giaSatMap.c 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/**CFile****************************************************************

  FileName    [giaSatMap.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Scalable AIG package.]

  Synopsis    []

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: giaSatMap.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "gia.h"
#include "sat/bsat/satStore.h"
#include "misc/vec/vecWec.h"
24 25
#include "misc/util/utilNam.h"
#include "map/scl/sclCon.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////


// operation manager
typedef struct Sbm_Man_t_ Sbm_Man_t;
struct Sbm_Man_t_
{
    sat_solver *     pSat;      // SAT solver
    Vec_Int_t *      vCardVars; // candinality variables
    int              LogN;      // max vars
    int              FirstVar;  // first variable to be used
    int              LitShift;  // shift in terms of literals (2*Gia_ManCiNum(pGia)+2)
44
    int              nInputs;   // the number of inputs
45 46 47 48 49 50
    // window
    Vec_Int_t *      vRoots;    // output drivers to be mapped (root -> lit)
    Vec_Wec_t *      vCuts;     // cuts (cut -> node lit + fanin lits)
    Vec_Wec_t *      vObjCuts;  // cuts (obj -> node lit + cut lits)
    Vec_Int_t *      vSolCuts;  // current solution (index -> cut)
    Vec_Int_t *      vCutGates; // gates (cut -> gate)
51
    Vec_Wrd_t *      vCutAreas; // area of each cut
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    // solver
    Vec_Int_t *      vAssump;   // assumptions (root nodes)
    Vec_Int_t *      vPolar;    // polarity of nodes and cuts
    // timing
    Vec_Int_t *      vArrs;     // arrivals for the inputs (input -> time)
    Vec_Int_t *      vReqs;     // required for the outputs (root -> time)
    // internal
    Vec_Int_t *      vLit2Used; // current solution (lit -> used)
    Vec_Int_t *      vDelays;   // node arrivals (lit -> time)
    Vec_Int_t *      vReason;   // timing reasons (lit -> cut)
};

/*
    Cuts in p->vCuts have 0-based numbers and are expressed in terms of object literals.
    Cuts in p->vObjCuts are expressed in terms of the obj-lit + cut-lits (i + p->FirstVar)
    Unit cuts for each polarity are ordered in the end.
*/

