lucky.c 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/**CFile****************************************************************

  FileName    [lucky.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Semi-canonical form computation package.]

  Synopsis    [Truth table minimization procedures.]

  Author      [Jake]

  Date        [Started - August 2012]

***********************************************************************/

#include "luckyInt.h"

ABC_NAMESPACE_IMPL_START


22
int memCompare(word* x, word*  y, int nVars)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
{
    int i;
    for(i=Kit_TruthWordNum_64bit( nVars )-1;i>=0;i--)
    {
        if(x[i]==y[i])
            continue;
        else if(x[i]>y[i])
            return 1;
        else
            return -1;
    }
    return 0;
}
///////sort Word* a///////////////////////////////////////////////////////////////////////////////////////////////////////
 int compareWords1 (const void * a, const void * b)
 {
     if( *(word*)a > *(word*)b )
         return 1;
     else
         return( *(word*)a < *(word*)b ) ? -1: 0;
     
 }
 
 void sortAndUnique1(word* a, Abc_TtStore_t* p)
 {
     int i, count=1, WordsN = p->nFuncs;
     word tempWord;
     qsort(a,WordsN,sizeof(word),compareWords1);
     tempWord = a[0];
52
     for(i=1;i<WordsN;i++)  
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
         if(tempWord != a[i])
         {
             a[count] = a[i];
             tempWord = a[i];
             count++;
         }
         p->nFuncs = count;
}
//////////sort Word** a//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
int compareWords2 (const void ** x, const void ** y)
{
    
    if(**(word**)x > **(word**)y)
        return 1;
    else if(**(word**)x < **(word**)y)
        return -1;
    else
70
        return 0;   
71 72 73 74 75 76 77
    
}
int compareWords (const void ** a, const void ** b)
{
     if( memcmp(*(word**)a,*(word**)b,sizeof(word)*1) > 0 )
         return 1;
     else
78
         return ( memcmp(*(word**)a,*(word**)b,sizeof(word)*1) < 0 ) ? -1: 0;       
79 80 81
}
int compareWords3 (const void ** x, const void ** y)
{
82
    return memCompare(*(word**)x, *(word**)y, 16);   
83 84 85 86 87
} 
void sortAndUnique(word** a, Abc_TtStore_t* p)
{
     int i, count=1, WordsPtrN = p->nFuncs;
     word* tempWordPtr;
Alan Mishchenko committed
88
     qsort(a,WordsPtrN,sizeof(word*),(int(*)(const void *,const void *))compareWords3);
89
     tempWordPtr = a[0];
90
     for(i=1;i<WordsPtrN;i++)   
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
         if(memcmp(a[i],tempWordPtr,sizeof(word)*(p->nWords)) != 0)
         {
             a[count] = a[i];
             tempWordPtr = a[i];
             count++;
         }
         p->nFuncs = count;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

typedef struct
{
     int totalCycles;
     int maxNCycles;
     int minNCycles;
     
}cycleCtr;
cycleCtr* setCycleCtrPtr()
{
     cycleCtr* x = (cycleCtr*) malloc(sizeof(cycleCtr));
     x->totalCycles=0;
     x->maxNCycles=0;
     x->minNCycles=111111111;
     return x;
}
void freeCycleCtr(cycleCtr* x)
{
    free(x);
}
word** makeArray(Abc_TtStore_t* p)
{
    int i;
    word** a;
    a = (word**)malloc(sizeof(word*)*(p->nFuncs));
    for(i=0;i<p->nFuncs;i++)
    {
        a[i] = (word*)malloc(sizeof(word)*(p->nWords));
        memcpy(a[i],p->pFuncs[i],sizeof(word)*(p->nWords));

    }
    return a;
}
void freeArray(word** a,Abc_TtStore_t* p)
{
    int i;
    for(i=0;i<p->nFuncs;i++)
        free(a[i]);
    free(a);
}

word* makeArrayB(word** a, int nFuncs)
{
    int i;
    word* b;
    b = (word*)malloc(sizeof(word)*(nFuncs));
    for(i=0;i<nFuncs;i++)
        b[i] = a[i][0];

    return b;
}
void freeArrayB(word* b)
{
    free(b);
}

////////////////////////////////////////////////////////////////////////////////////////

