abcResub.c 70.1 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/**CFile****************************************************************

  FileName    [abcResub.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [Network and node package.]

  Synopsis    [Resubstitution manager.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: abcResub.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

21 22
#include "base/abc/abc.h"
#include "bool/dec/dec.h"
23 24 25

ABC_NAMESPACE_IMPL_START

Alan Mishchenko committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 
////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

#define ABC_RS_DIV1_MAX    150   // the max number of divisors to consider
#define ABC_RS_DIV2_MAX    500   // the max number of pair-wise divisors to consider

typedef struct Abc_ManRes_t_ Abc_ManRes_t;
struct Abc_ManRes_t_
{
    // paramers
    int                nLeavesMax; // the max number of leaves in the cone
    int                nDivsMax;   // the max number of divisors in the cone
    // representation of the cone
    Abc_Obj_t *        pRoot;      // the root of the cone
    int                nLeaves;    // the number of leaves
    int                nDivs;      // the number of all divisor (including leaves)
    int                nMffc;      // the size of MFFC
    int                nLastGain;  // the gain the number of nodes
    Vec_Ptr_t *        vDivs;      // the divisors
    // representation of the simulation info
    int                nBits;      // the number of simulation bits
    int                nWords;     // the number of unsigneds for siminfo
    Vec_Ptr_t        * vSims;      // simulation info
    unsigned         * pInfo;      // pointer to simulation info
    // observability don't-cares
    unsigned *         pCareSet;
    // internal divisor storage
    Vec_Ptr_t        * vDivs1UP;   // the single-node unate divisors
    Vec_Ptr_t        * vDivs1UN;   // the single-node unate divisors
    Vec_Ptr_t        * vDivs1B;    // the single-node binate divisors
    Vec_Ptr_t        * vDivs2UP0;  // the double-node unate divisors
    Vec_Ptr_t        * vDivs2UP1;  // the double-node unate divisors
    Vec_Ptr_t        * vDivs2UN0;  // the double-node unate divisors
    Vec_Ptr_t        * vDivs2UN1;  // the double-node unate divisors
    // other data
    Vec_Ptr_t        * vTemp;      // temporary array of nodes
    // runtime statistics
65 66 67 68 69 70 71 72 73 74 75 76
    abctime            timeCut;
    abctime            timeTruth;
    abctime            timeRes;
    abctime            timeDiv;
    abctime            timeMffc;
    abctime            timeSim;
    abctime            timeRes1;
    abctime            timeResD;
    abctime            timeRes2;
    abctime            timeRes3;
    abctime            timeNtk;
    abctime            timeTotal;
Alan Mishchenko committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    // improvement statistics
    int                nUsedNodeC;
    int                nUsedNode0;
    int                nUsedNode1Or;
    int                nUsedNode1And;
    int                nUsedNode2Or;
    int                nUsedNode2And;
    int                nUsedNode2OrAnd;
    int                nUsedNode2AndOr;
    int                nUsedNode3OrAnd;
    int                nUsedNode3AndOr;
    int                nUsedNodeTotal;
    int                nTotalDivs;
    int                nTotalLeaves;
    int                nTotalGain;
    int                nNodesBeg;
    int                nNodesEnd;
};

// external procedures
static Abc_ManRes_t* Abc_ManResubStart( int nLeavesMax, int nDivsMax );
static void          Abc_ManResubStop( Abc_ManRes_t * p );
99
static Dec_Graph_t * Abc_ManResubEval( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int nSteps, int fUpdateLevel, int fVerbose );
Alan Mishchenko committed
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static void          Abc_ManResubCleanup( Abc_ManRes_t * p );
static void          Abc_ManResubPrint( Abc_ManRes_t * p );

// other procedures
static int           Abc_ManResubCollectDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int Required );
static void          Abc_ManResubSimulate( Vec_Ptr_t * vDivs, int nLeaves, Vec_Ptr_t * vSims, int nLeavesMax, int nWords );
static void          Abc_ManResubPrintDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves );

static void          Abc_ManResubDivsS( Abc_ManRes_t * p, int Required );
static void          Abc_ManResubDivsD( Abc_ManRes_t * p, int Required );
static Dec_Graph_t * Abc_ManResubQuit( Abc_ManRes_t * p );
static Dec_Graph_t * Abc_ManResubDivs0( Abc_ManRes_t * p );
static Dec_Graph_t * Abc_ManResubDivs1( Abc_ManRes_t * p, int Required );
static Dec_Graph_t * Abc_ManResubDivs12( Abc_ManRes_t * p, int Required );
static Dec_Graph_t * Abc_ManResubDivs2( Abc_ManRes_t * p, int Required );
static Dec_Graph_t * Abc_ManResubDivs3( Abc_ManRes_t * p, int Required );

static Vec_Ptr_t *   Abc_CutFactorLarge( Abc_Obj_t * pNode, int nLeavesMax );
static int           Abc_CutVolumeCheck( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves );

120
extern abctime s_ResubTime;
Alan Mishchenko committed
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Performs incremental resynthesis of the AIG.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
137
int Abc_NtkResubstitute( Abc_Ntk_t * pNtk, int nCutMax, int nStepsMax, int nLevelsOdc, int fUpdateLevel, int fVerbose, int fVeryVerbose )
Alan Mishchenko committed
138
{
139
    extern void           Dec_GraphUpdateNetwork( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, int fUpdateLevel, int nGain );
Alan Mishchenko committed
140 141 142
    ProgressBar * pProgress;
    Abc_ManRes_t * pManRes;
    Abc_ManCut_t * pManCut;
143
    Odc_Man_t * pManOdc = NULL;
Alan Mishchenko committed
144 145 146
    Dec_Graph_t * pFForm;
    Vec_Ptr_t * vLeaves;
    Abc_Obj_t * pNode;
147
    abctime clk, clkStart = Abc_Clock();
Alan Mishchenko committed
148 149 150 151 152
    int i, nNodes;

    assert( Abc_NtkIsStrash(pNtk) );

