extraBddImage.c 36.3 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/**CFile****************************************************************

  FileName    [extraBddImage.c]

  PackageName [extra]

  Synopsis    [Various reusable software utilities.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - September 1, 2003.]

  Revision    [$Id: extraBddImage.c,v 1.0 2003/09/01 00:00:00 alanmi Exp $]

***********************************************************************/

19
#include "extraBdd.h"
Alan Mishchenko committed
20

21 22 23
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/* 
    The ideas implemented in this file are inspired by the paper:
    Pankaj Chauhan, Edmund Clarke, Somesh Jha, Jim Kukula, Tom Shiple, 
    Helmut Veith, Dong Wang. Non-linear Quantification Scheduling in 
    Image Computation. ICCAD, 2001.
*/

/*---------------------------------------------------------------------------*/
/* Constant declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Stucture declarations                                                     */
/*---------------------------------------------------------------------------*/

typedef struct Extra_ImageNode_t_  Extra_ImageNode_t;
typedef struct Extra_ImagePart_t_  Extra_ImagePart_t;
typedef struct Extra_ImageVar_t_   Extra_ImageVar_t;

struct Extra_ImageTree_t_
{
    Extra_ImageNode_t * pRoot;      // the root of quantification tree
    Extra_ImageNode_t * pCare;      // the leaf node with the care set
    DdNode *            bCareSupp;  // the cube to quantify from the care
    int                 fVerbose;   // the verbosity flag
    int                 nNodesMax;  // the max number of nodes in one iter
    int                 nNodesMaxT; // the overall max number of nodes
    int                 nIter;      // the number of iterations with this tree
};

struct Extra_ImageNode_t_
{
    DdManager *         dd;         // the manager 
    DdNode *            bCube;      // the cube to quantify
    DdNode *            bImage;     // the partial image
    Extra_ImageNode_t * pNode1;     // the first branch
    Extra_ImageNode_t * pNode2;     // the second branch
    Extra_ImagePart_t * pPart;      // the partition (temporary)
};

struct Extra_ImagePart_t_
{
    DdNode *            bFunc;      // the partition
    DdNode *            bSupp;      // the support of this partition
    int                 nNodes;     // the number of BDD nodes
    short               nSupp;      // the number of support variables
    short               iPart;      // the number of this partition
};

struct Extra_ImageVar_t_
{
    int                 iNum;       // the BDD index of this variable
    DdNode *            bParts;     // the partition numbers
    int                 nParts;     // the number of partitions
};

/*---------------------------------------------------------------------------*/
/* Type declarations                                                         */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Variable declarations                                                     */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Macro declarations                                                        */
/*---------------------------------------------------------------------------*/

/**AutomaticStart*************************************************************/


/*---------------------------------------------------------------------------*/
/* Static function prototypes                                                */
/*---------------------------------------------------------------------------*/

static Extra_ImagePart_t ** Extra_CreateParts( DdManager * dd,
    int nParts, DdNode ** pbParts, DdNode * bCare );
static Extra_ImageVar_t ** Extra_CreateVars( DdManager * dd,
    int nParts, Extra_ImagePart_t ** pParts,
    int nVars, DdNode ** pbVarsNs );
static Extra_ImageNode_t ** Extra_CreateNodes( DdManager * dd, 
    int nParts, Extra_ImagePart_t ** pParts, 
    int nVars,  Extra_ImageVar_t ** pVars );
static void Extra_DeleteParts_rec( Extra_ImageNode_t * pNode );
static int Extra_BuildTreeNode( DdManager * dd, 
    int nNodes, Extra_ImageNode_t ** pNodes, 
    int nVars,  Extra_ImageVar_t ** pVars );
static Extra_ImageNode_t * Extra_MergeTopNodes( DdManager * dd, 
    int nNodes, Extra_ImageNode_t ** pNodes );
static void Extra_bddImageTreeDelete_rec( Extra_ImageNode_t * pNode );
static void Extra_bddImageCompute_rec( Extra_ImageTree_t * pTree, Extra_ImageNode_t * pNode );
static int Extra_FindBestVariable( DdManager * dd,
    int nNodes, Extra_ImageNode_t ** pNodes, 
    int nVars,  Extra_ImageVar_t ** pVars );
static void Extra_FindBestPartitions( DdManager * dd, DdNode * bParts, 
    int nNodes, Extra_ImageNode_t ** pNodes, 
    int * piNode1, int * piNode2 );
static Extra_ImageNode_t * Extra_CombineTwoNodes( DdManager * dd, DdNode * bCube,
    Extra_ImageNode_t * pNode1, Extra_ImageNode_t * pNode2 );

static void Extra_bddImagePrintLatchDependency( DdManager * dd, DdNode * bCare,
    int nParts, DdNode ** pbParts,
    int nVars, DdNode ** pbVars );
static void Extra_bddImagePrintLatchDependencyOne( DdManager * dd, DdNode * bFunc, 
    DdNode * bVarsCs, DdNode * bVarsNs, int iPart );

static void Extra_bddImagePrintTree( Extra_ImageTree_t * pTree );
static void Extra_bddImagePrintTree_rec( Extra_ImageNode_t * pNode, int nOffset );


/**AutomaticEnd***************************************************************/


/*---------------------------------------------------------------------------*/
/* Definition of exported functions                                          */
/*---------------------------------------------------------------------------*/

/**Function*************************************************************

  Synopsis    [Starts the image computation using tree-based scheduling.]

