * p, int i )  { return p->pParts[i]; }

// iterator over vars
#define Llb_MgrForEachVar( p, pVar, i )     \
    for ( i = 0; (i < p->nVars) && (((pVar) = Llb_MgrVar(p, i)), 1); i++ ) if ( pVar == NULL ) {} else
// iterator over parts
#define Llb_MgrForEachPart( p, pPart, i )   \
    for ( i = 0; (i < p->iPartFree) && (((pPart) = Llb_MgrPart(p, i)), 1); i++ ) if ( pPart == NULL ) {} else

// iterator over vars of one partition
#define Llb_PartForEachVar( p, pPart, pVar, i )   \
    for ( i = 0; (i < Vec_IntSize(pPart->vVars)) && (((pVar) = Llb_MgrVar(p, Vec_IntEntry(pPart->vVars,i))), 1); i++ )
// iterator over parts of one variable
#define Llb_VarForEachPart( p, pVar, pPart, i )   \
    for ( i = 0; (i < Vec_IntSize(pVar->vParts)) && (((pPart) = Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,i))), 1); i++ )

// statistics
82
abctime timeBuild, timeAndEx, timeOther;
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
int nSuppMax;

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Removes one variable.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinRemoveVar( Llb_Mgr_t * p, Llb_Var_t * pVar )
{
    assert( p->pVars[pVar->iVar] == pVar );
    p->pVars[pVar->iVar] = NULL;
    Vec_IntFree( pVar->vParts );
    ABC_FREE( pVar );
}

/**Function*************************************************************

  Synopsis    [Removes one partition.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinRemovePart( Llb_Mgr_t * p, Llb_Prt_t * pPart )
{
    assert( p->pParts[pPart->iPart] == pPart );
    p->pParts[pPart->iPart] = NULL;
    Vec_IntFree( pPart->vVars );
    Cudd_RecursiveDeref( p->dd, pPart->bFunc );
    ABC_FREE( pPart );
}

/**Function*************************************************************

  Synopsis    [Create cube with singleton variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Llb_NonlinCreateCube1( Llb_Mgr_t * p, Llb_Prt_t * pPart )
{
    DdNode * bCube, * bTemp;
    Llb_Var_t * pVar;
143
    int i;
144
    abctime TimeStop;
145
    TimeStop = p->dd->TimeStop; p->dd->TimeStop = 0;
146 147 148 149 150 151 152 153 154 155 156
    bCube = Cudd_ReadOne(p->dd);   Cudd_Ref( bCube );
    Llb_PartForEachVar( p, pPart, pVar, i )
    {
        assert( Vec_IntSize(pVar->vParts) > 0 );
        if ( Vec_IntSize(pVar->vParts) != 1 )
            continue;
        assert( Vec_IntEntry(pVar->vParts, 0) == pPart->iPart );
        bCube = Cudd_bddAnd( p->dd, bTemp = bCube, Cudd_bddIthVar(p->dd, pVar->iVar) );    Cudd_Ref( bCube );
        Cudd_RecursiveDeref( p->dd, bTemp );
    }
    Cudd_Deref( bCube );
157
    p->dd->TimeStop = TimeStop;
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    return bCube;
}

/**Function*************************************************************

  Synopsis    [Create cube of variables appearing only in two partitions.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Llb_NonlinCreateCube2( Llb_Mgr_t * p, Llb_Prt_t * pPart1, Llb_Prt_t * pPart2 )
{
    DdNode * bCube, * bTemp;
    Llb_Var_t * pVar;
176
    int i;
177
    abctime TimeStop;
178
    TimeStop = p->dd->TimeStop; p->dd->TimeStop = 0;
179 180 181 182 183 184 185 186 187 188 189 190 191 192
    bCube = Cudd_ReadOne(p->dd);   Cudd_Ref( bCube );
    Llb_PartForEachVar( p, pPart1, pVar, i )
    {
        assert( Vec_IntSize(pVar->vParts) > 0 );
        if ( Vec_IntSize(pVar->vParts) != 2 )
            continue;
        if ( (Vec_IntEntry(pVar->vParts, 0) == pPart1->iPart && Vec_IntEntry(pVar->vParts, 1) == pPart2->iPart) ||
             (Vec_IntEntry(pVar->vParts, 0) == pPart2->iPart && Vec_IntEntry(pVar->vParts, 1) == pPart1->iPart) )
        {
            bCube = Cudd_bddAnd( p->dd, bTemp = bCube, Cudd_bddIthVar(p->dd, pVar->iVar) );   Cudd_Ref( bCube );
            Cudd_RecursiveDeref( p->dd, bTemp );
        }
    }
    Cudd_Deref( bCube );
193
    p->dd->TimeStop = TimeStop;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    return bCube;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if partition has singleton variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_NonlinHasSingletonVars( Llb_Mgr_t * p, Llb_Prt_t * pPart )
{
    Llb_Var_t * pVar;
    int i;
    Llb_PartForEachVar( p, pPart, pVar, i )
        if ( Vec_IntSize(pVar->vParts) == 1 )
            return 1;
    return 0;
}