    // cleanup the AIG
153
    Abc_AigCleanup((Abc_Aig_t *)pNtk->pManFunc);
Alan Mishchenko committed
154 155 156 157 158 159 160 161 162 163
    // start the managers
    pManCut = Abc_NtkManCutStart( nCutMax, 100000, 100000, 100000 );
    pManRes = Abc_ManResubStart( nCutMax, ABC_RS_DIV1_MAX );
    if ( nLevelsOdc > 0 )
    pManOdc = Abc_NtkDontCareAlloc( nCutMax, nLevelsOdc, fVerbose, fVeryVerbose );

    // compute the reverse levels if level update is requested
    if ( fUpdateLevel )
        Abc_NtkStartReverseLevels( pNtk, 0 );

Alan Mishchenko committed
164
    if ( Abc_NtkLatchNum(pNtk) ) {
Alan Mishchenko committed
165
        Abc_NtkForEachLatch(pNtk, pNode, i)
166
            pNode->pNext = (Abc_Obj_t *)pNode->pData;
Alan Mishchenko committed
167
    }
Alan Mishchenko committed
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    // resynthesize each node once
    pManRes->nNodesBeg = Abc_NtkNodeNum(pNtk);
    nNodes = Abc_NtkObjNumMax(pNtk);
    pProgress = Extra_ProgressBarStart( stdout, nNodes );
    Abc_NtkForEachNode( pNtk, pNode, i )
    {
        Extra_ProgressBarUpdate( pProgress, i, NULL );
        // skip the constant node
//        if ( Abc_NodeIsConst(pNode) )
//            continue;
        // skip persistant nodes
        if ( Abc_NodeIsPersistant(pNode) )
            continue;
        // skip the nodes with many fanouts
        if ( Abc_ObjFanoutNum(pNode) > 1000 )
            continue;
        // stop if all nodes have been tried once
        if ( i >= nNodes )
            break;

        // compute a reconvergence-driven cut
190
clk = Abc_Clock();
Alan Mishchenko committed
191 192
        vLeaves = Abc_NodeFindCut( pManCut, pNode, 0 );
//        vLeaves = Abc_CutFactorLarge( pNode, nCutMax );
193
pManRes->timeCut += Abc_Clock() - clk;
Alan Mishchenko committed
194 195 196 197 198 199 200 201 202
/*
        if ( fVerbose && vLeaves )
        printf( "Node %6d : Leaves = %3d. Volume = %3d.\n", pNode->Id, Vec_PtrSize(vLeaves), Abc_CutVolumeCheck(pNode, vLeaves) );
        if ( vLeaves == NULL )
            continue;
*/
        // get the don't-cares
        if ( pManOdc )
        {
203
clk = Abc_Clock();
Alan Mishchenko committed
204 205
            Abc_NtkDontCareClear( pManOdc );
            Abc_NtkDontCareCompute( pManOdc, pNode, vLeaves, pManRes->pCareSet );
206
pManRes->timeTruth += Abc_Clock() - clk;
Alan Mishchenko committed
207 208 209
        }

        // evaluate this cut
210
clk = Abc_Clock();
Alan Mishchenko committed
211 212 213
        pFForm = Abc_ManResubEval( pManRes, pNode, vLeaves, nStepsMax, fUpdateLevel, fVerbose );
//        Vec_PtrFree( vLeaves );
//        Abc_ManResubCleanup( pManRes );
214
pManRes->timeRes += Abc_Clock() - clk;
Alan Mishchenko committed
215 216 217 218 219 220 221 222 223 224 225 226 227
        if ( pFForm == NULL )
            continue;
        pManRes->nTotalGain += pManRes->nLastGain;
/*
        if ( pManRes->nLeaves == 4 && pManRes->nMffc == 2 && pManRes->nLastGain == 1 )
        {
            printf( "%6d :  L = %2d. V = %2d. Mffc = %2d. Divs = %3d.   Up = %3d. Un = %3d. B = %3d.\n", 
                   pNode->Id, pManRes->nLeaves, Abc_CutVolumeCheck(pNode, vLeaves), pManRes->nMffc, pManRes->nDivs, 
                   pManRes->vDivs1UP->nSize, pManRes->vDivs1UN->nSize, pManRes->vDivs1B->nSize );
            Abc_ManResubPrintDivs( pManRes, pNode, vLeaves );
        }
*/
        // acceptable replacement found, update the graph
228
clk = Abc_Clock();
Alan Mishchenko committed
229
        Dec_GraphUpdateNetwork( pNode, pFForm, fUpdateLevel, pManRes->nLastGain );
230
pManRes->timeNtk += Abc_Clock() - clk;
Alan Mishchenko committed
231 232 233
        Dec_GraphFree( pFForm );
    }
    Extra_ProgressBarStop( pProgress );
234
pManRes->timeTotal = Abc_Clock() - clkStart;
Alan Mishchenko committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    pManRes->nNodesEnd = Abc_NtkNodeNum(pNtk);

    // print statistics
    if ( fVerbose )
    Abc_ManResubPrint( pManRes );