  Description [This procedure starts the image computation. It uses
  the given care set to test-run the image computation and creates the 
  quantification tree by scheduling variable quantifications. The tree can 
  be used to compute images for other care sets without rescheduling.
  In this case, Extra_bddImageCompute() should be called.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Extra_ImageTree_t * Extra_bddImageStart( 
    DdManager * dd, DdNode * bCare, // the care set
    int nParts, DdNode ** pbParts,  // the partitions for image computation
    int nVars, DdNode ** pbVars, int fVerbose )   // the NS and parameter variables (not quantified!)
{
    Extra_ImageTree_t * pTree;
    Extra_ImagePart_t ** pParts;
    Extra_ImageVar_t ** pVars;
    Extra_ImageNode_t ** pNodes;
    int v;

    if ( fVerbose && dd->size <= 80 )
        Extra_bddImagePrintLatchDependency( dd, bCare, nParts, pbParts, nVars, pbVars );

    // create variables, partitions and leaf nodes
    pParts = Extra_CreateParts( dd, nParts, pbParts, bCare );
    pVars  = Extra_CreateVars( dd, nParts + 1, pParts, nVars, pbVars );
    pNodes = Extra_CreateNodes( dd, nParts + 1, pParts, dd->size, pVars );
    
    // create the tree
Alan Mishchenko committed
176
    pTree = ABC_ALLOC( Extra_ImageTree_t, 1 );
Alan Mishchenko committed
177 178 179 180 181 182 183 184 185 186
    memset( pTree, 0, sizeof(Extra_ImageTree_t) );
    pTree->pCare = pNodes[nParts];
    pTree->fVerbose = fVerbose;

    // process the nodes
    while ( Extra_BuildTreeNode( dd, nParts + 1, pNodes, dd->size, pVars ) );

    // make sure the variables are gone
    for ( v = 0; v < dd->size; v++ )
        assert( pVars[v] == NULL );
Alan Mishchenko committed
187
    ABC_FREE( pVars );
Alan Mishchenko committed
188 189 190 191 192 193 194

    // merge the topmost nodes
    while ( (pTree->pRoot = Extra_MergeTopNodes( dd, nParts + 1, pNodes )) == NULL );

    // make sure the nodes are gone
    for ( v = 0; v < nParts + 1; v++ )
        assert( pNodes[v] == NULL );
Alan Mishchenko committed
195
    ABC_FREE( pNodes );
Alan Mishchenko committed
196 197 198 199 200 201 202 203 204

//    if ( fVerbose )
//        Extra_bddImagePrintTree( pTree );

    // set the support of the care set
    pTree->bCareSupp = Cudd_Support( dd, bCare );  Cudd_Ref( pTree->bCareSupp );

    // clean the partitions
    Extra_DeleteParts_rec( pTree->pRoot );
Alan Mishchenko committed
205
    ABC_FREE( pParts );
Alan Mishchenko committed
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    return pTree;
}

/**Function*************************************************************

  Synopsis    [Compute the image.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Extra_bddImageCompute( Extra_ImageTree_t * pTree, DdNode * bCare )
{
    DdManager * dd = pTree->pCare->dd;
    DdNode * bSupp, * bRem;

    pTree->nIter++;

    // make sure the supports are okay
    bSupp = Cudd_Support( dd, bCare );        Cudd_Ref( bSupp );
    if ( bSupp != pTree->bCareSupp )
    {
        bRem = Cudd_bddExistAbstract( dd, bSupp, pTree->bCareSupp );  Cudd_Ref( bRem );
        if ( bRem != b1 )
        {
printf( "Original care set support: " );
Alan Mishchenko committed
235
ABC_PRB( dd, pTree->bCareSupp );
Alan Mishchenko committed
236
printf( "Current care set support: " );
Alan Mishchenko committed
237
ABC_PRB( dd, bSupp );
Alan Mishchenko committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
            Cudd_RecursiveDeref( dd, bSupp );
            Cudd_RecursiveDeref( dd, bRem );
            printf( "The care set depends on some vars that were not in the care set during scheduling.\n" );
            return NULL;
        }
        Cudd_RecursiveDeref( dd, bRem );
    }
    Cudd_RecursiveDeref( dd, bSupp );

    // remove the previous image
    Cudd_RecursiveDeref( dd, pTree->pCare->bImage );
    pTree->pCare->bImage = bCare;   Cudd_Ref( bCare );

    // compute the image
    pTree->nNodesMax = 0;
    Extra_bddImageCompute_rec( pTree, pTree->pRoot );
    if ( pTree->nNodesMaxT < pTree->nNodesMax )
        pTree->nNodesMaxT = pTree->nNodesMax;