/**Function*************************************************************

  Synopsis    [Returns 1 if partition has singleton variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinPrint( Llb_Mgr_t * p )
{
    Llb_Prt_t * pPart;
    Llb_Var_t * pVar;
    int i, k;
    printf( "\n" );
    Llb_MgrForEachVar( p, pVar, i )
    {
        printf( "Var %3d : ", i );
        Llb_VarForEachPart( p, pVar, pPart, k )
            printf( "%d ", pPart->iPart );
        printf( "\n" );
    }
    Llb_MgrForEachPart( p, pPart, i )
    {
        printf( "Part %3d : ", i );
        Llb_PartForEachVar( p, pPart, pVar, k )
            printf( "%d ", pVar->iVar );
        printf( "\n" );
    }
}

/**Function*************************************************************

  Synopsis    [Quantifies singles belonging to one partition.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_NonlinQuantify1( Llb_Mgr_t * p, Llb_Prt_t * pPart, int fSubset )
{
    Llb_Var_t * pVar;
    Llb_Prt_t * pTemp;
    Vec_Ptr_t * vSingles;
    DdNode * bCube, * bTemp;
    int i, RetValue, nSizeNew;
    if ( fSubset )
    {        
        int Length;
//        int nSuppSize = Cudd_SupportSize( p->dd, pPart->bFunc );
//        pPart->bFunc = Cudd_SubsetHeavyBranch( p->dd, bTemp = pPart->bFunc, nSuppSize, 3*pPart->nSize/4 );  Cudd_Ref( pPart->bFunc );
        pPart->bFunc = Cudd_LargestCube( p->dd, bTemp = pPart->bFunc, &Length );  Cudd_Ref( pPart->bFunc );

        printf( "Subsetting %3d : ", pPart->iPart );
        printf( "(Supp =%3d  Node =%5d) -> ", Cudd_SupportSize(p->dd, bTemp),        Cudd_DagSize(bTemp) );
        printf( "(Supp =%3d  Node =%5d)\n",   Cudd_SupportSize(p->dd, pPart->bFunc), Cudd_DagSize(pPart->bFunc) );

        RetValue = (Cudd_DagSize(bTemp) == Cudd_DagSize(pPart->bFunc));

        Cudd_RecursiveDeref( p->dd, bTemp );

        if ( RetValue )
            return 1;
    }
    else
    {
        // create cube to be quantified
        bCube = Llb_NonlinCreateCube1( p, pPart );   Cudd_Ref( bCube );
//        assert( !Cudd_IsConstant(bCube) );
        // derive new function
        pPart->bFunc = Cudd_bddExistAbstract( p->dd, bTemp = pPart->bFunc, bCube );  Cudd_Ref( pPart->bFunc );
        Cudd_RecursiveDeref( p->dd, bTemp );
        Cudd_RecursiveDeref( p->dd, bCube );
    }
    // get support
    vSingles = Vec_PtrAlloc( 0 );
    nSizeNew = Cudd_DagSize(pPart->bFunc);
    Extra_SupportArray( p->dd, pPart->bFunc, p->pSupp );
    Llb_PartForEachVar( p, pPart, pVar, i )
        if ( p->pSupp[pVar->iVar] )
        {
            assert( Vec_IntSize(pVar->vParts) > 1 );
            pVar->nScore -= pPart->nSize - nSizeNew;
        }
        else
        {
            RetValue = Vec_IntRemove( pVar->vParts, pPart->iPart );
            assert( RetValue );
            pVar->nScore -= pPart->nSize;
            if ( Vec_IntSize(pVar->vParts) == 0 )
                Llb_NonlinRemoveVar( p, pVar );
            else if ( Vec_IntSize(pVar->vParts) == 1 )
                Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) );
        }