    // delete the managers
    Abc_ManResubStop( pManRes );
    Abc_NtkManCutStop( pManCut );
    if ( pManOdc ) Abc_NtkDontCareFree( pManOdc );

    // clean the data field
    Abc_NtkForEachObj( pNtk, pNode, i )
        pNode->pData = NULL;

Alan Mishchenko committed
250
    if ( Abc_NtkLatchNum(pNtk) ) {
Alan Mishchenko committed
251 252
        Abc_NtkForEachLatch(pNtk, pNode, i)
            pNode->pData = pNode->pNext, pNode->pNext = NULL;
Alan Mishchenko committed
253
    }
Alan Mishchenko committed
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

    // put the nodes into the DFS order and reassign their IDs
    Abc_NtkReassignIds( pNtk );
//    Abc_AigCheckFaninOrder( pNtk->pManFunc );
    // fix the levels
    if ( fUpdateLevel )
        Abc_NtkStopReverseLevels( pNtk );
    else
        Abc_NtkLevel( pNtk );
    // check
    if ( !Abc_NtkCheck( pNtk ) )
    {
        printf( "Abc_NtkRefactor: The network check has failed.\n" );
        return 0;
    }
269
s_ResubTime = Abc_Clock() - clkStart;
Alan Mishchenko committed
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    return 1;
}




/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_ManRes_t * Abc_ManResubStart( int nLeavesMax, int nDivsMax )
{
    Abc_ManRes_t * p;
    unsigned * pData;
    int i, k;
    assert( sizeof(unsigned) == 4 );
Alan Mishchenko committed
293
    p = ABC_ALLOC( Abc_ManRes_t, 1 );
Alan Mishchenko committed
294 295 296 297 298 299 300
    memset( p, 0, sizeof(Abc_ManRes_t) );
    p->nLeavesMax = nLeavesMax;
    p->nDivsMax   = nDivsMax;
    p->vDivs      = Vec_PtrAlloc( p->nDivsMax );
    // allocate simulation info
    p->nBits      = (1 << p->nLeavesMax);
    p->nWords     = (p->nBits <= 32)? 1 : (p->nBits / 32);
Alan Mishchenko committed
301
    p->pInfo      = ABC_ALLOC( unsigned, p->nWords * (p->nDivsMax + 1) );
Alan Mishchenko committed
302 303 304 305 306 307 308 309 310 311
    memset( p->pInfo, 0, sizeof(unsigned) * p->nWords * p->nLeavesMax );
    p->vSims      = Vec_PtrAlloc( p->nDivsMax );
    for ( i = 0; i < p->nDivsMax; i++ )
        Vec_PtrPush( p->vSims, p->pInfo + i * p->nWords );
    // assign the care set
    p->pCareSet  = p->pInfo + p->nDivsMax * p->nWords;
    Abc_InfoFill( p->pCareSet, p->nWords );
    // set elementary truth tables
    for ( k = 0; k < p->nLeavesMax; k++ )
    {
312
        pData = (unsigned *)p->vSims->pArray[k];
Alan Mishchenko committed
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        for ( i = 0; i < p->nBits; i++ )
            if ( i & (1 << k) )
                pData[i>>5] |= (1 << (i&31));
    }
    // create the remaining divisors
    p->vDivs1UP  = Vec_PtrAlloc( p->nDivsMax );
    p->vDivs1UN  = Vec_PtrAlloc( p->nDivsMax );
    p->vDivs1B   = Vec_PtrAlloc( p->nDivsMax );
    p->vDivs2UP0 = Vec_PtrAlloc( p->nDivsMax );
    p->vDivs2UP1 = Vec_PtrAlloc( p->nDivsMax );
    p->vDivs2UN0 = Vec_PtrAlloc( p->nDivsMax );
    p->vDivs2UN1 = Vec_PtrAlloc( p->nDivsMax );
    p->vTemp     = Vec_PtrAlloc( p->nDivsMax );
    return p;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ManResubStop( Abc_ManRes_t * p )
{
    Vec_PtrFree( p->vDivs );
    Vec_PtrFree( p->vSims );
    Vec_PtrFree( p->vDivs1UP );
    Vec_PtrFree( p->vDivs1UN );
    Vec_PtrFree( p->vDivs1B );
    Vec_PtrFree( p->vDivs2UP0 );
    Vec_PtrFree( p->vDivs2UP1 );
    Vec_PtrFree( p->vDivs2UN0 );
    Vec_PtrFree( p->vDivs2UN1 );
    Vec_PtrFree( p->vTemp );
Alan Mishchenko committed
352 353
    ABC_FREE( p->pInfo );
    ABC_FREE( p );
Alan Mishchenko committed
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ManResubPrint( Abc_ManRes_t * p )
{
Alan Mishchenko committed
369 370 371 372 373 374 375 376 377 378
    printf( "Used constants    = %6d.             ", p->nUsedNodeC );          ABC_PRT( "Cuts  ", p->timeCut );
    printf( "Used replacements = %6d.             ", p->nUsedNode0 );          ABC_PRT( "Resub ", p->timeRes );
    printf( "Used single ORs   = %6d.             ", p->nUsedNode1Or );        ABC_PRT( " Div  ", p->timeDiv );
    printf( "Used single ANDs  = %6d.             ", p->nUsedNode1And );       ABC_PRT( " Mffc ", p->timeMffc );
    printf( "Used double ORs   = %6d.             ", p->nUsedNode2Or );        ABC_PRT( " Sim  ", p->timeSim );
    printf( "Used double ANDs  = %6d.             ", p->nUsedNode2And );       ABC_PRT( " 1    ", p->timeRes1 );
    printf( "Used OR-AND       = %6d.             ", p->nUsedNode2OrAnd );     ABC_PRT( " D    ", p->timeResD );
    printf( "Used AND-OR       = %6d.             ", p->nUsedNode2AndOr );     ABC_PRT( " 2    ", p->timeRes2 );
    printf( "Used OR-2ANDs     = %6d.             ", p->nUsedNode3OrAnd );     ABC_PRT( "Truth ", p->timeTruth ); //ABC_PRT( " 3    ", p->timeRes3 );
    printf( "Used AND-2ORs     = %6d.             ", p->nUsedNode3AndOr );     ABC_PRT( "AIG   ", p->timeNtk );
Alan Mishchenko committed
379 380 381 382 383 384 385 386 387 388
    printf( "TOTAL             = %6d.             ", p->nUsedNodeC +
                                                     p->nUsedNode0 +
                                                     p->nUsedNode1Or +
                                                     p->nUsedNode1And +
                                                     p->nUsedNode2Or +
                                                     p->nUsedNode2And +
                                                     p->nUsedNode2OrAnd +
                                                     p->nUsedNode2AndOr +
                                                     p->nUsedNode3OrAnd +
                                                     p->nUsedNode3AndOr
Alan Mishchenko committed
389
                                                   );                          ABC_PRT( "TOTAL ", p->timeTotal );
Alan Mishchenko committed
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    printf( "Total leaves   = %8d.\n", p->nTotalLeaves );
    printf( "Total divisors = %8d.\n", p->nTotalDivs );
//    printf( "Total gain     = %8d.\n", p->nTotalGain );
    printf( "Gain           = %8d. (%6.2f %%).\n", p->nNodesBeg-p->nNodesEnd, 100.0*(p->nNodesBeg-p->nNodesEnd)/p->nNodesBeg );
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ManResubCollectDivs_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vInternal )
{
    // skip visited nodes
    if ( Abc_NodeIsTravIdCurrent(pNode) )
        return;
    Abc_NodeSetTravIdCurrent(pNode);
    // collect the fanins
    Abc_ManResubCollectDivs_rec( Abc_ObjFanin0(pNode), vInternal );
    Abc_ManResubCollectDivs_rec( Abc_ObjFanin1(pNode), vInternal );
    // collect the internal node
    if ( pNode->fMarkA == 0 ) 
        Vec_PtrPush( vInternal, pNode );
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_ManResubCollectDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int Required )
{
    Abc_Obj_t * pNode, * pFanout;
    int i, k, Limit, Counter;

