cuddMatMult.c 21.8 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9
/**CFile***********************************************************************

  FileName    [cuddMatMult.c]

  PackageName [cudd]

  Synopsis    [Matrix multiplication functions.]

  Description [External procedures included in this module:
10 11 12 13 14 15 16 17 18 19 20 21
                <ul>
                <li> Cudd_addMatrixMultiply()
                <li> Cudd_addTimesPlus()
                <li> Cudd_addTriangle()
                <li> Cudd_addOuterSum()
                </ul>
        Static procedures included in this module:
                <ul>
                <li> addMMRecur()
                <li> addTriangleRecur()
                <li> cuddAddOuterSumRecur()
                </ul>]
Alan Mishchenko committed
22 23 24

  Author      [Fabio Somenzi]

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  Copyright   [Copyright (c) 1995-2004, Regents of the University of Colorado

  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:

  Redistributions of source code must retain the above copyright
  notice, this list of conditions and the following disclaimer.

  Redistributions in binary form must reproduce the above copyright
  notice, this list of conditions and the following disclaimer in the
  documentation and/or other materials provided with the distribution.

  Neither the name of the University of Colorado nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  POSSIBILITY OF SUCH DAMAGE.]
Alan Mishchenko committed
56 57 58

******************************************************************************/

59
#include "misc/util/util_hack.h"
Alan Mishchenko committed
60 61
#include "cuddInt.h"

62 63 64
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
65

66

Alan Mishchenko committed
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

#ifndef lint
87
static char rcsid[] DD_UNUSED = "$Id: cuddMatMult.c,v 1.17 2004/08/13 18:04:50 fabio Exp $";
Alan Mishchenko committed
88 89 90 91 92 93 94 95 96 97 98 99 100
#endif

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/


/**AutomaticStart*************************************************************/

/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

101 102 103
static DdNode * addMMRecur (DdManager *dd, DdNode *A, DdNode *B, int topP, int *vars);
static DdNode * addTriangleRecur (DdManager *dd, DdNode *f, DdNode *g, int *vars, DdNode *cube);
static DdNode * cuddAddOuterSumRecur (DdManager *dd, DdNode *M, DdNode *r, DdNode *c);
Alan Mishchenko committed
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/

/**Function********************************************************************

  Synopsis [Calculates the product of two matrices represented as
  ADDs.]

  Description [Calculates the product of two matrices, A and B,
  represented as ADDs. This procedure implements the quasiring multiplication
  algorithm.  A is assumed to depend on variables x (rows) and z
  (columns).  B is assumed to depend on variables z (rows) and y
  (columns).  The product of A and B then depends on x (rows) and y
  (columns).  Only the z variables have to be explicitly identified;
  they are the "summation" variables.  Returns a pointer to the
  result if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     [Cudd_addTimesPlus Cudd_addTriangle Cudd_bddAndAbstract]

******************************************************************************/
DdNode *
Cudd_addMatrixMultiply(
  DdManager * dd,
  DdNode * A,
  DdNode * B,
  DdNode ** z,
  int  nz)
{
    int i, nvars, *vars;
    DdNode *res; 

    /* Array vars says what variables are "summation" variables. */
    nvars = dd->size;
Alan Mishchenko committed
144
    vars = ABC_ALLOC(int,nvars);
Alan Mishchenko committed
145
    if (vars == NULL) {
146 147
        dd->errorCode = CUDD_MEMORY_OUT;
        return(NULL);
Alan Mishchenko committed
148 149 150 151 152 153 154 155 156
    }
    for (i = 0; i < nvars; i++) {
        vars[i] = 0;
    }
    for (i = 0; i < nz; i++) {
        vars[z[i]->index] = 1;
    }

    do {
157 158
        dd->reordered = 0;
        res = addMMRecur(dd,A,B,-1,vars);
Alan Mishchenko committed
159
    } while (dd->reordered == 1);
Alan Mishchenko committed
160
    ABC_FREE(vars);
Alan Mishchenko committed
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    return(res);

} /* end of Cudd_addMatrixMultiply */


/**Function********************************************************************

  Synopsis    [Calculates the product of two matrices represented as
  ADDs.]

  Description [Calculates the product of two matrices, A and B,
  represented as ADDs, using the CMU matrix by matrix multiplication
  procedure by Clarke et al..  Matrix A has x's as row variables and z's
  as column variables, while matrix B has z's as row variables and y's
  as column variables. Returns the pointer to the result if successful;
  NULL otherwise. The resulting matrix has x's as row variables and y's
  as column variables.]