    // update partition
    pPart->nSize = nSizeNew;
    Vec_IntClear( pPart->vVars );
    for ( i = 0; i < p->nVars; i++ )
        if ( p->pSupp[i] && p->pVars2Q[i] )
            Vec_IntPush( pPart->vVars, i );
    // remove other variables
    Vec_PtrForEachEntry( Llb_Prt_t *, vSingles, pTemp, i )
        Llb_NonlinQuantify1( p, pTemp, 0 );
    Vec_PtrFree( vSingles );
    return 0;
}

/**Function*************************************************************

  Synopsis    [Quantifies singles belonging to one partition.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
342
int Llb_NonlinQuantify2( Llb_Mgr_t * p, Llb_Prt_t * pPart1, Llb_Prt_t * pPart2 )
343 344 345 346 347 348 349
{
    int fVerbose = 0;
    Llb_Var_t * pVar;
    Llb_Prt_t * pTemp;
    Vec_Ptr_t * vSingles;
    DdNode * bCube, * bFunc;
    int i, RetValue, nSuppSize;
350 351
//    int iPart1 = pPart1->iPart;
//    int iPart2 = pPart2->iPart;
352 353 354 355 356 357 358 359 360 361 362

    // create cube to be quantified
    bCube = Llb_NonlinCreateCube2( p, pPart1, pPart2 );   Cudd_Ref( bCube );
if ( fVerbose )
{
printf( "\n" );
printf( "\n" );
Llb_NonlinPrint( p );
printf( "Conjoining partitions %d and %d.\n", pPart1->iPart, pPart2->iPart );
Extra_bddPrintSupport( p->dd, bCube );  printf( "\n" );
}
363
 
364 365
    // derive new function
//    bFunc = Cudd_bddAndAbstract( p->dd, pPart1->bFunc, pPart2->bFunc, bCube );  Cudd_Ref( bFunc );
366
/*
367 368 369 370 371 372 373 374 375 376 377
    bFunc = Cudd_bddAndAbstractLimit( p->dd, pPart1->bFunc, pPart2->bFunc, bCube, Limit );  
    if ( bFunc == NULL )
    {
        int RetValue;
        Cudd_RecursiveDeref( p->dd, bCube );
        if ( pPart1->nSize < pPart2->nSize )
            RetValue = Llb_NonlinQuantify1( p, pPart1, 1 );
        else
            RetValue = Llb_NonlinQuantify1( p, pPart2, 1 );
        if ( RetValue )
            Limit = Limit + 1000;
378
        Llb_NonlinQuantify2( p, pPart1, pPart2 );
379 380 381
        return 0;
    }
    Cudd_Ref( bFunc );
382
*/
383

384 385
//    bFunc = Extra_bddAndAbstractTime( p->dd, pPart1->bFunc, pPart2->bFunc, bCube, TimeOut );  
    bFunc = Cudd_bddAndAbstract( p->dd, pPart1->bFunc, pPart2->bFunc, bCube );  
386 387 388 389
    if ( bFunc == NULL )
    {
        Cudd_RecursiveDeref( p->dd, bCube );
        return 0;
390 391 392
    }
    Cudd_Ref( bFunc );
    Cudd_RecursiveDeref( p->dd, bCube );
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    // create new partition
    pTemp = p->pParts[p->iPartFree] = ABC_CALLOC( Llb_Prt_t, 1 );
    pTemp->iPart = p->iPartFree++;
    pTemp->nSize = Cudd_DagSize(bFunc);
    pTemp->bFunc = bFunc;
    pTemp->vVars = Vec_IntAlloc( 8 );
    // update variables
    Llb_PartForEachVar( p, pPart1, pVar, i )
    {
        RetValue = Vec_IntRemove( pVar->vParts, pPart1->iPart );
        assert( RetValue );
        pVar->nScore -= pPart1->nSize;
    }
    // update variables
    Llb_PartForEachVar( p, pPart2, pVar, i )
    {
        RetValue = Vec_IntRemove( pVar->vParts, pPart2->iPart );
        assert( RetValue );
        pVar->nScore -= pPart2->nSize;
    }
    // add variables to the new partition
    nSuppSize = 0;
    Extra_SupportArray( p->dd, bFunc, p->pSupp );
    for ( i = 0; i < p->nVars; i++ )
    {
        nSuppSize += p->pSupp[i];
        if ( p->pSupp[i] && p->pVars2Q[i] )
        {
            pVar = Llb_MgrVar( p, i );
            pVar->nScore += pTemp->nSize;
            Vec_IntPush( pVar->vParts, pTemp->iPart );
            Vec_IntPush( pTemp->vVars, i );
        }
    }
428
    p->nSuppMax = Abc_MaxInt( p->nSuppMax, nSuppSize ); 
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    // remove variables and collect partitions with singleton variables
    vSingles = Vec_PtrAlloc( 0 );
    Llb_PartForEachVar( p, pPart1, pVar, i )
    {
        if ( Vec_IntSize(pVar->vParts) == 0 )
            Llb_NonlinRemoveVar( p, pVar );
        else if ( Vec_IntSize(pVar->vParts) == 1 )
        {
            if ( fVerbose )
                printf( "Adding partition %d because of var %d.\n", 
                    Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0))->iPart, pVar->iVar );
            Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) );
        }
    }
    Llb_PartForEachVar( p, pPart2, pVar, i )
    {
        if ( pVar == NULL )
            continue;
        if ( Vec_IntSize(pVar->vParts) == 0 )
            Llb_NonlinRemoveVar( p, pVar );
        else if ( Vec_IntSize(pVar->vParts) == 1 )
        {
            if ( fVerbose )
                printf( "Adding partition %d because of var %d.\n", 
                    Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0))->iPart, pVar->iVar );
            Vec_PtrPushUnique( vSingles, Llb_MgrPart(p, Vec_IntEntry(pVar->vParts,0)) );
        }
    }
    // remove partitions
    Llb_NonlinRemovePart( p, pPart1 );
    Llb_NonlinRemovePart( p, pPart2 );
    // remove other variables
if ( fVerbose )
Llb_NonlinPrint( p );
    Vec_PtrForEachEntry( Llb_Prt_t *, vSingles, pTemp, i )
    {
if ( fVerbose )
printf( "Updating partitiong %d with singlton vars.\n", pTemp->iPart );
        Llb_NonlinQuantify1( p, pTemp, 0 );
    }
if ( fVerbose )
Llb_NonlinPrint( p );
    Vec_PtrFree( vSingles );
472
    return 1;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
}