    Vec_PtrClear( p->vDivs1UP );
    Vec_PtrClear( p->vDivs1UN );
    Vec_PtrClear( p->vDivs1B );

    // add the leaves of the cuts to the divisors
    Vec_PtrClear( p->vDivs );
    Abc_NtkIncrementTravId( pRoot->pNtk );
445
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pNode, i )
Alan Mishchenko committed
446 447 448 449 450 451
    {
        Vec_PtrPush( p->vDivs, pNode );
        Abc_NodeSetTravIdCurrent( pNode );        
    }

    // mark nodes in the MFFC
452
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vTemp, pNode, i )
Alan Mishchenko committed
453 454 455 456
        pNode->fMarkA = 1;
    // collect the cone (without MFFC)
    Abc_ManResubCollectDivs_rec( pRoot, p->vDivs );
    // unmark the current MFFC
457
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vTemp, pNode, i )
Alan Mishchenko committed
458 459 460 461 462 463 464 465 466 467 468
        pNode->fMarkA = 0;

    // check if the number of divisors is not exceeded
    if ( Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) + Vec_PtrSize(p->vTemp) >= Vec_PtrSize(p->vSims) - p->nLeavesMax )
        return 0;

    // get the number of divisors to collect
    Limit = Vec_PtrSize(p->vSims) - p->nLeavesMax - (Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) + Vec_PtrSize(p->vTemp));

    // explore the fanouts, which are not in the MFFC
    Counter = 0;
469
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs, pNode, i )
Alan Mishchenko committed
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    {
        if ( Abc_ObjFanoutNum(pNode) > 100 )
        {
//            printf( "%d ", Abc_ObjFanoutNum(pNode) );
            continue;
        }
        // if the fanout has both fanins in the set, add it
        Abc_ObjForEachFanout( pNode, pFanout, k )
        {
            if ( Abc_NodeIsTravIdCurrent(pFanout) || Abc_ObjIsCo(pFanout) || (int)pFanout->Level > Required )
                continue;
            if ( Abc_NodeIsTravIdCurrent(Abc_ObjFanin0(pFanout)) && Abc_NodeIsTravIdCurrent(Abc_ObjFanin1(pFanout)) )
            {
                if ( Abc_ObjFanin0(pFanout) == pRoot || Abc_ObjFanin1(pFanout) == pRoot )
                    continue;
                Vec_PtrPush( p->vDivs, pFanout );
                Abc_NodeSetTravIdCurrent( pFanout );
                // quit computing divisors if there is too many of them
                if ( ++Counter == Limit )
                    goto Quits;
            }
        }
    }

Quits :
    // get the number of divisors
    p->nDivs = Vec_PtrSize(p->vDivs);