//    if ( pTree->fVerbose )
//        printf( "Iter %2d : Max nodes = %5d.\n", pTree->nIter, pTree->nNodesMax );
    return pTree->pRoot->bImage;
}

/**Function*************************************************************

  Synopsis    [Delete the tree.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_bddImageTreeDelete( Extra_ImageTree_t * pTree )
{
    if ( pTree->bCareSupp )
        Cudd_RecursiveDeref( pTree->pRoot->dd, pTree->bCareSupp );
    Extra_bddImageTreeDelete_rec( pTree->pRoot );
Alan Mishchenko committed
278
    ABC_FREE( pTree );
Alan Mishchenko committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
}

/**Function*************************************************************

  Synopsis    [Reads the image from the tree.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Extra_bddImageRead( Extra_ImageTree_t * pTree )
{
    return pTree->pRoot->bImage;
}

/*---------------------------------------------------------------------------*/
/* Definition of internal functions                                          */
/*---------------------------------------------------------------------------*/

/*---------------------------------------------------------------------------*/
/* Definition of static Functions                                            */
/*---------------------------------------------------------------------------*/

/**Function*************************************************************

  Synopsis    [Creates partitions.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Extra_ImagePart_t ** Extra_CreateParts( DdManager * dd,
    int nParts, DdNode ** pbParts, DdNode * bCare )
{
    Extra_ImagePart_t ** pParts;
    int i;

    // start the partitions
Alan Mishchenko committed
323
    pParts = ABC_ALLOC( Extra_ImagePart_t *, nParts + 1 );
Alan Mishchenko committed
324 325 326
    // create structures for each variable
    for ( i = 0; i < nParts; i++ )
    {
Alan Mishchenko committed
327
        pParts[i] = ABC_ALLOC( Extra_ImagePart_t, 1 );
Alan Mishchenko committed
328 329 330 331 332 333 334
        pParts[i]->bFunc  = pbParts[i];                           Cudd_Ref( pParts[i]->bFunc );
        pParts[i]->bSupp  = Cudd_Support( dd, pParts[i]->bFunc ); Cudd_Ref( pParts[i]->bSupp );
        pParts[i]->nSupp  = Extra_bddSuppSize( dd, pParts[i]->bSupp );
        pParts[i]->nNodes = Cudd_DagSize( pParts[i]->bFunc );
        pParts[i]->iPart  = i;
    }
    // add the care set as the last partition
Alan Mishchenko committed
335
    pParts[nParts] = ABC_ALLOC( Extra_ImagePart_t, 1 );
Alan Mishchenko committed
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    pParts[nParts]->bFunc = bCare;                                     Cudd_Ref( pParts[nParts]->bFunc );
    pParts[nParts]->bSupp = Cudd_Support( dd, pParts[nParts]->bFunc ); Cudd_Ref( pParts[nParts]->bSupp );
    pParts[nParts]->nSupp = Extra_bddSuppSize( dd, pParts[nParts]->bSupp );
    pParts[nParts]->nNodes = Cudd_DagSize( pParts[nParts]->bFunc );
    pParts[nParts]->iPart  = nParts;
    return pParts;
}

/**Function*************************************************************

  Synopsis    [Creates variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Extra_ImageVar_t ** Extra_CreateVars( DdManager * dd,
    int nParts, Extra_ImagePart_t ** pParts,
    int nVars, DdNode ** pbVars )
{
    Extra_ImageVar_t ** pVars;
    DdNode ** pbFuncs;
    DdNode * bCubeNs, * bSupp, * bParts, * bTemp, * bSuppTemp;
    int nVarsTotal, iVar, p, Counter;

    // put all the functions into one array
Alan Mishchenko committed
365
    pbFuncs = ABC_ALLOC( DdNode *, nParts );
Alan Mishchenko committed
366 367 368
    for ( p = 0; p < nParts; p++ )
        pbFuncs[p] = pParts[p]->bSupp;
    bSupp = Cudd_VectorSupport( dd, pbFuncs, nParts );  Cudd_Ref( bSupp );
Alan Mishchenko committed
369
    ABC_FREE( pbFuncs );
Alan Mishchenko committed
370 371 372 373 374 375 376 377 378 379 380

    // remove the NS vars
    bCubeNs = Cudd_bddComputeCube( dd, pbVars, NULL, nVars );        Cudd_Ref( bCubeNs );
    bSupp = Cudd_bddExistAbstract( dd, bTemp = bSupp, bCubeNs );     Cudd_Ref( bSupp );
    Cudd_RecursiveDeref( dd, bTemp );
    Cudd_RecursiveDeref( dd, bCubeNs );

    // get the number of I and CS variables to be quantified
    nVarsTotal = Extra_bddSuppSize( dd, bSupp );