/**Function*************************************************************

  Synopsis    [Computes volume of the cut.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinCutNodes_rec( Aig_Man_t * p, Aig_Obj_t * pObj, Vec_Ptr_t * vNodes )
{
    if ( Aig_ObjIsTravIdCurrent(p, pObj) )
        return;
    Aig_ObjSetTravIdCurrent(p, pObj);
    if ( Saig_ObjIsLi(p, pObj) )
    {
        Llb_NonlinCutNodes_rec(p, Aig_ObjFanin0(pObj), vNodes);
        return;
    }
    if ( Aig_ObjIsConst1(pObj) )
        return;
    assert( Aig_ObjIsNode(pObj) );
    Llb_NonlinCutNodes_rec(p, Aig_ObjFanin0(pObj), vNodes);
    Llb_NonlinCutNodes_rec(p, Aig_ObjFanin1(pObj), vNodes);
    Vec_PtrPush( vNodes, pObj );
}

/**Function*************************************************************

  Synopsis    [Computes volume of the cut.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Llb_NonlinCutNodes( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper )
{
    Vec_Ptr_t * vNodes;
    Aig_Obj_t * pObj;
    int i;
    // mark the lower cut with the traversal ID
    Aig_ManIncrementTravId(p);
    Vec_PtrForEachEntry( Aig_Obj_t *, vLower, pObj, i )
        Aig_ObjSetTravIdCurrent( p, pObj );
    // count the upper cut
    vNodes = Vec_PtrAlloc( 100 );
    Vec_PtrForEachEntry( Aig_Obj_t *, vUpper, pObj, i )
        Llb_NonlinCutNodes_rec( p, pObj, vNodes );
    return vNodes;
}

/**Function*************************************************************

  Synopsis    [Returns array of BDDs for the roots in terms of the leaves.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
542
Vec_Ptr_t * Llb_NonlinBuildBdds( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper, DdManager * dd )
543 544 545 546
{
    Vec_Ptr_t * vNodes, * vResult;
    Aig_Obj_t * pObj;
    DdNode * bBdd0, * bBdd1, * bProd;
547
    int i, k;
548 549 550 551 552 553 554 555 556 557