    // add the nodes in the MFFC
499
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vTemp, pNode, i )
Alan Mishchenko committed
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        Vec_PtrPush( p->vDivs, pNode );
    assert( pRoot == Vec_PtrEntryLast(p->vDivs) );

    assert( Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) <= Vec_PtrSize(p->vSims) - p->nLeavesMax );
    return 1;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ManResubPrintDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves )
{
    Abc_Obj_t * pFanin, * pNode;
    int i, k;
    // print the nodes
523
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs, pNode, i )
Alan Mishchenko committed
524 525 526 527 528 529 530 531
    {
        if ( i < Vec_PtrSize(vLeaves) )
        {
            printf( "%6d : %c\n", pNode->Id, 'a'+i );
            continue;
        }
        printf( "%6d : %2d = ", pNode->Id, i );
        // find the first fanin
532
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs, pFanin, k )
Alan Mishchenko committed
533 534 535 536 537 538 539 540
            if ( Abc_ObjFanin0(pNode) == pFanin )
                break;
        if ( k < Vec_PtrSize(vLeaves) )
            printf( "%c", 'a' + k );
        else
            printf( "%d", k );
        printf( "%s ", Abc_ObjFaninC0(pNode)? "\'" : "" );
        // find the second fanin
541
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs, pFanin, k )
Alan Mishchenko committed
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
            if ( Abc_ObjFanin1(pNode) == pFanin )
                break;
        if ( k < Vec_PtrSize(vLeaves) )
            printf( "%c", 'a' + k );
        else
            printf( "%d", k );
        printf( "%s ", Abc_ObjFaninC1(pNode)? "\'" : "" );
        if ( pNode == pRoot )
            printf( " root" );
        printf( "\n" );
    }
    printf( "\n" );
}


/**Function*************************************************************

  Synopsis    [Performs simulation.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ManResubSimulate( Vec_Ptr_t * vDivs, int nLeaves, Vec_Ptr_t * vSims, int nLeavesMax, int nWords )
{
    Abc_Obj_t * pObj;
    unsigned * puData0, * puData1, * puData;
    int i, k;
    assert( Vec_PtrSize(vDivs) - nLeaves <= Vec_PtrSize(vSims) - nLeavesMax );
    // simulate
575
    Vec_PtrForEachEntry( Abc_Obj_t *, vDivs, pObj, i )
Alan Mishchenko committed
576 577 578 579 580 581 582 583 584
    {
        if ( i < nLeaves )
        { // initialize the leaf
            pObj->pData = Vec_PtrEntry( vSims, i );
            continue;
        }
        // set storage for the node's simulation info
        pObj->pData = Vec_PtrEntry( vSims, i - nLeaves + nLeavesMax );
        // get pointer to the simulation info
585 586 587
        puData  = (unsigned *)pObj->pData;
        puData0 = (unsigned *)Abc_ObjFanin0(pObj)->pData;
        puData1 = (unsigned *)Abc_ObjFanin1(pObj)->pData;
Alan Mishchenko committed
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        // simulate
        if ( Abc_ObjFaninC0(pObj) && Abc_ObjFaninC1(pObj) )
            for ( k = 0; k < nWords; k++ )
                puData[k] = ~puData0[k] & ~puData1[k];
        else if ( Abc_ObjFaninC0(pObj) )
            for ( k = 0; k < nWords; k++ )
                puData[k] = ~puData0[k] & puData1[k];
        else if ( Abc_ObjFaninC1(pObj) )
            for ( k = 0; k < nWords; k++ )
                puData[k] = puData0[k] & ~puData1[k];
        else 
            for ( k = 0; k < nWords; k++ )
                puData[k] = puData0[k] & puData1[k];
    }
    // normalize
603
    Vec_PtrForEachEntry( Abc_Obj_t *, vDivs, pObj, i )
Alan Mishchenko committed
604
    {
605
        puData = (unsigned *)pObj->pData;
Alan Mishchenko committed
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        pObj->fPhase = (puData[0] & 1);
        if ( pObj->fPhase )
            for ( k = 0; k < nWords; k++ )
                puData[k] = ~puData[k];
    }
}


/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubQuit0( Abc_Obj_t * pRoot, Abc_Obj_t * pObj )
{
    Dec_Graph_t * pGraph;
    Dec_Edge_t eRoot;
    pGraph = Dec_GraphCreate( 1 );
    Dec_GraphNode( pGraph, 0 )->pFunc = pObj;
    eRoot = Dec_EdgeCreate( 0, pObj->fPhase );
    Dec_GraphSetRoot( pGraph, eRoot );
    if ( pRoot->fPhase )
        Dec_GraphComplement( pGraph );
    return pGraph;
}
 