// if highest bit in F ( all ones min term ) is one => inverse 
// if pInOnt changed(minimized) by function return 1 if not 0
160
// int minimalInitialFlip_propper(word* pInOut, word* pDuplicat, int  nVars)
161
// {
162 163 164 165 166 167 168 169 170
//  word oneWord=1;
//  Kit_TruthCopy_64bit( pDuplicat, pInOut, nVars );
//  Kit_TruthNot_64bit( pDuplicat, nVars );
//  if( memCompare(pDuplicat,pInOut,nVars) == -1)
//  {
//      Kit_TruthCopy_64bit(pInOut, pDuplicat, nVars );
//      return 1;
//  }
//  return 0;
171
// }
172
// int minimalFlip(word* pInOut, word* pMinimal, word* PDuplicat, int  nVars) 
173
// {
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
//  int i;
//  int blockSize = Kit_TruthWordNum_64bit( nVars )*sizeof(word);
//  memcpy(pMinimal, pInOut, blockSize);
//  memcpy(PDuplicat, pInOut, blockSize);
//  for(i=0;i<nVars;i++)
//  {
//      Kit_TruthChangePhase_64bit( pInOut, nVars, i );
//      if( memCompare(pMinimal,pInOut,nVars) == 1)
//          memcpy(pMinimal, pInOut, blockSize);
//      memcpy(pInOut,PDuplicat,blockSize);
//  }
//  memcpy(pInOut,pMinimal,blockSize);
//  if(memCompare(pMinimal,PDuplicat,nVars) == 0)
//      return 0;
//  else
//      return 1;
190
// }
191
// int minimalSwap(word* pInOut, word* pMinimal, word* PDuplicat, int  nVars) 
192
// {
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
//  int i;  
//  int blockSize = Kit_TruthWordNum_64bit( nVars )*sizeof(word);
//  memcpy(pMinimal, pInOut, blockSize);
//  memcpy(PDuplicat, pInOut, blockSize);
//  for(i=0;i<nVars-1;i++)
//  {
//      Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i );
//      if(memCompare(pMinimal,pInOut,nVars) == 1)
//          memcpy(pMinimal, pInOut, blockSize);
//      memcpy(pInOut,PDuplicat,blockSize);
//  }
//  memcpy(pInOut,pMinimal,blockSize);
//  if(memCompare(pMinimal,PDuplicat,nVars) == 0)
//      return 0;
//  else
//      return 1;
209 210 211 212
// }
// 
// void luckyCanonicizer(word* pInOut, word* pAux, word* pAux1, int  nVars, cycleCtr* cCtr)
// {
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
//  int counter=1, cycles=0;   
//  assert( nVars <= 16 );
//  while(counter>0 )   //  && cycles < 10 if we wanna limit cycles
//  {
//      counter=0;
//      counter += minimalInitialFlip(pInOut, nVars);
//      counter += minimalFlip(pInOut, pAux, pAux1, nVars);
//      counter += minimalSwap(pInOut, pAux, pAux1, nVars);
//      cCtr->totalCycles++;
//      cycles++;
//  }
//  if(cycles < cCtr->minNCycles)
//      cCtr->minNCycles = cycles;
//  else if(cycles > cCtr->maxNCycles)
//      cCtr->maxNCycles = cycles;
228 229 230 231
// }
//  runs paralel F and ~F in luckyCanonicizer
// void luckyCanonicizer2(word* pInOut, word* pAux, word* pAux1, word* temp, int  nVars)
// {
232 233 234 235 236
//  int nWords = Kit_TruthWordNum_64bit( nVars );
//  int counter=1, nOnes;   
//  assert( nVars <= 16 );
//  nOnes = Kit_TruthCountOnes_64bit(pInOut, nVars);
//  
237 238
//     if ( (nOnes*2 == nWords * 32) )
//     { 
239 240
//      Kit_TruthCopy_64bit( temp, pInOut, nVars );
//      Kit_TruthNot_64bit( temp, nVars );
241
//         luckyCanonicizer1_simple(pInOut, pAux, pAux1, nVars);
242 243 244 245
//      luckyCanonicizer1_simple(temp, pAux, pAux1, nVars);
//      if( memCompare(temp,pInOut,nVars) == -1)        
//          Kit_TruthCopy_64bit(pInOut, temp, nVars );  
//      return;     
246
//     }
247 248 249 250 251 252 253
//  while(counter>0 )   //  && cycles < 10 if we wanna limit cycles
//  {
//      counter=0;
//      counter += minimalInitialFlip_propper(pInOut, pAux, nVars);
//      counter += minimalFlip1(pInOut, pAux, pAux1, nVars);
//      counter += minimalSwap1(pInOut, pAux, pAux1, nVars);
//  }
254 255 256 257
// }
// same as luckyCanonicizer + cycleCtr stutistics 
// void luckyCanonicizer1(word* pInOut, word* pAux, word* pAux1, int  nVars, cycleCtr* cCtr)
// {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
//  int counter=1, cycles=0;   
//  assert( nVars <= 16 );
//  while(counter>0 )   //  && cycles < 10 if we wanna limit cycles
//  {
//      counter=0;
//      counter += minimalInitialFlip1(pInOut, nVars);
//      counter += minimalFlip1(pInOut, pAux, pAux1, nVars);
//      counter += minimalSwap1(pInOut, pAux, pAux1, nVars);
//      cCtr->totalCycles++;
//      cycles++;
//  }
//  if(cycles < cCtr->minNCycles)
//      cCtr->minNCycles = cycles;
//  else if(cycles > cCtr->maxNCycles)
//      cCtr->maxNCycles = cycles;
273 274 275 276 277 278 279 280 281 282 283 284 285
// }
// luckyCanonicizer 