    Aig_ManConst1(p)->pData = Cudd_ReadOne( dd );
    Vec_PtrForEachEntry( Aig_Obj_t *, vLower, pObj, i )
        pObj->pData = Cudd_bddIthVar( dd, Aig_ObjId(pObj) );

    vNodes = Llb_NonlinCutNodes( p, vLower, vUpper );
    Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i )
    {
        bBdd0 = Cudd_NotCond( (DdNode *)Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) );
        bBdd1 = Cudd_NotCond( (DdNode *)Aig_ObjFanin1(pObj)->pData, Aig_ObjFaninC1(pObj) );
558 559
//        pObj->pData = Extra_bddAndTime( dd, bBdd0, bBdd1, TimeOut );
        pObj->pData = Cudd_bddAnd( dd, bBdd0, bBdd1 );
560
        if ( pObj->pData == NULL )
561
        {
562
            Vec_PtrForEachEntryStop( Aig_Obj_t *, vNodes, pObj, k, i )
563 564 565 566 567
                if ( pObj->pData )
                    Cudd_RecursiveDeref( dd, (DdNode *)pObj->pData );
            Vec_PtrFree( vNodes );
            return NULL;
        }
568
        Cudd_Ref( (DdNode *)pObj->pData );
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    }

    vResult = Vec_PtrAlloc( 100 );
    Vec_PtrForEachEntry( Aig_Obj_t *, vUpper, pObj, i )
    {
        if ( Aig_ObjIsNode(pObj) )
        {
            bProd = Cudd_bddXnor( dd, Cudd_bddIthVar(dd, Aig_ObjId(pObj)), (DdNode *)pObj->pData );  Cudd_Ref( bProd );
        }
        else
        {
            assert( Saig_ObjIsLi(p, pObj) );
            bBdd0 = Cudd_NotCond( (DdNode *)Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) );
            bProd = Cudd_bddXnor( dd, Cudd_bddIthVar(dd, Aig_ObjId(pObj)), bBdd0 );                  Cudd_Ref( bProd );
        }
        Vec_PtrPush( vResult, bProd );
    }
    Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i )
        Cudd_RecursiveDeref( dd, (DdNode *)pObj->pData );

    Vec_PtrFree( vNodes );
    return vResult;
}

/**Function*************************************************************

  Synopsis    [Starts non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinAddPair( Llb_Mgr_t * p, DdNode * bFunc, int iPart, int iVar )
{
    if ( p->pVars[iVar] == NULL )
    {
        p->pVars[iVar] = ABC_CALLOC( Llb_Var_t, 1 );
        p->pVars[iVar]->iVar   = iVar;
        p->pVars[iVar]->nScore = 0;
        p->pVars[iVar]->vParts = Vec_IntAlloc( 8 );
    }
    Vec_IntPush( p->pVars[iVar]->vParts, iPart );
    Vec_IntPush( p->pParts[iPart]->vVars, iVar );
}

/**Function*************************************************************

  Synopsis    [Starts non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
void Llb_NonlinAddPartition( Llb_Mgr_t * p, int i, DdNode * bFunc )
{
    int k, nSuppSize;
    assert( !Cudd_IsConstant(bFunc) );
    // create partition
    p->pParts[i] = ABC_CALLOC( Llb_Prt_t, 1 );
    p->pParts[i]->iPart = i;
    p->pParts[i]->bFunc = bFunc;
    p->pParts[i]->vVars = Vec_IntAlloc( 8 );
    // add support dependencies
    nSuppSize = 0;
    Extra_SupportArray( p->dd, bFunc, p->pSupp );
    for ( k = 0; k < p->nVars; k++ )
    {
        nSuppSize += p->pSupp[k];
        if ( p->pSupp[k] && p->pVars2Q[k] )
            Llb_NonlinAddPair( p, bFunc, i, k );
    }
646
    p->nSuppMax = Abc_MaxInt( p->nSuppMax, nSuppSize ); 
647 648 649 650 651 652 653 654 655 656 657 658 659
}

/**Function*************************************************************

  Synopsis    [Starts non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
660
int Llb_NonlinStart( Llb_Mgr_t * p )
661 662 663
{
    Vec_Ptr_t * vRootBdds;
    DdNode * bFunc;
664
    int i;
665
    // create and collect BDDs
666
    vRootBdds = Llb_NonlinBuildBdds( p->pAig, p->vLeaves, p->vRoots, p->dd ); // come referenced
667 668
    if ( vRootBdds == NULL )
        return 0;
669 670
    // add pairs (refs are consumed inside)
    Vec_PtrForEachEntry( DdNode *, vRootBdds, bFunc, i )
671
        Llb_NonlinAddPartition( p, i, bFunc );
672
    Vec_PtrFree( vRootBdds );
673
    return 1;
674 675 676 677 678 679 680 681 682 683 684
}

/**Function*************************************************************

  Synopsis    [Checks that each var appears in at least one partition.]