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Verify solution. Create polarity and assumptions.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sbm_ManCheckSol( Sbm_Man_t * p, Vec_Int_t * vSol )
{
87
    //int K = Vec_IntSize(vSol) - 1;
88 89 90 91 92 93
    int i, j, Lit, Cut;
    int RetValue = 1;
    Vec_Int_t * vCut;
    // clear polarity and assumptions
    Vec_IntClear( p->vPolar );
    // mark used literals
94
    Vec_IntFill( p->vLit2Used, Vec_WecSize(p->vObjCuts) + p->nInputs, 0 );
95 96
    Vec_IntForEachEntry( p->vSolCuts, Cut, i )
    {
97 98 99 100 101 102 103
        if ( Cut < 0 ) // input inverter variable
        {
            Vec_IntWriteEntry( p->vLit2Used, -Cut, 1 );
            Vec_IntPush( p->vPolar, -Cut ); 
            continue;
        }
        Vec_IntPush( p->vPolar, p->FirstVar + Cut ); 
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        vCut = Vec_WecEntry( p->vCuts, Cut );
        Lit = Vec_IntEntry( vCut, 0 ) - p->LitShift; // obj literal
        if ( Vec_IntEntry(p->vLit2Used, Lit) )
            continue;
        Vec_IntWriteEntry( p->vLit2Used, Lit, 1 );
        Vec_IntPush( p->vPolar, Lit ); // literal variable
    }
    // check that the output literals are used
    Vec_IntForEachEntry( p->vRoots, Lit, i )
    {
        if ( Vec_IntEntry(p->vLit2Used, Lit) == 0 )
            printf( "Output literal %d has no cut.\n", Lit ), RetValue = 0;
    }
    // check internal nodes
    Vec_IntForEachEntry( p->vSolCuts, Cut, i )
    {
120 121
        if ( Cut < 0 )
            continue;
122 123
        vCut = Vec_WecEntry( p->vCuts, Cut );
        Vec_IntForEachEntryStart( vCut, Lit, j, 1 )
124 125 126 127 128 129 130
            if ( Lit - p->LitShift < 0 )
            {
                assert( Abc_LitIsCompl(Lit) );
                if ( Vec_IntEntry(p->vLit2Used, Vec_WecSize(p->vObjCuts) + Abc_Lit2Var(Lit)-1) == 0 )
                    printf( "Inverter of input %d of cut %d is not mapped.\n", Abc_Lit2Var(Lit)-1, Cut ), RetValue = 0;
            }
            else if ( Vec_IntEntry(p->vLit2Used, Lit - p->LitShift) == 0 )
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                printf( "Internal literal %d of cut %d is not mapped.\n", Lit - p->LitShift, Cut ), RetValue = 0;
        // create polarity
        Vec_IntPush( p->vPolar, p->FirstVar + Cut ); // cut variable
    }
    return RetValue;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Sbm_ManCreateCnf( Sbm_Man_t * p )
{
    int i, k, Lit, Lits[2], value;
152
    Vec_Int_t * vLits, * vCutOne, * vLitsPrev;
153 154 155 156 157 158 159
    // sat_solver_rollback( p->Sat );
    if ( !Sbm_ManCheckSol(p, p->vSolCuts) )
        return 0;
    // increase var count
    assert( p->FirstVar == sat_solver_nvars(p->pSat) );
    sat_solver_setnvars( p->pSat, sat_solver_nvars(p->pSat) + Vec_WecSize(p->vCuts) );
    // iterate over arrays containing obj-lit cuts (neg-obj-lit cut-lits followed by pos-obj-lit cut-lits)
160
    vLitsPrev = NULL;
161 162 163 164 165
    Vec_WecForEachLevel( p->vObjCuts, vLits, i )
    {
        assert( Vec_IntSize(vLits) >= 2 );
        value = sat_solver_addclause( p->pSat, Vec_IntArray(vLits), Vec_IntLimit(vLits)  );
        assert( value );
166
/*
167 168 169 170 171 172 173 174 175 176 177
        // for each cut, add implied nodes
        Lits[0] = Abc_LitNot( Vec_IntEntry(vLits, 0) );
        assert( Lits[0] < 2*p->FirstVar );
        Vec_IntForEachEntryStart( vLits, Lit, k, 1 )
        {
            assert( Lit >= 2*p->FirstVar );
            Lits[1] = Abc_LitNot( Lit );
            value = sat_solver_addclause( p->pSat, Lits, Lits + 2 );
            assert( value );
            //printf( "Adding clause %d + %d.\n", Lits[0], Lits[1]-2*p->FirstVar );
        }
178
*/
179 180 181 182
        //printf( "\n" );
        // create invertor exclusivity clause
        if ( i & 1 )
        {
183 184
            Lits[0] = Abc_LitNot( Vec_IntEntryLast(vLits) );
            Lits[1] = Abc_LitNot( Vec_IntEntryLast(vLitsPrev) );
185 186 187 188
            value = sat_solver_addclause( p->pSat, Lits, Lits + 2 );
            assert( value );
            //printf( "Adding exclusivity clause %d + %d.\n", Lits[0]-2*p->FirstVar, Lits[1]-2*p->FirstVar );
        }
189
        vLitsPrev = vLits;
190
    }
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    // add inverters
    Vec_WecForEachLevel( p->vCuts, vCutOne, i )
        Vec_IntForEachEntry( vCutOne, Lit, k )
            if ( Abc_Lit2Var(Lit)-1 < p->nInputs ) // input
            {
                assert( k > 0 );
                Lits[0] = Abc_Var2Lit( Vec_WecSize(p->vObjCuts) + Abc_Lit2Var(Lit)-1, 0 );
                Lits[1] = Abc_Var2Lit( p->FirstVar + i, 1 );
                value = sat_solver_addclause( p->pSat, Lits, Lits + 2 );
                assert( value );
            }
            else // internal node
            {
                Lits[0] = Abc_Var2Lit( Lit-p->LitShift, 0 );
                Lits[1] = Abc_Var2Lit( p->FirstVar + i, 1 );
                value = sat_solver_addclause( p->pSat, Lits, Lits + 2 );
                assert( value );
            }