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubQuit1( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, int fOrGate )
{
    Dec_Graph_t * pGraph;
    Dec_Edge_t eRoot, eNode0, eNode1;
    assert( pObj0 != pObj1 );
    assert( !Abc_ObjIsComplement(pObj0) );
    assert( !Abc_ObjIsComplement(pObj1) );
    pGraph = Dec_GraphCreate( 2 );
    Dec_GraphNode( pGraph, 0 )->pFunc = pObj0;
    Dec_GraphNode( pGraph, 1 )->pFunc = pObj1;
    eNode0 = Dec_EdgeCreate( 0, pObj0->fPhase );
    eNode1 = Dec_EdgeCreate( 1, pObj1->fPhase );
    if ( fOrGate ) 
        eRoot  = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 );
    else
        eRoot  = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 );
    Dec_GraphSetRoot( pGraph, eRoot );
    if ( pRoot->fPhase )
        Dec_GraphComplement( pGraph );
    return pGraph;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubQuit21( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, int fOrGate )
{
    Dec_Graph_t * pGraph;
    Dec_Edge_t eRoot, eNode0, eNode1, eNode2;
    assert( pObj0 != pObj1 );
    assert( !Abc_ObjIsComplement(pObj0) );
    assert( !Abc_ObjIsComplement(pObj1) );
    assert( !Abc_ObjIsComplement(pObj2) );
    pGraph = Dec_GraphCreate( 3 );
    Dec_GraphNode( pGraph, 0 )->pFunc = pObj0;
    Dec_GraphNode( pGraph, 1 )->pFunc = pObj1;
    Dec_GraphNode( pGraph, 2 )->pFunc = pObj2;
    eNode0 = Dec_EdgeCreate( 0, pObj0->fPhase );
    eNode1 = Dec_EdgeCreate( 1, pObj1->fPhase );
    eNode2 = Dec_EdgeCreate( 2, pObj2->fPhase );
    if ( fOrGate ) 
    {
        eRoot  = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 );
        eRoot  = Dec_GraphAddNodeOr( pGraph, eNode2, eRoot );
    }
    else
    {
        eRoot  = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 );
        eRoot  = Dec_GraphAddNodeAnd( pGraph, eNode2, eRoot );
    }
    Dec_GraphSetRoot( pGraph, eRoot );
    if ( pRoot->fPhase )
        Dec_GraphComplement( pGraph );
    return pGraph;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubQuit2( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, int fOrGate )
{
    Dec_Graph_t * pGraph;
    Dec_Edge_t eRoot, ePrev, eNode0, eNode1, eNode2;
    assert( pObj0 != pObj1 );
    assert( pObj0 != pObj2 );
    assert( pObj1 != pObj2 );
    assert( !Abc_ObjIsComplement(pObj0) );
    pGraph = Dec_GraphCreate( 3 );
    Dec_GraphNode( pGraph, 0 )->pFunc = Abc_ObjRegular(pObj0);
    Dec_GraphNode( pGraph, 1 )->pFunc = Abc_ObjRegular(pObj1);
    Dec_GraphNode( pGraph, 2 )->pFunc = Abc_ObjRegular(pObj2);
    eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase );
    if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) )
    {
        eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase );
        eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase );
        ePrev  = Dec_GraphAddNodeOr( pGraph, eNode1, eNode2 );
    }
    else
    {
        eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase ^ Abc_ObjIsComplement(pObj1) );
        eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) );
        ePrev  = Dec_GraphAddNodeAnd( pGraph, eNode1, eNode2 );
    }
    if ( fOrGate ) 
        eRoot  = Dec_GraphAddNodeOr( pGraph, eNode0, ePrev );
    else
        eRoot  = Dec_GraphAddNodeAnd( pGraph, eNode0, ePrev );
    Dec_GraphSetRoot( pGraph, eRoot );
    if ( pRoot->fPhase )
        Dec_GraphComplement( pGraph );
    return pGraph;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubQuit3( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, Abc_Obj_t * pObj3, int fOrGate )
{
    Dec_Graph_t * pGraph;
    Dec_Edge_t eRoot, ePrev0, ePrev1, eNode0, eNode1, eNode2, eNode3;
    assert( pObj0 != pObj1 );
    assert( pObj2 != pObj3 );
    pGraph = Dec_GraphCreate( 4 );
    Dec_GraphNode( pGraph, 0 )->pFunc = Abc_ObjRegular(pObj0);
    Dec_GraphNode( pGraph, 1 )->pFunc = Abc_ObjRegular(pObj1);
    Dec_GraphNode( pGraph, 2 )->pFunc = Abc_ObjRegular(pObj2);
    Dec_GraphNode( pGraph, 3 )->pFunc = Abc_ObjRegular(pObj3);
    if ( Abc_ObjIsComplement(pObj0) && Abc_ObjIsComplement(pObj1) )
    {
        eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase );
        eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase );
        ePrev0 = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 );
        if ( Abc_ObjIsComplement(pObj2) && Abc_ObjIsComplement(pObj3) )
        {
            eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase );
            eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase );
            ePrev1 = Dec_GraphAddNodeOr( pGraph, eNode2, eNode3 );
        }
        else
        {
            eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) );
            eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase ^ Abc_ObjIsComplement(pObj3) );
            ePrev1 = Dec_GraphAddNodeAnd( pGraph, eNode2, eNode3 );
        }
    }
    else
    {
        eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase ^ Abc_ObjIsComplement(pObj0) );
        eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase ^ Abc_ObjIsComplement(pObj1) );
        ePrev0 = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 );
        if ( Abc_ObjIsComplement(pObj2) && Abc_ObjIsComplement(pObj3) )
        {
            eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase );
            eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase );
            ePrev1 = Dec_GraphAddNodeOr( pGraph, eNode2, eNode3 );
        }
        else
        {
            eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) );
            eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase ^ Abc_ObjIsComplement(pObj3) );
            ePrev1 = Dec_GraphAddNodeAnd( pGraph, eNode2, eNode3 );
        }
    }
    if ( fOrGate ) 
        eRoot = Dec_GraphAddNodeOr( pGraph, ePrev0, ePrev1 );
    else
        eRoot = Dec_GraphAddNodeAnd( pGraph, ePrev0, ePrev1 );
    Dec_GraphSetRoot( pGraph, eRoot );
    if ( pRoot->fPhase )
        Dec_GraphComplement( pGraph );
    return pGraph;
}