    // start the variables
Alan Mishchenko committed
381
    pVars = ABC_ALLOC( Extra_ImageVar_t *, dd->size );
Alan Mishchenko committed
382 383 384 385 386
    memset( pVars, 0, sizeof(Extra_ImageVar_t *) * dd->size );
    // create structures for each variable
    for ( bSuppTemp = bSupp; bSuppTemp != b1; bSuppTemp = cuddT(bSuppTemp) )
    {
        iVar = bSuppTemp->index;
Alan Mishchenko committed
387
        pVars[iVar] = ABC_ALLOC( Extra_ImageVar_t, 1 );
Alan Mishchenko committed
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
        pVars[iVar]->iNum = iVar;
        // collect all the parts this var belongs to
        Counter = 0;
        bParts = b1; Cudd_Ref( bParts );
        for ( p = 0; p < nParts; p++ )
            if ( Cudd_bddLeq( dd, pParts[p]->bSupp, dd->vars[bSuppTemp->index] ) )
            {
                bParts = Cudd_bddAnd( dd, bTemp = bParts, dd->vars[p] );  Cudd_Ref( bParts );
                Cudd_RecursiveDeref( dd, bTemp );
                Counter++;
            }
        pVars[iVar]->bParts = bParts; // takes ref
        pVars[iVar]->nParts = Counter;
    }
    Cudd_RecursiveDeref( dd, bSupp );
    return pVars;
}

/**Function*************************************************************

  Synopsis    [Creates variables.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Extra_ImageNode_t ** Extra_CreateNodes( DdManager * dd, 
    int nParts, Extra_ImagePart_t ** pParts, 
    int nVars,  Extra_ImageVar_t ** pVars )
{
    Extra_ImageNode_t ** pNodes;
    Extra_ImageNode_t * pNode;
    DdNode * bTemp;
    int i, v, iPart;
/*
    DdManager *         dd;       // the manager 
    DdNode *            bCube;    // the cube to quantify
    DdNode *            bImage;   // the partial image
    Extra_ImageNode_t * pNode1;   // the first branch
    Extra_ImageNode_t * pNode2;   // the second branch
    Extra_ImagePart_t * pPart;    // the partition (temporary)
*/
    // start the partitions
Alan Mishchenko committed
434
    pNodes = ABC_ALLOC( Extra_ImageNode_t *, nParts );
Alan Mishchenko committed
435 436 437
    // create structures for each leaf nodes
    for ( i = 0; i < nParts; i++ )
    {
Alan Mishchenko committed
438
        pNodes[i] = ABC_ALLOC( Extra_ImageNode_t, 1 );
Alan Mishchenko committed
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        memset( pNodes[i], 0, sizeof(Extra_ImageNode_t) );
        pNodes[i]->dd    = dd;
        pNodes[i]->pPart = pParts[i];
    }
    // find the quantification cubes for each leaf node
    for ( v = 0; v < nVars; v++ )
    {
        if ( pVars[v] == NULL )
            continue;
        assert( pVars[v]->nParts > 0 );
        if ( pVars[v]->nParts > 1 )
            continue;
        iPart = pVars[v]->bParts->index;
        if ( pNodes[iPart]->bCube == NULL )
        {
            pNodes[iPart]->bCube = dd->vars[v];   
            Cudd_Ref( dd->vars[v] );
        }
        else
        {
            pNodes[iPart]->bCube = Cudd_bddAnd( dd, bTemp = pNodes[iPart]->bCube, dd->vars[v] );  
            Cudd_Ref( pNodes[iPart]->bCube );
            Cudd_RecursiveDeref( dd, bTemp );
        }
        // remove these  variables
        Cudd_RecursiveDeref( dd, pVars[v]->bParts );
Alan Mishchenko committed
465
        ABC_FREE( pVars[v] );
Alan Mishchenko committed
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    }

    // assign the leaf node images
    for ( i = 0; i < nParts; i++ )
    {
        pNode = pNodes[i];
        if ( pNode->bCube )
        {
            // update the partition
            pParts[i]->bFunc = Cudd_bddExistAbstract( dd, bTemp = pParts[i]->bFunc, pNode->bCube );
            Cudd_Ref( pParts[i]->bFunc );
            Cudd_RecursiveDeref( dd, bTemp );
            // update the support the partition
            pParts[i]->bSupp = Cudd_bddExistAbstract( dd, bTemp = pParts[i]->bSupp, pNode->bCube ); 
            Cudd_Ref( pParts[i]->bSupp );
            Cudd_RecursiveDeref( dd, bTemp );
            // update the numbers
            pParts[i]->nSupp  = Extra_bddSuppSize( dd, pParts[i]->bSupp );
            pParts[i]->nNodes = Cudd_DagSize( pParts[i]->bFunc );
            // get rid of the cube
            // save the last (care set) quantification cube
            if ( i < nParts - 1 )
            {
                Cudd_RecursiveDeref( dd, pNode->bCube );
                pNode->bCube = NULL;
            }
        }
        // copy the function
        pNode->bImage = pParts[i]->bFunc;   Cudd_Ref( pNode->bImage );
    }
/*
    for ( i = 0; i < nParts; i++ )
    {
        pNode = pNodes[i];
Alan Mishchenko committed
500 501 502
ABC_PRB( dd, pNode->bCube );
ABC_PRB( dd, pNode->pPart->bFunc );
ABC_PRB( dd, pNode->pPart->bSupp );
Alan Mishchenko committed
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
printf( "\n" );
    }
*/
    return pNodes;
}