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    sat_solver_set_polarity( p->pSat, Vec_IntArray(p->vPolar), Vec_IntSize(p->vPolar) );
    return 1;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int sat_solver_add_and1( sat_solver * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl )
{
    lit Lits[3];
    int Cid;

    Lits[0] = toLitCond( iVar, !fCompl );
    Lits[1] = toLitCond( iVar0, fCompl0 );
    Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
    assert( Cid );

    Lits[0] = toLitCond( iVar, !fCompl );
    Lits[1] = toLitCond( iVar1, fCompl1 );
    Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
    assert( Cid );
/*
    Lits[0] = toLitCond( iVar, fCompl );
    Lits[1] = toLitCond( iVar0, !fCompl0 );
    Lits[2] = toLitCond( iVar1, !fCompl1 );
    Cid = sat_solver_addclause( pSat, Lits, Lits + 3 );
    assert( Cid );
*/
    return 3;
}

static inline int sat_solver_add_and2( sat_solver * pSat, int iVar, int iVar0, int iVar1, int fCompl0, int fCompl1, int fCompl )
{
    lit Lits[3];
    int Cid;
/*
    Lits[0] = toLitCond( iVar, !fCompl );
    Lits[1] = toLitCond( iVar0, fCompl0 );
    Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
    assert( Cid );

    Lits[0] = toLitCond( iVar, !fCompl );
    Lits[1] = toLitCond( iVar1, fCompl1 );
    Cid = sat_solver_addclause( pSat, Lits, Lits + 2 );
    assert( Cid );
*/
    Lits[0] = toLitCond( iVar, fCompl );
    Lits[1] = toLitCond( iVar0, !fCompl0 );
    Lits[2] = toLitCond( iVar1, !fCompl1 );
    Cid = sat_solver_addclause( pSat, Lits, Lits + 3 );
    assert( Cid );
    return 3;
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

/**Function*************************************************************

  Synopsis    [Adds a general cardinality constraint in terms of vVars.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline int Card_AddClause( Vec_Int_t * p, int* begin, int* end )
{
    Vec_IntPush( p, (int)(end-begin) );
    while ( begin < end )
        Vec_IntPush( p, (int)*begin++ );
    return 1;
}
static inline int Card_AddHalfSorter( Vec_Int_t * p, int iVarA, int iVarB, int iVar0, int iVar1 )
{
    lit Lits[3];
    int Cid;

    Lits[0] = toLitCond( iVarA, 0 );
    Lits[1] = toLitCond( iVar0, 1 );
    Cid = Card_AddClause( p, Lits, Lits + 2 );
    assert( Cid );

    Lits[0] = toLitCond( iVarA, 0 );
    Lits[1] = toLitCond( iVar1, 1 );
    Cid = Card_AddClause( p, Lits, Lits + 2 );
    assert( Cid );