  Description []
               
  SideEffects []

  SeeAlso     []
685
**********************************************************************/
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
void Llb_NonlinCheckVars( Llb_Mgr_t * p )
{
    Llb_Var_t * pVar;
    int i;
    Llb_MgrForEachVar( p, pVar, i )
        assert( Vec_IntSize(pVar->vParts) > 1 );
}

/**Function*************************************************************

  Synopsis    [Find next partition to quantify]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Llb_NonlinNextPartitions( Llb_Mgr_t * p, Llb_Prt_t ** ppPart1, Llb_Prt_t ** ppPart2 )
{
    Llb_Var_t * pVar, * pVarBest = NULL;
    Llb_Prt_t * pPart, * pPart1Best = NULL, * pPart2Best = NULL;
    int i;
    Llb_NonlinCheckVars( p );
    // find variable with minimum score
    Llb_MgrForEachVar( p, pVar, i )
        if ( pVarBest == NULL || pVarBest->nScore > pVar->nScore )
            pVarBest = pVar;
    if ( pVarBest == NULL )
        return 0;
    // find two partitions with minimum size
    Llb_VarForEachPart( p, pVarBest, pPart, i )
    {
        if ( pPart1Best == NULL )
            pPart1Best = pPart;
        else if ( pPart2Best == NULL )
            pPart2Best = pPart;
        else if ( pPart1Best->nSize > pPart->nSize || pPart2Best->nSize > pPart->nSize )
        {
            if ( pPart1Best->nSize > pPart2Best->nSize )
                pPart1Best = pPart;
            else
                pPart2Best = pPart;
        }
    }
    *ppPart1 = pPart1Best;
    *ppPart2 = pPart2Best;
    return 1; 
}

/**Function*************************************************************

  Synopsis    [Reorders BDDs in the working manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
748
void Llb_NonlinReorder( DdManager * dd, int fTwice, int fVerbose )
749
{
750
    abctime clk = Abc_Clock();
751 752 753 754 755
    if ( fVerbose )
        Abc_Print( 1, "Reordering... Before =%5d. ", Cudd_ReadKeys(dd) - Cudd_ReadDead(dd) );
    Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
    if ( fVerbose )
        Abc_Print( 1, "After =%5d. ", Cudd_ReadKeys(dd) - Cudd_ReadDead(dd) );
756 757 758 759 760 761
    if ( fTwice )
    {
        Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
        if ( fVerbose )
            Abc_Print( 1, "After =%5d. ", Cudd_ReadKeys(dd) - Cudd_ReadDead(dd) );
    }
762
    if ( fVerbose )
763
        Abc_PrintTime( 1, "Time", Abc_Clock() - clk );
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
}

/**Function*************************************************************

  Synopsis    [Recomputes scores after variable reordering.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinRecomputeScores( Llb_Mgr_t * p )
{
    Llb_Prt_t * pPart;
    Llb_Var_t * pVar;
    int i, k;
    Llb_MgrForEachPart( p, pPart, i )
        pPart->nSize = Cudd_DagSize(pPart->bFunc);
    Llb_MgrForEachVar( p, pVar, i )
    {
        pVar->nScore = 0;
        Llb_VarForEachPart( p, pVar, pPart, k )
            pVar->nScore += pPart->nSize;
    }
}

/**Function*************************************************************

  Synopsis    [Recomputes scores after variable reordering.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinVerifyScores( Llb_Mgr_t * p )
{
    Llb_Prt_t * pPart;
    Llb_Var_t * pVar;
    int i, k, nScore;
    Llb_MgrForEachPart( p, pPart, i )
        assert( pPart->nSize == Cudd_DagSize(pPart->bFunc) );
    Llb_MgrForEachVar( p, pVar, i )
    {
        nScore = 0;
        Llb_VarForEachPart( p, pVar, pPart, k )
            nScore += pPart->nSize;
        assert( nScore == pVar->nScore );
    }
}

/**Function*************************************************************

  Synopsis    [Starts non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
830
Llb_Mgr_t * Llb_NonlinAlloc( Aig_Man_t * pAig, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int * pVars2Q, DdManager * dd )
831 832 833 834 835 836 837 838 839
{
    Llb_Mgr_t * p;
    p = ABC_CALLOC( Llb_Mgr_t, 1 );
    p->pAig      = pAig;
    p->vLeaves   = vLeaves;
    p->vRoots    = vRoots;
    p->dd        = dd;
    p->pVars2Q   = pVars2Q;
    p->nVars     = Cudd_ReadSize(dd);
840
    p->iPartFree = Vec_PtrSize(vRoots);
841
    p->pVars     = ABC_CALLOC( Llb_Var_t *, p->nVars );
842
    p->pParts    = ABC_CALLOC( Llb_Prt_t *, 2 * p->iPartFree + 2 );
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
    p->pSupp     = ABC_ALLOC( int, Cudd_ReadSize(dd) );
    return p;
}