  SideEffects [None]

  SeeAlso     [Cudd_addMatrixMultiply]

******************************************************************************/
DdNode *
Cudd_addTimesPlus(
  DdManager * dd,
  DdNode * A,
  DdNode * B,
  DdNode ** z,
  int  nz)
{
    DdNode *w, *cube, *tmp, *res; 
    int i;
    tmp = Cudd_addApply(dd,Cudd_addTimes,A,B);
    if (tmp == NULL) return(NULL);
    Cudd_Ref(tmp);
    Cudd_Ref(cube = DD_ONE(dd));
    for (i = nz-1; i >= 0; i--) {
199 200 201 202 203 204 205 206
         w = Cudd_addIte(dd,z[i],cube,DD_ZERO(dd));
         if (w == NULL) {
            Cudd_RecursiveDeref(dd,tmp);
            return(NULL);
         }
         Cudd_Ref(w);
         Cudd_RecursiveDeref(dd,cube);
         cube = w;
Alan Mishchenko committed
207 208 209
    }
    res = Cudd_addExistAbstract(dd,tmp,cube);
    if (res == NULL) {
210 211 212
        Cudd_RecursiveDeref(dd,tmp);
        Cudd_RecursiveDeref(dd,cube);
        return(NULL);
Alan Mishchenko committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    }
    Cudd_Ref(res);
    Cudd_RecursiveDeref(dd,cube);
    Cudd_RecursiveDeref(dd,tmp);
    Cudd_Deref(res);
    return(res);

} /* end of Cudd_addTimesPlus */


/**Function********************************************************************

  Synopsis    [Performs the triangulation step for the shortest path
  computation.]

  Description [Implements the semiring multiplication algorithm used in
  the triangulation step for the shortest path computation.  f
  is assumed to depend on variables x (rows) and z (columns).  g is
  assumed to depend on variables z (rows) and y (columns).  The product
  of f and g then depends on x (rows) and y (columns).  Only the z
  variables have to be explicitly identified; they are the
  "abstraction" variables.  Returns a pointer to the result if
  successful; NULL otherwise. ]

  SideEffects [None]

  SeeAlso     [Cudd_addMatrixMultiply Cudd_bddAndAbstract]

******************************************************************************/
DdNode *
Cudd_addTriangle(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  DdNode ** z,
  int  nz)
{
    int    i, nvars, *vars;
    DdNode *res, *cube;

    nvars = dd->size;
Alan Mishchenko committed
254
    vars = ABC_ALLOC(int, nvars);
Alan Mishchenko committed
255
    if (vars == NULL) {
256 257
        dd->errorCode = CUDD_MEMORY_OUT;
        return(NULL);
Alan Mishchenko committed
258 259 260 261 262
    }
    for (i = 0; i < nvars; i++) vars[i] = -1;
    for (i = 0; i < nz; i++) vars[z[i]->index] = i;
    cube = Cudd_addComputeCube(dd, z, NULL, nz);
    if (cube == NULL) {
263 264
        ABC_FREE(vars);
        return(NULL);
Alan Mishchenko committed
265 266 267 268
    }
    cuddRef(cube);

    do {
269 270
        dd->reordered = 0;
        res = addTriangleRecur(dd, f, g, vars, cube);
Alan Mishchenko committed
271 272 273 274
    } while (dd->reordered == 1);
    if (res != NULL) cuddRef(res);
    Cudd_RecursiveDeref(dd,cube);
    if (res != NULL) cuddDeref(res);
Alan Mishchenko committed
275
    ABC_FREE(vars);
Alan Mishchenko committed
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    return(res);

} /* end of Cudd_addTriangle */


/**Function********************************************************************

  Synopsis    [Takes the minimum of a matrix and the outer sum of two vectors.]

  Description [Takes the pointwise minimum of a matrix and the outer
  sum of two vectors.  This procedure is used in the Floyd-Warshall
  all-pair shortest path algorithm.  Returns a pointer to the result if
  successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
DdNode *
Cudd_addOuterSum(
  DdManager *dd,
  DdNode *M,
  DdNode *r,
  DdNode *c)
{
    DdNode *res;

    do {
305 306
        dd->reordered = 0;
        res = cuddAddOuterSumRecur(dd, M, r, c);
Alan Mishchenko committed
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    } while (dd->reordered == 1);
    return(res);

} /* end of Cudd_addOuterSum */


/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/


/*---------------------------------------------------------------------------*/
/* Definition of static functions                                            */
/*---------------------------------------------------------------------------*/

/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_addMatrixMultiply.]

  Description [Performs the recursive step of Cudd_addMatrixMultiply.
  Returns a pointer to the result if successful; NULL otherwise.]