    Lits[0] = toLitCond( iVarB, 0 );
    Lits[1] = toLitCond( iVar0, 1 );
    Lits[2] = toLitCond( iVar1, 1 );
    Cid = Card_AddClause( p, Lits, Lits + 3 );
    assert( Cid );
    return 3;
}
static inline void Card_AddSorter( Vec_Int_t * p, int * pVars, int i, int k, int * pnVars )
{
    int iVar1 = (*pnVars)++;
    int iVar2 = (*pnVars)++;
    Card_AddHalfSorter( p, iVar1, iVar2, pVars[i], pVars[k] );
    pVars[i] = iVar1;
    pVars[k] = iVar2;
}
static inline void Card_AddCardinConstrMerge( Vec_Int_t * p, int * pVars, int lo, int hi, int r, int * pnVars )
{
    int i, step = r * 2;
    if ( step < hi - lo )
    {
        Card_AddCardinConstrMerge( p, pVars, lo, hi-r, step, pnVars );
        Card_AddCardinConstrMerge( p, pVars, lo+r, hi, step, pnVars );
        for ( i = lo+r; i < hi-r; i += step )
            Card_AddSorter( p, pVars, i, i+r, pnVars );
        for ( i = lo+r; i < hi-r-1; i += r )
        {
            lit Lits[2] = { Abc_Var2Lit(pVars[i], 0), Abc_Var2Lit(pVars[i+r], 1) };
            int Cid = Card_AddClause( p, Lits, Lits + 2 );
            assert( Cid );
        }
    }
}
static inline void Card_AddCardinConstrRange( Vec_Int_t * p, int * pVars, int lo, int hi, int * pnVars )
{
    if ( hi - lo >= 1 )
    {
        int i, mid = lo + (hi - lo) / 2;
        for ( i = lo; i <= mid; i++ )
            Card_AddSorter( p, pVars, i, i + (hi - lo + 1) / 2, pnVars );
        Card_AddCardinConstrRange( p, pVars, lo, mid, pnVars );
        Card_AddCardinConstrRange( p, pVars, mid+1, hi, pnVars );
        Card_AddCardinConstrMerge( p, pVars, lo, hi, 1, pnVars );
    }
}
int Card_AddCardinConstrPairWise( Vec_Int_t * p, Vec_Int_t * vVars )
{
    int nVars = Vec_IntSize(vVars);
    Card_AddCardinConstrRange( p, Vec_IntArray(vVars), 0, nVars - 1, &nVars );
    return nVars;
}
int Card_AddCardinSolver( int LogN, Vec_Int_t ** pvVars, Vec_Int_t ** pvRes )
{
    int nVars = 1 << LogN;
    int nVarsAlloc = nVars + 2 * (nVars * LogN * (LogN-1) / 4 + nVars - 1);
    Vec_Int_t * vRes = Vec_IntAlloc( 1000 );
    Vec_Int_t * vVars = Vec_IntStartNatural( nVars );
    int nVarsReal = Card_AddCardinConstrPairWise( vRes, vVars );
    assert( nVarsReal == nVarsAlloc );
    Vec_IntPush( vRes, -1 );  
    *pvVars = vVars;
    *pvRes  = vRes;  
    return nVarsReal;
}
sat_solver * Sbm_AddCardinSolver2( int LogN, Vec_Int_t ** pvVars, Vec_Int_t ** pvRes )
{
    Vec_Int_t * vVars = NULL;
    Vec_Int_t * vRes  = NULL;    
    int nVarsReal = Card_AddCardinSolver( LogN, &vVars, &vRes ), i, size;
    sat_solver * pSat = sat_solver_new();
    sat_solver_setnvars( pSat, nVarsReal );
    for ( i = 0, size = Vec_IntEntry(vRes, i++); i < Vec_IntSize(vRes); i += size, size = Vec_IntEntry(vRes, i++) )
        sat_solver_addclause( pSat, Vec_IntEntryP(vRes, i), Vec_IntEntryP(vRes, i+size) );
    if ( pvVars ) *pvVars = vVars;
    if ( pvRes )  *pvRes  = vRes;
    return pSat;
}


384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/**Function*************************************************************