/**Function*************************************************************

  Synopsis    [Derives single-node unate/binate divisors.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ManResubDivsS( Abc_ManRes_t * p, int Required )
{
    Abc_Obj_t * pObj;
    unsigned * puData, * puDataR;
    int i, w;
    Vec_PtrClear( p->vDivs1UP );
    Vec_PtrClear( p->vDivs1UN );
    Vec_PtrClear( p->vDivs1B );
849 850
    puDataR = (unsigned *)p->pRoot->pData;
    Vec_PtrForEachEntryStop( Abc_Obj_t *, p->vDivs, pObj, i, p->nDivs )
Alan Mishchenko committed
851 852 853 854
    {
        if ( (int)pObj->Level > Required - 1 )
            continue;

855
        puData = (unsigned *)pObj->pData;
Alan Mishchenko committed
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
        // check positive containment
        for ( w = 0; w < p->nWords; w++ )
//            if ( puData[w] & ~puDataR[w] )
            if ( puData[w] & ~puDataR[w] & p->pCareSet[w] ) // care set
                break;
        if ( w == p->nWords )
        {
            Vec_PtrPush( p->vDivs1UP, pObj );
            continue;
        }
        // check negative containment
        for ( w = 0; w < p->nWords; w++ )
//            if ( ~puData[w] & puDataR[w] )
            if ( ~puData[w] & puDataR[w] & p->pCareSet[w] ) // care set
                break;
        if ( w == p->nWords )
        {
            Vec_PtrPush( p->vDivs1UN, pObj );
            continue;
        }
        // add the node to binates
        Vec_PtrPush( p->vDivs1B, pObj );
    }
}

/**Function*************************************************************

  Synopsis    [Derives double-node unate/binate divisors.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ManResubDivsD( Abc_ManRes_t * p, int Required )
{
    Abc_Obj_t * pObj0, * pObj1;
    unsigned * puData0, * puData1, * puDataR;
    int i, k, w;
    Vec_PtrClear( p->vDivs2UP0 );
    Vec_PtrClear( p->vDivs2UP1 );
    Vec_PtrClear( p->vDivs2UN0 );
    Vec_PtrClear( p->vDivs2UN1 );
901 902
    puDataR = (unsigned *)p->pRoot->pData;
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs1B, pObj0, i )
Alan Mishchenko committed
903 904 905 906
    {
        if ( (int)pObj0->Level > Required - 2 )
            continue;

907 908
        puData0 = (unsigned *)pObj0->pData;
        Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs1B, pObj1, k, i + 1 )
Alan Mishchenko committed
909 910 911 912
        {
            if ( (int)pObj1->Level > Required - 2 )
                continue;

913
            puData1 = (unsigned *)pObj1->pData;
Alan Mishchenko committed
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

            if ( Vec_PtrSize(p->vDivs2UP0) < ABC_RS_DIV2_MAX )
            {
                // get positive unate divisors
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] & puData1[w]) & ~puDataR[w] )
                    if ( (puData0[w] & puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
                    Vec_PtrPush( p->vDivs2UP0, pObj0 );
                    Vec_PtrPush( p->vDivs2UP1, pObj1 );
                }
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (~puData0[w] & puData1[w]) & ~puDataR[w] )
                    if ( (~puData0[w] & puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
                    Vec_PtrPush( p->vDivs2UP0, Abc_ObjNot(pObj0) );
                    Vec_PtrPush( p->vDivs2UP1, pObj1 );
                }
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] & ~puData1[w]) & ~puDataR[w] )
                    if ( (puData0[w] & ~puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
                    Vec_PtrPush( p->vDivs2UP0, pObj0 );
                    Vec_PtrPush( p->vDivs2UP1, Abc_ObjNot(pObj1) );
                }
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] | puData1[w]) & ~puDataR[w] )
                    if ( (puData0[w] | puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
                    Vec_PtrPush( p->vDivs2UP0, Abc_ObjNot(pObj0) );
                    Vec_PtrPush( p->vDivs2UP1, Abc_ObjNot(pObj1) );
                }
            }

            if ( Vec_PtrSize(p->vDivs2UN0) < ABC_RS_DIV2_MAX )
            {
                // get negative unate divisors
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ~(puData0[w] & puData1[w]) & puDataR[w] )
                    if ( ~(puData0[w] & puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
                    Vec_PtrPush( p->vDivs2UN0, pObj0 );
                    Vec_PtrPush( p->vDivs2UN1, pObj1 );
                }
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ~(~puData0[w] & puData1[w]) & puDataR[w] )
                    if ( ~(~puData0[w] & puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
                    Vec_PtrPush( p->vDivs2UN0, Abc_ObjNot(pObj0) );
                    Vec_PtrPush( p->vDivs2UN1, pObj1 );
                }
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ~(puData0[w] & ~puData1[w]) & puDataR[w] )
                    if ( ~(puData0[w] & ~puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
                    Vec_PtrPush( p->vDivs2UN0, pObj0 );
                    Vec_PtrPush( p->vDivs2UN1, Abc_ObjNot(pObj1) );
                }
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ~(puData0[w] | puData1[w]) & puDataR[w] )
                    if ( ~(puData0[w] | puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
                    Vec_PtrPush( p->vDivs2UN0, Abc_ObjNot(pObj0) );
                    Vec_PtrPush( p->vDivs2UN1, Abc_ObjNot(pObj1) );
                }
            }
        }
    }
//    printf( "%d %d  ", Vec_PtrSize(p->vDivs2UP0), Vec_PtrSize(p->vDivs2UN0) );
}