  SideEffects [None]

******************************************************************************/
static DdNode *
addMMRecur(
  DdManager * dd,
  DdNode * A,
  DdNode * B,
  int  topP,
  int * vars)
{
    DdNode *zero,
341 342 343 344 345 346 347 348 349 350 351 352
           *At,         /* positive cofactor of first operand */
           *Ae,         /* negative cofactor of first operand */
           *Bt,         /* positive cofactor of second operand */
           *Be,         /* negative cofactor of second operand */
           *t,          /* positive cofactor of result */
           *e,          /* negative cofactor of result */
           *scaled,     /* scaled result */
           *add_scale,  /* ADD representing the scaling factor */
           *res;
    int i;              /* loop index */
    double scale;       /* scaling factor */
    int index;          /* index of the top variable */
Alan Mishchenko committed
353 354
    CUDD_VALUE_TYPE value;
    unsigned int topA, topB, topV;
355
    DD_CTFP cacheOp;
Alan Mishchenko committed
356 357 358 359 360 361 362 363 364

    statLine(dd);
    zero = DD_ZERO(dd);

    if (A == zero || B == zero) {
        return(zero);
    }

    if (cuddIsConstant(A) && cuddIsConstant(B)) {
365 366 367 368 369 370 371 372 373 374 375 376
        /* Compute the scaling factor. It is 2^k, where k is the
        ** number of summation variables below the current variable.
        ** Indeed, these constants represent blocks of 2^k identical
        ** constant values in both A and B.
        */
        value = cuddV(A) * cuddV(B);
        for (i = 0; i < dd->size; i++) {
            if (vars[i]) {
                if (dd->perm[i] > topP) {
                    value *= (CUDD_VALUE_TYPE) 2;
                }
            }
Alan Mishchenko committed
377
        }
378 379
        res = cuddUniqueConst(dd, value);
        return(res);
Alan Mishchenko committed
380 381 382 383 384 385 386 387
    }

    /* Standardize to increase cache efficiency. Clearly, A*B != B*A
    ** in matrix multiplication. However, which matrix is which is
    ** determined by the variables appearing in the ADDs and not by
    ** which one is passed as first argument.
    */
    if (A > B) {
388 389 390
        DdNode *tmp = A;
        A = B;
        B = tmp;
Alan Mishchenko committed
391 392 393 394 395
    }

    topA = cuddI(dd,A->index); topB = cuddI(dd,B->index);
    topV = ddMin(topA,topB);

396
    cacheOp = (DD_CTFP) addMMRecur;
Alan Mishchenko committed
397 398
    res = cuddCacheLookup2(dd,cacheOp,A,B);
    if (res != NULL) {
399 400 401 402 403 404 405 406 407 408 409 410 411 412
        /* If the result is 0, there is no need to normalize.
        ** Otherwise we count the number of z variables between
        ** the current depth and the top of the ADDs. These are
        ** the missing variables that determine the size of the
        ** constant blocks.
        */
        if (res == zero) return(res);
        scale = 1.0;
        for (i = 0; i < dd->size; i++) {
            if (vars[i]) {
                if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) {
                    scale *= 2;
                }
            }
Alan Mishchenko committed
413
        }
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        if (scale > 1.0) {
            cuddRef(res);
            add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale);
            if (add_scale == NULL) {
                Cudd_RecursiveDeref(dd, res);
                return(NULL);
            }
            cuddRef(add_scale);
            scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale);
            if (scaled == NULL) {
                Cudd_RecursiveDeref(dd, add_scale);
                Cudd_RecursiveDeref(dd, res);
                return(NULL);
            }
            cuddRef(scaled);
            Cudd_RecursiveDeref(dd, add_scale);
            Cudd_RecursiveDeref(dd, res);
            res = scaled;
            cuddDeref(res);
Alan Mishchenko committed
433 434 435 436 437 438
        }
        return(res);
    }

    /* compute the cofactors */
    if (topV == topA) {
439 440
        At = cuddT(A);
        Ae = cuddE(A);
Alan Mishchenko committed
441
    } else {
442
        At = Ae = A;
Alan Mishchenko committed
443 444
    }
    if (topV == topB) {
445 446
        Bt = cuddT(B);
        Be = cuddE(B);
Alan Mishchenko committed
447
    } else {
448
        Bt = Be = B;
Alan Mishchenko committed
449 450 451 452 453 454 455
    }

    t = addMMRecur(dd, At, Bt, (int)topV, vars);
    if (t == NULL) return(NULL);
    cuddRef(t);
    e = addMMRecur(dd, Ae, Be, (int)topV, vars);
    if (e == NULL) {
456 457
        Cudd_RecursiveDeref(dd, t);
        return(NULL);
Alan Mishchenko committed
458 459 460 461 462
    }
    cuddRef(e);