  Synopsis    [Adds a general cardinality constraint in terms of vVars.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
static inline void Sbm_AddSorter( sat_solver * p, int * pVars, int i, int k, int * pnVars )
{
    int iVar1 = (*pnVars)++;
    int iVar2 = (*pnVars)++;
    int fVerbose = 0;
    if ( fVerbose )
    {
        int v;
        for ( v = 0; v < i; v++ )
            printf( " " );
        printf( "<" );
        for ( v = i+1; v < k; v++ )
            printf( "-" );
        printf( ">" );
        for ( v = k+1; v < 8; v++ )
            printf( " " );
        printf( "    " );
        printf( "[%3d :%3d ] -> [%3d :%3d ]\n", pVars[i], pVars[k], iVar1, iVar2 );
    }
//    sat_solver_add_and1( p, iVar1, pVars[i], pVars[k], 1, 1, 1 );
//    sat_solver_add_and2( p, iVar2, pVars[i], pVars[k], 0, 0, 0 );
    sat_solver_add_half_sorter( p, iVar1, iVar2, pVars[i], pVars[k] );
    pVars[i] = iVar1;
    pVars[k] = iVar2;
}
static inline void Sbm_AddCardinConstrMerge( sat_solver * p, int * pVars, int lo, int hi, int r, int * pnVars )
{
    int i, step = r * 2;
    if ( step < hi - lo )
    {
        Sbm_AddCardinConstrMerge( p, pVars, lo, hi-r, step, pnVars );
        Sbm_AddCardinConstrMerge( p, pVars, lo+r, hi, step, pnVars );
        for ( i = lo+r; i < hi-r; i += step )
            Sbm_AddSorter( p, pVars, i, i+r, pnVars );
429 430 431 432 433 434
        for ( i = lo+r; i < hi-r-1; i += r )
        {
            lit Lits[2] = { Abc_Var2Lit(pVars[i], 0), Abc_Var2Lit(pVars[i+r], 1) };
            int Cid = sat_solver_addclause( p, Lits, Lits + 2 );
            assert( Cid );
        }
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    }
}
static inline void Sbm_AddCardinConstrRange( sat_solver * p, int * pVars, int lo, int hi, int * pnVars )
{
    if ( hi - lo >= 1 )
    {
        int i, mid = lo + (hi - lo) / 2;
        for ( i = lo; i <= mid; i++ )
            Sbm_AddSorter( p, pVars, i, i + (hi - lo + 1) / 2, pnVars );
        Sbm_AddCardinConstrRange( p, pVars, lo, mid, pnVars );
        Sbm_AddCardinConstrRange( p, pVars, mid+1, hi, pnVars );
        Sbm_AddCardinConstrMerge( p, pVars, lo, hi, 1, pnVars );
    }
}
int Sbm_AddCardinConstrPairWise( sat_solver * p, Vec_Int_t * vVars, int K )
{
    int nVars = Vec_IntSize(vVars);
    Sbm_AddCardinConstrRange( p, Vec_IntArray(vVars), 0, nVars - 1, &nVars );
    sat_solver_bookmark( p );
    return nVars;
}
sat_solver * Sbm_AddCardinSolver( int LogN, Vec_Int_t ** pvVars )
{
    int nVars = 1 << LogN;
    int nVarsAlloc = nVars + 2 * (nVars * LogN * (LogN-1) / 4 + nVars - 1), nVarsReal;
    Vec_Int_t * vVars = Vec_IntStartNatural( nVars );
    sat_solver * pSat = sat_solver_new();
    sat_solver_setnvars( pSat, nVarsAlloc );
    nVarsReal = Sbm_AddCardinConstrPairWise( pSat, vVars, 2 );
    assert( nVarsReal == nVarsAlloc );
    *pvVars = vVars;
    return pSat;
}

void Sbm_AddCardinConstrTest()
{
    int LogN = 3, nVars = 1 << LogN, K = 2, Count = 1;
    Vec_Int_t * vVars, * vLits = Vec_IntAlloc( nVars );
    sat_solver * pSat = Sbm_AddCardinSolver( LogN, &vVars );
    int nVarsReal = sat_solver_nvars( pSat );

    int Lit = Abc_Var2Lit( Vec_IntEntry(vVars, K), 1 );
    printf( "LogN = %d. N = %3d.   Vars = %5d. Clauses = %6d.  Comb = %d.\n", LogN, nVars, nVarsReal, sat_solver_nclauses(pSat), nVars * (nVars-1)/2 + nVars + 1 );
    while ( 1 )
    {
        int i, status = sat_solver_solve( pSat, &Lit, &Lit+1, 0, 0, 0, 0 );
        if ( status != l_True )
            break;
        Vec_IntClear( vLits );
        printf( "%3d : ", Count++ );
        for ( i = 0; i < nVars; i++ )
        {
            Vec_IntPush( vLits, Abc_Var2Lit(i, sat_solver_var_value(pSat, i)) );
            printf( "%d", sat_solver_var_value(pSat, i) );
        }
        printf( "\n" );
        status = sat_solver_addclause( pSat, Vec_IntArray(vLits), Vec_IntArray(vLits) + nVars );
        if ( status == 0 )
            break;
    }