void printCCtrInfo(cycleCtr* cCtr, int nFuncs)
{
    printf("maxNCycles = %d\n",cCtr->maxNCycles);
    printf("minNCycles = %d\n",cCtr->minNCycles);
    printf("average NCycles = %.3f\n",cCtr->totalCycles/(double)nFuncs);
}
////////////////////////////////////////New Faster versoin/////////////////////////////////////////////////////////

// if highest bit in F ( all ones min term ) is one => inverse 
// returns: if pInOnt changed(minimized) by function return 1 if not 0
Alan Mishchenko committed
286
int minimalInitialFlip1(word* pInOut, int  nVars)
287 288 289 290 291 292 293 294 295 296 297 298 299 300
{
    word oneWord=1;
    if(  (pInOut[Kit_TruthWordNum_64bit( nVars ) -1]>>63) & oneWord )
    {
        Kit_TruthNot_64bit( pInOut, nVars );
        return 1;
    }
    return 0;
}

// compare F with  F1 = (F with changed phase in one of the vars).
// keeps smaller.
// same for all vars in F.
// returns: if pInOnt changed(minimized) by function return 1 if not 0
Alan Mishchenko committed
301
int minimalFlip1(word* pInOut, word* pMinimal, word* PDuplicat, int  nVars) 
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
{
    int i;
    int blockSize = Kit_TruthWordNum_64bit( nVars )*sizeof(word);
    memcpy(pMinimal, pInOut, blockSize);
    memcpy(PDuplicat, pInOut, blockSize);
    Kit_TruthChangePhase_64bit( pInOut, nVars, 0 );
    for(i=1;i<nVars;i++)
    {
        if( memCompare(pMinimal,pInOut,nVars) == 1)
        {
            memcpy(pMinimal, pInOut, blockSize);
            Kit_TruthChangePhase_64bit( pInOut, nVars, i );
        }
        else
        {
            memcpy(pInOut, pMinimal, blockSize);
            Kit_TruthChangePhase_64bit( pInOut, nVars, i );
        }
    }
    if( memCompare(pMinimal,pInOut,nVars) == -1)
        memcpy(pInOut, pMinimal, blockSize);
    if(memcmp(pInOut,PDuplicat,blockSize) == 0)
        return 0;
    else
        return 1;
}
// compare F with  F1 = (F with swapped two adjacent vars).
// keeps smaller.
// same for all vars in F.
// returns: if pInOnt changed(minimized) by function return 1 if not 0
Alan Mishchenko committed
332
int minimalSwap1(word* pInOut, word* pMinimal, word* PDuplicat, int  nVars) 
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
{
    int i;
    int blockSize = Kit_TruthWordNum_64bit( nVars )*sizeof(word);
    memcpy(pMinimal, pInOut, blockSize);
    memcpy(PDuplicat, pInOut, blockSize);
    Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, 0 );
    for(i=1;i<nVars-1;i++)
    {
        if( memCompare(pMinimal,pInOut,nVars) == 1)
        {
            memcpy(pMinimal, pInOut, blockSize);
            Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i );
        }
        else
        {
            memcpy(pInOut, pMinimal, blockSize);
            Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i );
        }
    }
    if( memCompare(pMinimal,pInOut,nVars) == -1)
        memcpy(pInOut, pMinimal, blockSize);
    if(memcmp(pInOut,PDuplicat,blockSize) == 0)
        return 0;
    else
        return 1;
}
359 360 361