/**Function*************************************************************

  Synopsis    [Delete the partitions from the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_DeleteParts_rec( Extra_ImageNode_t * pNode )
{
    Extra_ImagePart_t * pPart;
    if ( pNode->pNode1 )
        Extra_DeleteParts_rec( pNode->pNode1 );
    if ( pNode->pNode2 )
        Extra_DeleteParts_rec( pNode->pNode2 );
    pPart = pNode->pPart;
    Cudd_RecursiveDeref( pNode->dd, pPart->bFunc );
    Cudd_RecursiveDeref( pNode->dd, pPart->bSupp );
Alan Mishchenko committed
531
    ABC_FREE( pNode->pPart );
Alan Mishchenko committed
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
}

/**Function*************************************************************

  Synopsis    [Delete the partitions from the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_bddImageTreeDelete_rec( Extra_ImageNode_t * pNode )
{
    if ( pNode->pNode1 )
        Extra_bddImageTreeDelete_rec( pNode->pNode1 );
    if ( pNode->pNode2 )
        Extra_bddImageTreeDelete_rec( pNode->pNode2 );
    if ( pNode->bCube )
        Cudd_RecursiveDeref( pNode->dd, pNode->bCube );
    if ( pNode->bImage )
        Cudd_RecursiveDeref( pNode->dd, pNode->bImage );
    assert( pNode->pPart == NULL );
Alan Mishchenko committed
556
    ABC_FREE( pNode );
Alan Mishchenko committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
}

/**Function*************************************************************

  Synopsis    [Recompute the image.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_bddImageCompute_rec( Extra_ImageTree_t * pTree, Extra_ImageNode_t * pNode )
{
    DdManager * dd = pNode->dd;
    DdNode * bTemp;
    int nNodes;

    // trivial case
    if ( pNode->pNode1 == NULL )
    {
        if ( pNode->bCube )
        {
            pNode->bImage = Cudd_bddExistAbstract( dd, bTemp = pNode->bImage, pNode->bCube ); 
            Cudd_Ref( pNode->bImage );
            Cudd_RecursiveDeref( dd, bTemp );
        }
        return;
    }

    // compute the children
    if ( pNode->pNode1 )
        Extra_bddImageCompute_rec( pTree, pNode->pNode1 );
    if ( pNode->pNode2 )
        Extra_bddImageCompute_rec( pTree, pNode->pNode2 );

    // clean the old image
    if ( pNode->bImage )
        Cudd_RecursiveDeref( dd, pNode->bImage );
    pNode->bImage = NULL;

    // compute the new image
    if ( pNode->bCube )
        pNode->bImage = Cudd_bddAndAbstract( dd, 
            pNode->pNode1->bImage, pNode->pNode2->bImage, pNode->bCube );
    else
        pNode->bImage = Cudd_bddAnd( dd, pNode->pNode1->bImage, pNode->pNode2->bImage );
    Cudd_Ref( pNode->bImage );

    if ( pTree->fVerbose )
    {
        nNodes = Cudd_DagSize( pNode->bImage );
        if ( pTree->nNodesMax < nNodes )
            pTree->nNodesMax = nNodes;
    }
}

/**Function*************************************************************

  Synopsis    [Builds the tree.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Extra_BuildTreeNode( DdManager * dd, 
    int nNodes, Extra_ImageNode_t ** pNodes, 
    int nVars,  Extra_ImageVar_t ** pVars )
{
    Extra_ImageNode_t * pNode1, * pNode2;
    Extra_ImageVar_t * pVar;
    Extra_ImageNode_t * pNode;
    DdNode * bCube, * bTemp, * bSuppTemp, * bParts;
    int iNode1, iNode2;
    int iVarBest, nSupp, v;

    // find the best variable
    iVarBest = Extra_FindBestVariable( dd, nNodes, pNodes, nVars, pVars );
    if ( iVarBest == -1 )
        return 0;

    pVar = pVars[iVarBest];

    // this var cannot appear in one partition only
    nSupp = Extra_bddSuppSize( dd, pVar->bParts );
    assert( nSupp == pVar->nParts );
    assert( nSupp != 1 );

    // if it appears in only two partitions, quantify it
    if ( pVar->nParts == 2 )
    {
        // get the nodes
        iNode1 = pVar->bParts->index;
        iNode2 = cuddT(pVar->bParts)->index;
        pNode1 = pNodes[iNode1];
        pNode2 = pNodes[iNode2];

        // get the quantification cube
        bCube = dd->vars[pVar->iNum];    Cudd_Ref( bCube );
        // add the variables that appear only in these partitions
        for ( v = 0; v < nVars; v++ )
            if ( pVars[v] && v != iVarBest && pVars[v]->bParts == pVars[iVarBest]->bParts )
            {
                // add this var
                bCube = Cudd_bddAnd( dd, bTemp = bCube, dd->vars[pVars[v]->iNum] );   Cudd_Ref( bCube );
                Cudd_RecursiveDeref( dd, bTemp );
                // clean this var
                Cudd_RecursiveDeref( dd, pVars[v]->bParts );
Alan Mishchenko committed
669
                ABC_FREE( pVars[v] );
Alan Mishchenko committed
670 671 672
            }
        // clean the best var
        Cudd_RecursiveDeref( dd, pVars[iVarBest]->bParts );
Alan Mishchenko committed
673
        ABC_FREE( pVars[iVarBest] );
Alan Mishchenko committed
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