    sat_solver_delete( pSat );
    Vec_IntFree( vVars );
    Vec_IntFree( vLits );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Sbm_Man_t * Sbm_ManAlloc( int LogN )
{
    Sbm_Man_t * p = ABC_CALLOC( Sbm_Man_t, 1 );
    p->pSat = Sbm_AddCardinSolver( LogN, &p->vCardVars );
    p->LogN = LogN;
    p->FirstVar  = sat_solver_nvars( p->pSat );
    // window
    p->vRoots    = Vec_IntAlloc( 100 );
    p->vCuts     = Vec_WecAlloc( 1000 );
    p->vObjCuts  = Vec_WecAlloc( 1000 );
    p->vSolCuts  = Vec_IntAlloc( 100 );
    p->vCutGates = Vec_IntAlloc( 100 );
524
    p->vCutAreas = Vec_WrdAlloc( 100 );
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    // solver
    p->vAssump   = Vec_IntAlloc( 100 );
    p->vPolar    = Vec_IntAlloc( 100 );
    // timing
    p->vArrs     = Vec_IntAlloc( 100 );
    p->vReqs     = Vec_IntAlloc( 100 );
    // internal
    p->vLit2Used = Vec_IntAlloc( 100 );
    p->vDelays   = Vec_IntAlloc( 100 );
    p->vReason   = Vec_IntAlloc( 100 );
    return p;
}

void Sbm_ManStop( Sbm_Man_t * p )
{
    sat_solver_delete( p->pSat );
    Vec_IntFree( p->vCardVars );
    // internal
    Vec_IntFree( p->vRoots );
    Vec_WecFree( p->vCuts );
    Vec_WecFree( p->vObjCuts );
    Vec_IntFree( p->vSolCuts );
    Vec_IntFree( p->vCutGates );
548
    Vec_WrdFree( p->vCutAreas );
549 550 551 552 553 554 555 556 557 558
    // internal
    Vec_IntFree( p->vAssump );
    Vec_IntFree( p->vPolar );
    // internal
    Vec_IntFree( p->vArrs );
    Vec_IntFree( p->vReqs );
    // internal
    Vec_IntFree( p->vLit2Used );
    Vec_IntFree( p->vDelays );
    Vec_IntFree( p->vReason );
559
    ABC_FREE( p );
560 561 562 563 564
}

int Sbm_ManTestSat( void * pMan )
{
    abctime clk = Abc_Clock(), clk2;
565
    int i, k, Lit, LogN = 7, nVars = 1 << LogN, status, Root;
566
    Sbm_Man_t * p = Sbm_ManAlloc( LogN );
567 568 569
    word InvArea = 0;
    int fKeepTrying = 1;
    int StartSol;
570
    // derive window
571 572 573 574
    extern int Nf_ManExtractWindow( void * pMan, Vec_Int_t * vRoots, Vec_Wec_t * vCuts, Vec_Wec_t * vObjCuts, Vec_Int_t * vSolCuts, Vec_Int_t * vCutGates, Vec_Wrd_t * vCutAreas, word * pInvArea, int StartVar, int nVars );
    p->nInputs = Nf_ManExtractWindow( pMan, p->vRoots, p->vCuts, p->vObjCuts, p->vSolCuts, p->vCutGates, p->vCutAreas, &InvArea, p->FirstVar, nVars );
    p->LitShift = 2*p->nInputs+2;
    assert( Vec_WecSize(p->vObjCuts) + p->nInputs <= nVars );
575 576 577 578

    // print-out
//    Vec_WecPrint( p->vCuts, 0 );
//    printf( "\n" );
579 580
//    Vec_WecPrint( p->vObjCuts, 0 );
//    printf( "\n" );
581
    Vec_IntPrint( p->vSolCuts );
582 583 584
    printf( "All clauses = %d.  Multi clauses = %d.  Binary clauses = %d.  Other clauses = %d.\n", 
        sat_solver_nclauses(p->pSat), Vec_WecSize(p->vObjCuts), Vec_WecSizeSize(p->vCuts), 
        sat_solver_nclauses(p->pSat) - Vec_WecSize(p->vObjCuts) - Vec_WecSizeSize(p->vCuts) );
585 586 587 588 589 590 591 592