/**Function*************************************************************

  Synopsis    [Stops non-linear quantification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinFree( Llb_Mgr_t * p )
{
    Llb_Prt_t * pPart;
    Llb_Var_t * pVar;
    int i;
    Llb_MgrForEachVar( p, pVar, i )
        Llb_NonlinRemoveVar( p, pVar );
    Llb_MgrForEachPart( p, pPart, i )
        Llb_NonlinRemovePart( p, pPart );
    ABC_FREE( p->pVars );
    ABC_FREE( p->pParts );
    ABC_FREE( p->pSupp );
    ABC_FREE( p );
}

/**Function*************************************************************

  Synopsis    [Performs image computation.]

  Description [Computes image of BDDs (vFuncs).]
               
  SideEffects [BDDs in vFuncs are derefed inside. The result is refed.]

  SeeAlso     []

***********************************************************************/
DdNode * Llb_NonlinImage( Aig_Man_t * pAig, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int * pVars2Q, 
885
    DdManager * dd, DdNode * bCurrent, int fReorder, int fVerbose, int * pOrder )
886 887 888 889 890
{
    Llb_Prt_t * pPart, * pPart1, * pPart2;
    Llb_Mgr_t * p;
    DdNode * bFunc, * bTemp;
    int i, nReorders, timeInside;
891
    abctime clk = Abc_Clock(), clk2;
892
    // start the manager
893
    clk2 = Abc_Clock();
894
    p = Llb_NonlinAlloc( pAig, vLeaves, vRoots, pVars2Q, dd );
895
    if ( !Llb_NonlinStart( p ) )
896 897 898 899
    {
        Llb_NonlinFree( p );
        return NULL;
    }
900 901 902 903 904 905
    // add partition
    Llb_NonlinAddPartition( p, p->iPartFree++, bCurrent );
    // remove singles
    Llb_MgrForEachPart( p, pPart, i )
        if ( Llb_NonlinHasSingletonVars(p, pPart) )
            Llb_NonlinQuantify1( p, pPart, 0 );
906 907
    timeBuild += Abc_Clock() - clk2;
    timeInside = Abc_Clock() - clk2;
908 909 910
    // compute scores
    Llb_NonlinRecomputeScores( p );
    // save permutation
911
    if ( pOrder )
912 913 914 915
    memcpy( pOrder, dd->invperm, sizeof(int) * dd->size );
    // iteratively quantify variables
    while ( Llb_NonlinNextPartitions(p, &pPart1, &pPart2) )
    {
916
        clk2 = Abc_Clock();
917
        nReorders = Cudd_ReadReorderings(dd);
918
        if ( !Llb_NonlinQuantify2( p, pPart1, pPart2 ) )
919 920 921 922
        {
            Llb_NonlinFree( p );
            return NULL;
        }
923 924
        timeAndEx  += Abc_Clock() - clk2;
        timeInside += Abc_Clock() - clk2;
925 926 927 928 929 930 931 932 933
        if ( nReorders < Cudd_ReadReorderings(dd) )
            Llb_NonlinRecomputeScores( p );
//        else
//            Llb_NonlinVerifyScores( p );
    }
    // load partitions
    bFunc = Cudd_ReadOne(p->dd);   Cudd_Ref( bFunc );
    Llb_MgrForEachPart( p, pPart, i )
    {
934 935 936 937 938 939 940 941
        bFunc = Cudd_bddAnd( p->dd, bTemp = bFunc, pPart->bFunc );   Cudd_Ref( bFunc );
        Cudd_RecursiveDeref( p->dd, bTemp );
    }
    nSuppMax = p->nSuppMax;
    Llb_NonlinFree( p );
    // reorder variables
    if ( fReorder )
        Llb_NonlinReorder( dd, 0, fVerbose );
942
    timeOther += Abc_Clock() - clk - timeInside;
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    // return
    Cudd_Deref( bFunc );
    return bFunc;
}



static Llb_Mgr_t * p = NULL;