        // combines two nodes
        pNode = Extra_CombineTwoNodes( dd, bCube, pNode1, pNode2 );
        Cudd_RecursiveDeref( dd, bCube );
    }
    else // if ( pVar->nParts > 2 )
    {
        // find two smallest BDDs that have this var
        Extra_FindBestPartitions( dd, pVar->bParts, nNodes, pNodes, &iNode1, &iNode2 );
        pNode1 = pNodes[iNode1];
        pNode2 = pNodes[iNode2];

        // it is not possible that a var appears only in these two
        // otherwise, it would have a different cost
        bParts = Cudd_bddAnd( dd, dd->vars[iNode1], dd->vars[iNode2] ); Cudd_Ref( bParts );
        for ( v = 0; v < nVars; v++ )
            if ( pVars[v] && pVars[v]->bParts == bParts )
                assert( 0 );
        Cudd_RecursiveDeref( dd, bParts );

        // combines two nodes
        pNode = Extra_CombineTwoNodes( dd, b1, pNode1, pNode2 );
    }

    // clean the old nodes
    pNodes[iNode1] = pNode;
    pNodes[iNode2] = NULL;
    
    // update the variables that appear in pNode[iNode2]
    for ( bSuppTemp = pNode2->pPart->bSupp; bSuppTemp != b1; bSuppTemp = cuddT(bSuppTemp) )
    {
        pVar = pVars[bSuppTemp->index];
        if ( pVar == NULL ) // this variable is not be quantified
            continue;
        // quantify this var
        assert( Cudd_bddLeq( dd, pVar->bParts, dd->vars[iNode2] ) );
        pVar->bParts = Cudd_bddExistAbstract( dd, bTemp = pVar->bParts, dd->vars[iNode2] ); Cudd_Ref( pVar->bParts );
        Cudd_RecursiveDeref( dd, bTemp );
        // add the new var
        pVar->bParts = Cudd_bddAnd( dd, bTemp = pVar->bParts, dd->vars[iNode1] ); Cudd_Ref( pVar->bParts );
        Cudd_RecursiveDeref( dd, bTemp );
        // update the score
        pVar->nParts = Extra_bddSuppSize( dd, pVar->bParts );
    }
    return 1;
}


/**Function*************************************************************

  Synopsis    [Merges the nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Extra_ImageNode_t * Extra_MergeTopNodes(
    DdManager * dd, int nNodes, Extra_ImageNode_t ** pNodes )
{
    Extra_ImageNode_t * pNode;
    int n1 = -1, n2 = -1, n;

    // find the first and the second non-empty spots
    for ( n = 0; n < nNodes; n++ )
        if ( pNodes[n] )
        {
            if ( n1 == -1 )
                n1 = n;
            else if ( n2 == -1 )
            {
                n2 = n;
                break;
            }
        }
    assert( n1 != -1 );
    // check the situation when only one such node is detected
    if ( n2 == -1 )
    {
        // save the node
        pNode = pNodes[n1];
        // clean the node
        pNodes[n1] = NULL;
        return pNode;
    }
  
    // combines two nodes
    pNode = Extra_CombineTwoNodes( dd, b1, pNodes[n1], pNodes[n2] );

    // clean the old nodes
    pNodes[n1] = pNode;
    pNodes[n2] = NULL;
    return NULL;
}

/**Function*************************************************************

  Synopsis    [Merges two nodes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Extra_ImageNode_t * Extra_CombineTwoNodes( DdManager * dd, DdNode * bCube,
    Extra_ImageNode_t * pNode1, Extra_ImageNode_t * pNode2 )
{
    Extra_ImageNode_t * pNode;
    Extra_ImagePart_t * pPart;

    // create a new partition
Alan Mishchenko committed
789
    pPart = ABC_ALLOC( Extra_ImagePart_t, 1 );
Alan Mishchenko committed
790 791 792 793 794 795 796 797 798 799 800 801
    memset( pPart, 0, sizeof(Extra_ImagePart_t) );
    // create the function
    pPart->bFunc = Cudd_bddAndAbstract( dd, pNode1->pPart->bFunc, pNode2->pPart->bFunc, bCube );
    Cudd_Ref( pPart->bFunc );
    // update the support the partition
    pPart->bSupp = Cudd_bddAndAbstract( dd, pNode1->pPart->bSupp, pNode2->pPart->bSupp, bCube );
    Cudd_Ref( pPart->bSupp );
    // update the numbers
    pPart->nSupp  = Extra_bddSuppSize( dd, pPart->bSupp );
    pPart->nNodes = Cudd_DagSize( pPart->bFunc );
    pPart->iPart = -1;
/*
Alan Mishchenko committed
802 803 804
ABC_PRB( dd, pNode1->pPart->bSupp );
ABC_PRB( dd, pNode2->pPart->bSupp );
ABC_PRB( dd, pPart->bSupp );
Alan Mishchenko committed
805 806
*/
    // create a new node
Alan Mishchenko committed
807
    pNode = ABC_ALLOC( Extra_ImageNode_t, 1 );
Alan Mishchenko committed
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    memset( pNode, 0, sizeof(Extra_ImageNode_t) );
    pNode->dd     = dd;
    pNode->pPart  = pPart;
    pNode->pNode1 = pNode1;
    pNode->pNode2 = pNode2;
    // compute the image
    pNode->bImage = Cudd_bddAndAbstract( dd, pNode1->bImage, pNode2->bImage, bCube ); 
    Cudd_Ref( pNode->bImage );
    // save the cube
    if ( bCube != b1 )
    {
        pNode->bCube = bCube;   Cudd_Ref( bCube );
    }
    return pNode;
}