    // creating CNF
    if ( !Sbm_ManCreateCnf(p) )
        return 0;

    // create assumptions
    // cardinality
    Vec_IntClear( p->vAssump );
593
    Vec_IntPush( p->vAssump, -1 );
594
    // unused variables
595
    for ( i = Vec_WecSize(p->vObjCuts) + p->nInputs; i < nVars; i++ )
596 597 598 599 600 601
        Vec_IntPush( p->vAssump, Abc_Var2Lit(i, 1) );
    // root variables
    Vec_IntForEachEntry( p->vRoots, Root, i )
        Vec_IntPush( p->vAssump, Abc_Var2Lit(Root, 0) );
//    Vec_IntPrint( p->vAssump );

602 603
    StartSol = Vec_IntSize(p->vSolCuts);
//    StartSol = 30;
Alan Mishchenko committed
604
    while ( fKeepTrying && StartSol-fKeepTrying > 0 )
605
    {
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
        printf( "Trying to find mapping with %d gates.\n", StartSol-fKeepTrying );
    //    for ( i = Vec_IntSize(p->vSolCuts)-5; i < nVars; i++ )
    //        Vec_IntPush( p->vAssump, Abc_Var2Lit(Vec_IntEntry(p->vCardVars, i), 1) );
        Vec_IntWriteEntry( p->vAssump, 0, Abc_Var2Lit(Vec_IntEntry(p->vCardVars, StartSol-fKeepTrying), 1) );
        // solve the problem
        clk2 = Abc_Clock();
        status = sat_solver_solve( p->pSat, Vec_IntArray(p->vAssump), Vec_IntLimit(p->vAssump), 0, 0, 0, 0 );
        if ( status == l_True )
        {
            word AreaNew = 0;
            int Count = 0;
            printf( "AND Lits = %d.  Inputs = %d.  Vars = %d.  All vars = %d.\n", Vec_WecSize(p->vObjCuts), p->nInputs, Vec_WecSize(p->vObjCuts) + p->nInputs, nVars );
//            for ( i = 0; i < nVars; i++ )
//                printf( "%d", sat_solver_var_value(p->pSat, i) );
//            printf( "\n" );
            for ( i = 0; i < nVars; i++ )
                if ( sat_solver_var_value(p->pSat, i) )
                {
                    printf( "%d=%d ", i, sat_solver_var_value(p->pSat, i) );
                    Count++;
                    if ( i >= Vec_WecSize(p->vObjCuts) )
                        AreaNew += InvArea;
                }
            printf( "Count = %d\n", Count );
//            for ( i = p->FirstVar; i < sat_solver_nvars(p->pSat); i++ )
//                printf( "%d", sat_solver_var_value(p->pSat, i) );
//            printf( "\n" );
            Count = 1;
            for ( i = p->FirstVar; i < sat_solver_nvars(p->pSat); i++ )
                if ( sat_solver_var_value(p->pSat, i) )
                {
                    Vec_Int_t * vCutOne = Vec_WecEntry(p->vCuts, i-p->FirstVar);
                    printf( "%2d : Cut %3d  (Gate %2d)  ", Count, i-p->FirstVar, Vec_IntEntry(p->vCutGates, i-p->FirstVar) );
                    Vec_IntForEachEntry( vCutOne, Lit, k )
                        printf( "%d(%d) ", Lit - 2*(p->nInputs+1), Abc_Lit2Var(Lit) );
                    printf( "\n" );
                    Count++;
                    AreaNew += Vec_WrdEntry(p->vCutAreas, i-p->FirstVar);
                }
            printf( "Area = %7.2f\n", Scl_Int2Flt((int)AreaNew) );
        }
        if ( status == l_False )
            printf( "UNSAT " ), fKeepTrying = 0;
        else if ( status == l_True )
            printf( "SAT   " ), fKeepTrying++;
        Abc_PrintTime( 1, "Time", Abc_Clock() - clk2 );
        Abc_PrintTime( 1, "Total time", Abc_Clock() - clk );
653 654 655 656 657 658 659 660 661 662 663 664 665 666
        printf( "\n" );
    }
    Sbm_ManStop( p );
    return 1;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END