// if highest bit in F ( all ones min term ) is one => inverse 
// returns: if pInOnt changed(minimized) by function return 1 if not 0
Alan Mishchenko committed
362
int minimalInitialFlip(word* pInOut, int  nVars, unsigned* p_uCanonPhase)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
{
    word oneWord=1;
    if(  (pInOut[Kit_TruthWordNum_64bit( nVars ) -1]>>63) & oneWord )
    {
        Kit_TruthNot_64bit( pInOut, nVars );
        *p_uCanonPhase ^= (1 << nVars);
        return 1;
    }
    return 0;
}

// compare F with  F1 = (F with changed phase in one of the vars).
// keeps smaller.
// same for all vars in F.
// returns: if pInOnt changed(minimized) by function return 1 if not 0
Alan Mishchenko committed
378
int minimalFlip(word* pInOut, word* pMinimal, word* PDuplicat, int  nVars, unsigned* p_uCanonPhase)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
{
    int i;
    unsigned minTemp = *p_uCanonPhase;
    int blockSize = Kit_TruthWordNum_64bit( nVars )*sizeof(word);
    memcpy(pMinimal, pInOut, blockSize);
    memcpy(PDuplicat, pInOut, blockSize);       //////////////need one more unsigned!!!!!!!!!!!!!
    Kit_TruthChangePhase_64bit( pInOut, nVars, 0 );
    *p_uCanonPhase ^= (unsigned)1;
    for(i=1;i<nVars;i++)
    {
        if( memCompare(pMinimal,pInOut,nVars) == 1)
        {
            memcpy(pMinimal, pInOut, blockSize);
            minTemp = *p_uCanonPhase;
        }
        else
        {
            memcpy(pInOut, pMinimal, blockSize);
            *p_uCanonPhase = minTemp;
        }
        Kit_TruthChangePhase_64bit( pInOut, nVars, i );
        *p_uCanonPhase ^= (1 << i);
    }
    if( memCompare(pMinimal,pInOut,nVars) == -1)
    {
        memcpy(pInOut, pMinimal, blockSize);
        *p_uCanonPhase = minTemp;
    }
407
    if(memcmp(pInOut,PDuplicat,blockSize) == 0) 
408 409 410 411 412 413
        return 0;
    else
        return 1;
}

// swaps iVar and iVar+1 elements in pCanonPerm ant p_uCanonPhase
Alan Mishchenko committed
414
void swapInfoAdjacentVars(int iVar, char * pCanonPerm, unsigned* p_uCanonPhase)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
{
    char Temp = pCanonPerm[iVar];
    pCanonPerm[iVar] = pCanonPerm[iVar+1];
    pCanonPerm[iVar+1] = Temp;
    
    // if the polarity of variables is different, swap them
    if ( ((*p_uCanonPhase & (1 << iVar)) > 0) != ((*p_uCanonPhase & (1 << (iVar+1))) > 0) )
    {
        *p_uCanonPhase ^= (1 << iVar);
        *p_uCanonPhase ^= (1 << (iVar+1));
    }
            