/**Function*************************************************************

  Synopsis    [Computes the best variable.]

  Description [The variables is the best if the sum of squares of the
  BDD sizes of the partitions, in which it participates, is the minimum.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Extra_FindBestVariable( DdManager * dd,
    int nNodes, Extra_ImageNode_t ** pNodes, 
    int nVars,  Extra_ImageVar_t ** pVars )
{
    DdNode * bTemp;
    int iVarBest, v;
    double CostBest, CostCur;

Alan Mishchenko committed
844
    CostBest = 100000000000000.0;
Alan Mishchenko committed
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    iVarBest = -1;
    for ( v = 0; v < nVars; v++ )
        if ( pVars[v] )
        {
            CostCur = 0;
            for ( bTemp = pVars[v]->bParts; bTemp != b1; bTemp = cuddT(bTemp) )
                CostCur += pNodes[bTemp->index]->pPart->nNodes * 
                           pNodes[bTemp->index]->pPart->nNodes;
            if ( CostBest > CostCur )
            {
                CostBest = CostCur;
                iVarBest = v;
            }
        }
    return iVarBest;
}

/**Function*************************************************************

  Synopsis    [Computes two smallest partions that have this var.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_FindBestPartitions( DdManager * dd, DdNode * bParts, 
    int nNodes, Extra_ImageNode_t ** pNodes, 
    int * piNode1, int * piNode2 )
{
    DdNode * bTemp;
    int iPart1, iPart2;
    int CostMin1, CostMin2, Cost;

    // go through the partitions
    iPart1 = iPart2 = -1;
    CostMin1 = CostMin2 = 1000000;
    for ( bTemp = bParts; bTemp != b1; bTemp = cuddT(bTemp) )
    {
        Cost = pNodes[bTemp->index]->pPart->nNodes;
        if ( CostMin1 > Cost )
        {
            CostMin2 = CostMin1;    iPart2 = iPart1;
            CostMin1 = Cost;        iPart1 = bTemp->index;
        }
        else if ( CostMin2 > Cost )
        {
            CostMin2 = Cost;        iPart2 = bTemp->index;
        }
    }

    *piNode1 = iPart1;
    *piNode2 = iPart2;
}

/**Function*************************************************************

  Synopsis    [Prints the latch dependency matrix.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_bddImagePrintLatchDependency( 
    DdManager * dd, DdNode * bCare, // the care set
    int nParts, DdNode ** pbParts,  // the partitions for image computation
    int nVars, DdNode ** pbVars )   // the NS and parameter variables (not quantified!)
{
    int i;
    DdNode * bVarsCs, * bVarsNs;

    bVarsCs = Cudd_Support( dd, bCare );                       Cudd_Ref( bVarsCs );
    bVarsNs = Cudd_bddComputeCube( dd, pbVars, NULL, nVars );  Cudd_Ref( bVarsNs );

    printf( "The latch dependency matrix:\n" );
    printf( "Partitions = %d   Variables: total = %d  non-quantifiable = %d\n",
        nParts, dd->size, nVars );
    printf( "     : " );
    for ( i = 0; i < dd->size; i++ )
        printf( "%d", i % 10 );
    printf( "\n" );

    for ( i = 0; i < nParts; i++ )
        Extra_bddImagePrintLatchDependencyOne( dd, pbParts[i], bVarsCs, bVarsNs, i );
    Extra_bddImagePrintLatchDependencyOne( dd, bCare, bVarsCs, bVarsNs, nParts );

    Cudd_RecursiveDeref( dd, bVarsCs );
    Cudd_RecursiveDeref( dd, bVarsNs );
}

/**Function*************************************************************

  Synopsis    [Prints one row of the latch dependency matrix.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_bddImagePrintLatchDependencyOne(
    DdManager * dd, DdNode * bFunc,      // the function
    DdNode * bVarsCs, DdNode * bVarsNs,  // the current/next state vars
    int iPart )
{
    DdNode * bSupport;
    int v;
    bSupport = Cudd_Support( dd, bFunc );  Cudd_Ref( bSupport );
    printf( " %3d : ", iPart );
    for ( v = 0; v < dd->size; v++ )
    {
        if ( Cudd_bddLeq( dd, bSupport, dd->vars[v] ) )
        {
            if ( Cudd_bddLeq( dd, bVarsCs, dd->vars[v] ) )
                printf( "c" );
            else if ( Cudd_bddLeq( dd, bVarsNs, dd->vars[v] ) ) 
                printf( "n" );
            else
                printf( "i" );
        }
        else
            printf( "." );
    }
    printf( "\n" );
    Cudd_RecursiveDeref( dd, bSupport );
}