    index = dd->invperm[topV];
    if (vars[index] == 0) {
463 464 465 466 467 468 469 470 471 472 473 474 475
        /* We have split on either the rows of A or the columns
        ** of B. We just need to connect the two subresults,
        ** which correspond to two submatrices of the result.
        */
        res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
        if (res == NULL) {
            Cudd_RecursiveDeref(dd, t);
            Cudd_RecursiveDeref(dd, e);
            return(NULL);
        }
        cuddRef(res);
        cuddDeref(t);
        cuddDeref(e);
Alan Mishchenko committed
476
    } else {
477 478 479 480 481 482 483 484 485 486
        /* we have simultaneously split on the columns of A and
        ** the rows of B. The two subresults must be added.
        */
        res = cuddAddApplyRecur(dd,Cudd_addPlus,t,e);
        if (res == NULL) {
            Cudd_RecursiveDeref(dd, t);
            Cudd_RecursiveDeref(dd, e);
            return(NULL);
        }
        cuddRef(res);
Alan Mishchenko committed
487 488 489 490 491 492 493 494 495 496 497 498 499
        Cudd_RecursiveDeref(dd, t);
        Cudd_RecursiveDeref(dd, e);
    }

    cuddCacheInsert2(dd,cacheOp,A,B,res);

    /* We have computed (and stored in the computed table) a minimal
    ** result; that is, a result that assumes no summation variables
    ** between the current depth of the recursion and its top
    ** variable. We now take into account the z variables by properly
    ** scaling the result.
    */
    if (res != zero) {
500 501 502 503 504 505 506
        scale = 1.0;
        for (i = 0; i < dd->size; i++) {
            if (vars[i]) {
                if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) {
                    scale *= 2;
                }
            }
Alan Mishchenko committed
507
        }
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        if (scale > 1.0) {
            add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale);
            if (add_scale == NULL) {
                Cudd_RecursiveDeref(dd, res);
                return(NULL);
            }
            cuddRef(add_scale);
            scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale);
            if (scaled == NULL) {
                Cudd_RecursiveDeref(dd, res);
                Cudd_RecursiveDeref(dd, add_scale);
                return(NULL);
            }
            cuddRef(scaled);
            Cudd_RecursiveDeref(dd, add_scale);
            Cudd_RecursiveDeref(dd, res);
            res = scaled;
Alan Mishchenko committed
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        }
    }
    cuddDeref(res);
    return(res);

} /* end of addMMRecur */


/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_addTriangle.]

  Description [Performs the recursive step of Cudd_addTriangle. Returns
  a pointer to the result if successful; NULL otherwise.]

  SideEffects [None]

******************************************************************************/
static DdNode *
addTriangleRecur(
  DdManager * dd,
  DdNode * f,
  DdNode * g,
  int * vars,
  DdNode *cube)
{
    DdNode *fv, *fvn, *gv, *gvn, *t, *e, *res;
    CUDD_VALUE_TYPE value;
    int top, topf, topg, index;

    statLine(dd);
    if (f == DD_PLUS_INFINITY(dd) || g == DD_PLUS_INFINITY(dd)) {
557
        return(DD_PLUS_INFINITY(dd));
Alan Mishchenko committed
558 559 560
    }

    if (cuddIsConstant(f) && cuddIsConstant(g)) {
561 562 563
        value = cuddV(f) + cuddV(g);
        res = cuddUniqueConst(dd, value);
        return(res);
Alan Mishchenko committed
564 565
    }
    if (f < g) {
566 567 568
        DdNode *tmp = f;
        f = g;
        g = tmp;
Alan Mishchenko committed
569 570 571
    }

    if (f->ref != 1 || g->ref != 1) {
572 573 574 575
        res = cuddCacheLookup(dd, DD_ADD_TRIANGLE_TAG, f, g, cube);
        if (res != NULL) {
            return(res);
        }
Alan Mishchenko committed
576 577 578 579 580 581 582 583 584 585 586 587 588
    }

    topf = cuddI(dd,f->index); topg = cuddI(dd,g->index);
    top = ddMin(topf,topg);

    if (top == topf) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;}
    if (top == topg) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;}

    t = addTriangleRecur(dd, fv, gv, vars, cube);
    if (t == NULL) return(NULL);
    cuddRef(t);
    e = addTriangleRecur(dd, fvn, gvn, vars, cube);
    if (e == NULL) {
589 590
        Cudd_RecursiveDeref(dd, t);
        return(NULL);
Alan Mishchenko committed
591 592 593 594 595
    }
    cuddRef(e);