}


// compare F with  F1 = (F with swapped two adjacent vars).
// keeps smaller.
// same for all vars in F.
// returns: if pInOnt changed(minimized) by function return 1 if not 0
434 435 436 437


/*
// this version is buggy and is fixed below
Alan Mishchenko committed
438
int minimalSwap(word* pInOut, word* pMinimal, word* PDuplicat, int  nVars, char * pCanonPerm, char * tempArray, unsigned* p_uCanonPhase) 
439
{
440
    int i;  
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    int blockSizeWord = Kit_TruthWordNum_64bit( nVars )*sizeof(word);
    int blockSizeChar = nVars *sizeof(char);
    memcpy(pMinimal, pInOut, blockSizeWord);
    memcpy(PDuplicat, pInOut, blockSizeWord);
    memcpy(tempArray, pCanonPerm, blockSizeChar);  
    Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, 0 );
    swapInfoAdjacentVars(0, pCanonPerm, p_uCanonPhase);
    for(i=1;i<nVars-1;i++)
    {
        if( memCompare(pMinimal,pInOut,nVars) == 1)
        {
            memcpy(pMinimal, pInOut, blockSizeWord);
            memcpy(tempArray, pCanonPerm, blockSizeChar);
        }
        else
        {
            memcpy(pInOut, pMinimal, blockSizeWord);
458
            memcpy(pCanonPerm, tempArray, blockSizeChar);   
459 460 461 462 463 464 465 466 467 468 469 470 471 472
        }
        Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i );
        swapInfoAdjacentVars(i, pCanonPerm, p_uCanonPhase);
    }
    if( memCompare(pMinimal,pInOut,nVars) == -1)
    {
        memcpy(pInOut, pMinimal, blockSizeWord);
        memcpy(pCanonPerm, tempArray, blockSizeChar);
    }
    if(memcmp(pInOut,PDuplicat,blockSizeWord) == 0)
        return 0;
    else
        return 1;
}
473 474
*/

Alan Mishchenko committed
475
int minimalSwap(word* pInOut, word* pMinimal, word* PDuplicat, int  nVars, char * pCanonPerm, char * tempArray, unsigned* p_uCanonPhase) 
476
{
477
    int i;  
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    int blockSizeWord = Kit_TruthWordNum_64bit( nVars )*sizeof(word);
    int blockSizeChar = nVars *sizeof(char);
    unsigned TempuCanonPhase = *p_uCanonPhase;
    memcpy(pMinimal, pInOut, blockSizeWord);
    memcpy(PDuplicat, pInOut, blockSizeWord);
    memcpy(tempArray, pCanonPerm, blockSizeChar);  
    Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, 0 );
    swapInfoAdjacentVars(0, pCanonPerm, p_uCanonPhase);
    for(i=1;i<nVars-1;i++)
    {
        if( memCompare(pMinimal,pInOut,nVars) == 1)
        {
            memcpy(pMinimal, pInOut, blockSizeWord);
            memcpy(tempArray, pCanonPerm, blockSizeChar);
            TempuCanonPhase = *p_uCanonPhase;
            
        }
        else
        {
            memcpy(pInOut, pMinimal, blockSizeWord);
            memcpy(pCanonPerm, tempArray, blockSizeChar);
            *p_uCanonPhase = TempuCanonPhase;
        }
        Kit_TruthSwapAdjacentVars_64bit( pInOut, nVars, i );
        swapInfoAdjacentVars(i, pCanonPerm, p_uCanonPhase);
    }
    if( memCompare(pMinimal,pInOut,nVars) == -1)
    {
        memcpy(pInOut, pMinimal, blockSizeWord);
        memcpy(pCanonPerm, tempArray, blockSizeChar);
        *p_uCanonPhase = TempuCanonPhase;
    }
    if(memcmp(pInOut,PDuplicat,blockSizeWord) == 0)
        return 0;
    else
        return 1;
}