/**Function*************************************************************

  Synopsis    [Starts image computation manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
963
DdManager * Llb_NonlinImageStart( Aig_Man_t * pAig, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vRoots, int * pVars2Q, int * pOrder, int fFirst, abctime TimeTarget )
964 965
{
    DdManager * dd;
966
    abctime clk = Abc_Clock();
967 968 969
    assert( p == NULL );
    // start a new manager (disable reordering)
    dd = Cudd_Init( Aig_ManObjNumMax(pAig), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
970
    dd->TimeStop = TimeTarget;
971 972 973 974 975
    Cudd_ShuffleHeap( dd, pOrder );
//    if ( fFirst )
        Cudd_AutodynEnable( dd,  CUDD_REORDER_SYMM_SIFT );
    // start the manager
    p = Llb_NonlinAlloc( pAig, vLeaves, vRoots, pVars2Q, dd );
976
    if ( !Llb_NonlinStart( p ) )
977 978
    {
        Llb_NonlinFree( p );
979
        p = NULL;
980 981
        return NULL;
    }
982
    timeBuild += Abc_Clock() - clk;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
//    if ( !fFirst )
//        Cudd_AutodynEnable( dd,  CUDD_REORDER_SYMM_SIFT );
    return dd;
}

/**Function*************************************************************

  Synopsis    [Performs image computation.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Llb_NonlinImageCompute( DdNode * bCurrent, int fReorder, int fDrop, int fVerbose, int * pOrder )
{
    Llb_Prt_t * pPart, * pPart1, * pPart2;
    DdNode * bFunc, * bTemp;
    int i, nReorders, timeInside = 0;
1004
    abctime clk = Abc_Clock(), clk2;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

    // add partition
    Llb_NonlinAddPartition( p, p->iPartFree++, bCurrent );
    // remove singles
    Llb_MgrForEachPart( p, pPart, i )
        if ( Llb_NonlinHasSingletonVars(p, pPart) )
            Llb_NonlinQuantify1( p, pPart, 0 );
    // reorder
    if ( fReorder )
        Llb_NonlinReorder( p->dd, 0, 0 );
    // save permutation
    memcpy( pOrder, p->dd->invperm, sizeof(int) * p->dd->size );

    // compute scores
    Llb_NonlinRecomputeScores( p );
    // iteratively quantify variables
    while ( Llb_NonlinNextPartitions(p, &pPart1, &pPart2) )
    {
1023
        clk2 = Abc_Clock();
1024
        nReorders = Cudd_ReadReorderings(p->dd);
1025
        if ( !Llb_NonlinQuantify2( p, pPart1, pPart2 ) )
1026 1027 1028 1029
        {
            Llb_NonlinFree( p );
            return NULL;
        }
1030 1031
        timeAndEx  += Abc_Clock() - clk2;
        timeInside += Abc_Clock() - clk2;
1032 1033 1034 1035 1036 1037 1038 1039 1040
        if ( nReorders < Cudd_ReadReorderings(p->dd) )
            Llb_NonlinRecomputeScores( p );
//        else
//            Llb_NonlinVerifyScores( p );
    }
    // load partitions
    bFunc = Cudd_ReadOne(p->dd);   Cudd_Ref( bFunc );
    Llb_MgrForEachPart( p, pPart, i )
    {
1041 1042 1043 1044 1045 1046 1047 1048
        bFunc = Cudd_bddAnd( p->dd, bTemp = bFunc, pPart->bFunc );
        if ( bFunc == NULL )
        {
            Cudd_RecursiveDeref( p->dd, bTemp );
            Llb_NonlinFree( p );
            return NULL;
        }
        Cudd_Ref( bFunc );
1049 1050 1051 1052
        Cudd_RecursiveDeref( p->dd, bTemp );
    }
    nSuppMax = p->nSuppMax;
    // reorder variables
1053 1054 1055 1056 1057
//    if ( fReorder )
//        Llb_NonlinReorder( p->dd, 0, fVerbose );
    // save permutation
//    memcpy( pOrder, p->dd->invperm, sizeof(int) * Cudd_ReadSize(p->dd) );

1058
    timeOther += Abc_Clock() - clk - timeInside;
1059 1060 1061 1062 1063
    // return
    Cudd_Deref( bFunc );
    return bFunc;
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/**Function*************************************************************

  Synopsis    [Quits image computation manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_NonlinImageQuit()
{
    DdManager * dd;
    if ( p == NULL )
        return;
    dd = p->dd;
    Llb_NonlinFree( p );
    if ( dd->bFunc )
        Cudd_RecursiveDeref( dd, dd->bFunc );
    Extra_StopManager( dd );
//    Cudd_Quit ( dd );
    p = NULL;
}

1089 1090 1091 1092 1093 1094 1095
////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END