/**Function*************************************************************

  Synopsis    [Prints the tree for quenstification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_bddImagePrintTree( Extra_ImageTree_t * pTree )
{
    printf( "The quantification scheduling tree:\n" );
    Extra_bddImagePrintTree_rec( pTree->pRoot, 1 );
}

/**Function*************************************************************

  Synopsis    [Prints the tree for quenstification scheduling.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_bddImagePrintTree_rec( Extra_ImageNode_t * pNode, int Offset )
{
    DdNode * Cube;
    int i;

    Cube = pNode->bCube;

    if ( pNode->pNode1 == NULL )
    {
        printf( "<%d> ", pNode->pPart->iPart );
        if ( Cube != NULL )
        {
Alan Mishchenko committed
1019
            ABC_PRB( pNode->dd, Cube );
Alan Mishchenko committed
1020 1021 1022 1023 1024 1025 1026 1027 1028
        }
        else
            printf( "\n" );
        return;
    }

    printf( "<*> " );
    if ( Cube != NULL )
    {
Alan Mishchenko committed
1029
        ABC_PRB( pNode->dd, Cube );
Alan Mishchenko committed
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    }
    else
        printf( "\n" );

    for ( i = 0; i < Offset; i++ )
        printf( "    " );
    Extra_bddImagePrintTree_rec( pNode->pNode1, Offset + 1 );

    for ( i = 0; i < Offset; i++ )
        printf( "    " );
    Extra_bddImagePrintTree_rec( pNode->pNode2, Offset + 1 );
}





struct Extra_ImageTree2_t_
{
    DdManager * dd;
    DdNode *    bRel;
    DdNode *    bCube;
    DdNode *    bImage;
};

/**Function*************************************************************

  Synopsis    [Starts the monolithic image computation.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Extra_ImageTree2_t * Extra_bddImageStart2( 
    DdManager * dd, DdNode * bCare,
    int nParts, DdNode ** pbParts,
    int nVars, DdNode ** pbVars, int fVerbose )
{
    Extra_ImageTree2_t * pTree;
    DdNode * bCubeAll, * bCubeNot, * bTemp;
    int i;

Alan Mishchenko committed
1075
    pTree = ABC_ALLOC( Extra_ImageTree2_t, 1 );
Alan Mishchenko committed
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    pTree->dd = dd;
    pTree->bImage = NULL;

    bCubeAll = Extra_bddComputeCube( dd, dd->vars, dd->size );      Cudd_Ref( bCubeAll );
    bCubeNot = Extra_bddComputeCube( dd, pbVars,   nVars );         Cudd_Ref( bCubeNot );
    pTree->bCube = Cudd_bddExistAbstract( dd, bCubeAll, bCubeNot ); Cudd_Ref( pTree->bCube );
    Cudd_RecursiveDeref( dd, bCubeAll );
    Cudd_RecursiveDeref( dd, bCubeNot );

    // derive the monolithic relation
    pTree->bRel = b1;   Cudd_Ref( pTree->bRel );
    for ( i = 0; i < nParts; i++ )
    {
        pTree->bRel = Cudd_bddAnd( dd, bTemp = pTree->bRel, pbParts[i] ); Cudd_Ref( pTree->bRel );
        Cudd_RecursiveDeref( dd, bTemp );
    }
    Extra_bddImageCompute2( pTree, bCare );
    return pTree;
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Extra_bddImageCompute2( Extra_ImageTree2_t * pTree, DdNode * bCare )
{
    if ( pTree->bImage )
        Cudd_RecursiveDeref( pTree->dd, pTree->bImage );
    pTree->bImage = Cudd_bddAndAbstract( pTree->dd, pTree->bRel, bCare, pTree->bCube ); 
    Cudd_Ref( pTree->bImage );
    return pTree->bImage;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Extra_bddImageTreeDelete2( Extra_ImageTree2_t * pTree )
{
    if ( pTree->bRel )
        Cudd_RecursiveDeref( pTree->dd, pTree->bRel );
    if ( pTree->bCube )
        Cudd_RecursiveDeref( pTree->dd, pTree->bCube );
    if ( pTree->bImage )
        Cudd_RecursiveDeref( pTree->dd, pTree->bImage );
Alan Mishchenko committed
1136
    ABC_FREE( pTree );
Alan Mishchenko committed
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
}

/**Function*************************************************************

  Synopsis    [Returns the previously computed image.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Extra_bddImageRead2( Extra_ImageTree2_t * pTree )
{
    return pTree->bImage;
}


////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


1161 1162
ABC_NAMESPACE_IMPL_END