//////////////// functions below just for Alan if he want to double check my program//////////////////////////////////
/////////////////You need swap_ij function or analogical one//////////////////////////////////////////////////////////
/*
void swapAndFlip(word* pAfter, int nVars, int iVarInPosition, int jVar, char * pCanonPerm, unsigned* pUCanonPhase)
{
    int Temp;
    swap_ij(pAfter, nVars, iVarInPosition, jVar);
    
    Temp = pCanonPerm[iVarInPosition];
    pCanonPerm[iVarInPosition] = pCanonPerm[jVar];
    pCanonPerm[jVar] = Temp;
    
    if ( ((*pUCanonPhase & (1 << iVarInPosition)) > 0) != ((*pUCanonPhase & (1 << jVar)) > 0) )
    {
        *pUCanonPhase ^= (1 << iVarInPosition);
        *pUCanonPhase ^= (1 << jVar);
    }
    if(*pUCanonPhase>>iVarInPosition & (unsigned)1 == 1)
        Kit_TruthChangePhase_64bit( pAfter, nVars, iVarInPosition );
    
}
int luckyCheck(word* pAfter, word* pBefore, int nVars, char * pCanonPerm, unsigned uCanonPhase)
{
    int i,j;
    char tempChar;
    for(j=0;j<nVars;j++)
    {
        tempChar = 'a'+ j;
        for(i=j;i<nVars;i++)
        {
            if(tempChar != pCanonPerm[i])
                continue;
            swapAndFlip(pAfter , nVars, j, i, pCanonPerm, &uCanonPhase);
            break;
        }
    }
    if(uCanonPhase>>nVars & (unsigned)1 == 1)
        Kit_TruthNot_64bit(pAfter, nVars );
    if(memcmp(pAfter, pBefore, Kit_TruthWordNum_64bit( nVars )*sizeof(word)) == 0)
        return 0;
    else
        return 1;
}
*/
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

563

564
void luckyCanonicizer(word* pInOut, word* pAux, word* pAux1, int  nVars, char * pCanonPerm, char * tempArray, unsigned* p_uCanonPhase)
565 566 567 568 569 570 571 572
{
    int counter=1;
    assert( nVars <= 16 );
    while(counter>0 )   //  && cycles < 10 if we wanna limit cycles
    {
        counter=0;
        counter += minimalInitialFlip(pInOut, nVars, p_uCanonPhase);
        counter += minimalFlip(pInOut, pAux, pAux1, nVars, p_uCanonPhase);
573
        counter += minimalSwap(pInOut, pAux, pAux1, nVars, pCanonPerm, tempArray, p_uCanonPhase);   
574 575
    }
}
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// tries to find minimal F till F at the beginning of the loop is the same as at the end - irreducible 
unsigned luckyCanonicizer1_simple(word* pInOut, word* pAux, word* pAux1, int  nVars, char * pCanonPerm, unsigned CanonPhase)
{
    int counter=1;
    assert( nVars <= 16 );
    while(counter>0 )   //  && cycles < 10 if we wanna limit cycles
    {
        counter=0;
        counter += minimalInitialFlip1(pInOut, nVars);
        counter += minimalFlip1(pInOut, pAux, pAux1, nVars);
        counter += minimalSwap1(pInOut, pAux, pAux1, nVars);    
    }
    return CanonPhase;
}

void luckyCanonicizer_final(word* pInOut, word* pAux, word* pAux1, int  nVars)
{
    Kit_TruthSemiCanonicize_Yasha_simple( pInOut, nVars, NULL );
    luckyCanonicizer1_simple(pInOut, pAux, pAux1, nVars, NULL, 0);
}

// this procedure calls internal canoniziers
// it returns canonical phase (as return value) and canonical permutation (in pCanonPerm)
unsigned Kit_TruthSemiCanonicize_new_internal( word * pInOut, int nVars, char * pCanonPerm )
{
    word pAux[1024], pAux1[1024];
602
    char tempArray[16];
603 604
    unsigned CanonPhase;
    assert( nVars <= 16 );
605 606
    CanonPhase = Kit_TruthSemiCanonicize_Yasha( pInOut, nVars, pCanonPerm );
    luckyCanonicizer(pInOut, pAux, pAux1, nVars, pCanonPerm, tempArray, &CanonPhase);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    return CanonPhase;
}