    index = dd->invperm[top];
    if (vars[index] < 0) {
596 597 598 599 600 601 602 603
        res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
        if (res == NULL) {
            Cudd_RecursiveDeref(dd, t);
            Cudd_RecursiveDeref(dd, e);
            return(NULL);
        }
        cuddDeref(t);
        cuddDeref(e);
Alan Mishchenko committed
604
    } else {
605 606 607 608 609 610 611
        res = cuddAddApplyRecur(dd,Cudd_addMinimum,t,e);
        if (res == NULL) {
            Cudd_RecursiveDeref(dd, t);
            Cudd_RecursiveDeref(dd, e);
            return(NULL);
        }
        cuddRef(res);
Alan Mishchenko committed
612 613
        Cudd_RecursiveDeref(dd, t);
        Cudd_RecursiveDeref(dd, e);
614
        cuddDeref(res);
Alan Mishchenko committed
615 616 617
    }

    if (f->ref != 1 || g->ref != 1) {
618
        cuddCacheInsert(dd, DD_ADD_TRIANGLE_TAG, f, g, cube, res);
Alan Mishchenko committed
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    }

    return(res);

} /* end of addTriangleRecur */


/**Function********************************************************************

  Synopsis    [Performs the recursive step of Cudd_addOuterSum.]

  Description [Performs the recursive step of Cudd_addOuterSum.
  Returns a pointer to the result if successful; NULL otherwise.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
static DdNode *
cuddAddOuterSumRecur(
  DdManager *dd,
  DdNode *M,
  DdNode *r,
  DdNode *c)
{
    DdNode *P, *R, *Mt, *Me, *rt, *re, *ct, *ce, *Rt, *Re;
    int topM, topc, topr;
    int v, index;

    statLine(dd);
    /* Check special cases. */
    if (r == DD_PLUS_INFINITY(dd) || c == DD_PLUS_INFINITY(dd)) return(M); 

    if (cuddIsConstant(c) && cuddIsConstant(r)) {
654 655 656 657 658 659 660 661 662 663
        R = cuddUniqueConst(dd,Cudd_V(c)+Cudd_V(r));
        cuddRef(R);
        if (cuddIsConstant(M)) {
            if (cuddV(R) <= cuddV(M)) {
                cuddDeref(R);
                return(R);
            } else {
                Cudd_RecursiveDeref(dd,R);       
                return(M);
            }
Alan Mishchenko committed
664
        } else {
665 666 667 668 669
            P = Cudd_addApply(dd,Cudd_addMinimum,R,M);
            cuddRef(P);
            Cudd_RecursiveDeref(dd,R);
            cuddDeref(P);
            return(P);
Alan Mishchenko committed
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
        }
    }

    /* Check the cache. */
    R = cuddCacheLookup(dd,DD_ADD_OUT_SUM_TAG,M,r,c);
    if (R != NULL) return(R);

    topM = cuddI(dd,M->index); topr = cuddI(dd,r->index);
    topc = cuddI(dd,c->index);
    v = ddMin(topM,ddMin(topr,topc));

    /* Compute cofactors. */
    if (topM == v) { Mt = cuddT(M); Me = cuddE(M); } else { Mt = Me = M; }
    if (topr == v) { rt = cuddT(r); re = cuddE(r); } else { rt = re = r; }
    if (topc == v) { ct = cuddT(c); ce = cuddE(c); } else { ct = ce = c; }

    /* Recursively solve. */
    Rt = cuddAddOuterSumRecur(dd,Mt,rt,ct);
    if (Rt == NULL) return(NULL);
    cuddRef(Rt);
    Re = cuddAddOuterSumRecur(dd,Me,re,ce);
    if (Re == NULL) {
692 693
        Cudd_RecursiveDeref(dd, Rt);
        return(NULL);
Alan Mishchenko committed
694 695 696 697 698
    }
    cuddRef(Re);
    index = dd->invperm[v];
    R = (Rt == Re) ? Rt : cuddUniqueInter(dd,index,Rt,Re);
    if (R == NULL) {
699 700 701
        Cudd_RecursiveDeref(dd, Rt);
        Cudd_RecursiveDeref(dd, Re);
        return(NULL);
Alan Mishchenko committed
702 703 704 705 706 707 708 709 710 711
    }
    cuddDeref(Rt);
    cuddDeref(Re);

    /* Store the result in the cache. */
    cuddCacheInsert(dd,DD_ADD_OUT_SUM_TAG,M,r,c,R);

    return(R);

} /* end of cuddAddOuterSumRecur */
712 713


714 715
ABC_NAMESPACE_IMPL_END