// this procedure is translates truth table from 'unsingeds' into 'words' 
unsigned Kit_TruthSemiCanonicize_new( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm )
{
    unsigned Result;
    if ( nVars < 6 )
    {
         word Temp = ((word)pInOut[0] << 32) | (word)pInOut[0];
         Result = Kit_TruthSemiCanonicize_new_internal( &Temp, nVars, pCanonPerm );
         pInOut[0] = (unsigned)Temp;
    }
    else
         Result = Kit_TruthSemiCanonicize_new_internal( (word *)pInOut, nVars, pCanonPerm );
    return Result;
}



// compile main() procedure only if running outside of ABC environment
#ifndef _RUNNING_ABC_

int main () 
{
632 633 634
//  char * pFileInput  = "nonDSDfunc06var1M.txt";
//  char * pFileInput1 = "partDSDfunc06var1M.txt";
//  char * pFileInput2 = "fullDSDfunc06var1M.txt";
635

636 637 638
//  char * pFileInput  = "nonDSDfunc10var100K.txt";
//  char * pFileInput1 = "partDSDfunc10var100K.txt";
//  char * pFileInput2 = "fullDSDfunc10var100K.txt";
639

640 641 642 643
//  char * pFileInput = "partDSDfunc12var100K.txt";
//  char * pFileInput  = "nonDSDfunc12var100K.txt";
//  char * pFileInput1 = "partDSDfunc12var100K.txt";
//  char * pFileInput2 = "fullDSDfunc12var100K.txt";
644

645 646 647
//  char * pFileInput  = "nonDSDfunc14var10K.txt";
//  char * pFileInput1 = "partDSDfunc14var10K.txt";
//  char * pFileInput2 = "fullDSDfunc14var10K.txt";
648 649 650 651 652 653 654 655 656 657

    char * pFileInput  = "nonDSDfunc16var10K.txt";
    char * pFileInput1 = "partDSDfunc16var10K.txt";
    char * pFileInput2 = "fullDSDfunc16var10K.txt";

    int i, j, tempNF;
    char** charArray;
    word** a, ** b;
    Abc_TtStore_t* p;
    word * pAux, * pAux1;
658
    int * pStore;
659
//  cycleCtr* cCtr;
660 661 662 663 664 665 666
    charArray = (char**)malloc(sizeof(char*)*3);

    charArray[0] = pFileInput;
    charArray[1] = pFileInput1;
    charArray[2] = pFileInput2;
    for(j=0;j<3;j++)
    {
667 668
        p = setTtStore(charArray[j]);   
//      p = setTtStore(pFileInput); 
669
        a = makeArray(p);
670 671
        b = makeArray(p);   
//      cCtr = setCycleCtrPtr();
672

673 674
        pAux = (word*)malloc(sizeof(word)*(p->nWords));
        pAux1 = (word*)malloc(sizeof(word)*(p->nWords));    
675
        pStore = (int*)malloc(sizeof(int)*(p->nVars));
676 677
        printf("In %s Fs at start = %d\n",charArray[j],p->nFuncs);
        
678
        tempNF = p->nFuncs;
679

680
        TimePrint("start");     
681 682
        for(i=0;i<p->nFuncs;i++)        
            luckyCanonicizer_final(a[i], pAux, pAux1, p->nVars, pStore);        
683
        TimePrint("done with A");
684 685 686 687

        sortAndUnique(a, p);
        printf("F left in A final = %d\n",p->nFuncs);
        freeArray(a,p);
688
        TimePrint("Done with sort");
689 690
        

691
// delete data-structures   
692 693 694
        free(pAux);
        free(pAux1);    
        free(pStore);
695
//      freeCycleCtr(cCtr);
696 697 698 699 700 701 702 703 704 705
        Abc_TruthStoreFree( p );
    }
    return 0;
}

#endif



ABC_NAMESPACE_IMPL_END