/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubQuit( Abc_ManRes_t * p )
{
    Dec_Graph_t * pGraph;
    unsigned * upData;
    int w;
1019
    upData = (unsigned *)p->pRoot->pData;
Alan Mishchenko committed
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    for ( w = 0; w < p->nWords; w++ )
//        if ( upData[w] )
        if ( upData[w] & p->pCareSet[w] ) // care set
            break;
    if ( w != p->nWords )
        return NULL;
    // get constant node graph
    if ( p->pRoot->fPhase )
        pGraph = Dec_GraphCreateConst1();
    else 
        pGraph = Dec_GraphCreateConst0();
    return pGraph;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubDivs0( Abc_ManRes_t * p )
{
    Abc_Obj_t * pObj;
    unsigned * puData, * puDataR;
    int i, w;
1050 1051
    puDataR = (unsigned *)p->pRoot->pData;
    Vec_PtrForEachEntryStop( Abc_Obj_t *, p->vDivs, pObj, i, p->nDivs )
Alan Mishchenko committed
1052
    {
1053
        puData = (unsigned *)pObj->pData;
Alan Mishchenko committed
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        for ( w = 0; w < p->nWords; w++ )
//            if ( puData[w] != puDataR[w] )
            if ( (puData[w] ^ puDataR[w]) & p->pCareSet[w] ) // care set
                break;
        if ( w == p->nWords )
            return Abc_ManResubQuit0( p->pRoot, pObj );
    }
    return NULL;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubDivs1( Abc_ManRes_t * p, int Required )
{
    Abc_Obj_t * pObj0, * pObj1;
    unsigned * puData0, * puData1, * puDataR;
    int i, k, w;
1080
    puDataR = (unsigned *)p->pRoot->pData;
Alan Mishchenko committed
1081
    // check positive unate divisors
1082
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs1UP, pObj0, i )
Alan Mishchenko committed
1083
    {
1084 1085
        puData0 = (unsigned *)pObj0->pData;
        Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs1UP, pObj1, k, i + 1 )
Alan Mishchenko committed
1086
        {
1087
            puData1 = (unsigned *)pObj1->pData;
Alan Mishchenko committed
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            for ( w = 0; w < p->nWords; w++ )
//                if ( (puData0[w] | puData1[w]) != puDataR[w] )
                if ( ((puData0[w] | puData1[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                    break;
            if ( w == p->nWords )
            {
                p->nUsedNode1Or++;
                return Abc_ManResubQuit1( p->pRoot, pObj0, pObj1, 1 );
            }
        }
    }
    // check negative unate divisors
1100
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs1UN, pObj0, i )
Alan Mishchenko committed
1101
    {
1102 1103
        puData0 = (unsigned *)pObj0->pData;
        Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs1UN, pObj1, k, i + 1 )
Alan Mishchenko committed
1104
        {
1105
            puData1 = (unsigned *)pObj1->pData;
Alan Mishchenko committed
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
            for ( w = 0; w < p->nWords; w++ )
//                if ( (puData0[w] & puData1[w]) != puDataR[w] )
                if ( ((puData0[w] & puData1[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                    break;
            if ( w == p->nWords )
            {
                p->nUsedNode1And++;
                return Abc_ManResubQuit1( p->pRoot, pObj0, pObj1, 0 );
            }
        }
    }
    return NULL;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubDivs12( Abc_ManRes_t * p, int Required )
{
Alan Mishchenko committed
1133
    Abc_Obj_t * pObj0, * pObj1, * pObj2, * pObjMax, * pObjMin0 = NULL, * pObjMin1 = NULL;
Alan Mishchenko committed
1134 1135
    unsigned * puData0, * puData1, * puData2, * puDataR;
    int i, k, j, w, LevelMax;
1136
    puDataR = (unsigned *)p->pRoot->pData;
Alan Mishchenko committed
1137
    // check positive unate divisors
1138
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs1UP, pObj0, i )
Alan Mishchenko committed
1139
    {
1140 1141
        puData0 = (unsigned *)pObj0->pData;
        Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs1UP, pObj1, k, i + 1 )
Alan Mishchenko committed
1142
        {
1143 1144
            puData1 = (unsigned *)pObj1->pData;
            Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs1UP, pObj2, j, k + 1 )
Alan Mishchenko committed
1145
            {
1146
                puData2 = (unsigned *)pObj2->pData;
Alan Mishchenko committed
1147 1148 1149 1150 1151 1152
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] | puData1[w] | puData2[w]) != puDataR[w] )
                    if ( ((puData0[w] | puData1[w] | puData2[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
1153
                    LevelMax = Abc_MaxInt( pObj0->Level, Abc_MaxInt(pObj1->Level, pObj2->Level) );
Alan Mishchenko committed
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
                    assert( LevelMax <= Required - 1 );

                    pObjMax = NULL;
                    if ( (int)pObj0->Level == LevelMax )
                        pObjMax = pObj0, pObjMin0 = pObj1, pObjMin1 = pObj2;
                    if ( (int)pObj1->Level == LevelMax )
                    {
                        if ( pObjMax ) continue;
                        pObjMax = pObj1, pObjMin0 = pObj0, pObjMin1 = pObj2;
                    }
                    if ( (int)pObj2->Level == LevelMax )
                    {
                        if ( pObjMax ) continue;
                        pObjMax = pObj2, pObjMin0 = pObj0, pObjMin1 = pObj1;
                    }

                    p->nUsedNode2Or++;
Alan Mishchenko committed
1171 1172
                    assert(pObjMin0);
                    assert(pObjMin1);
Alan Mishchenko committed
1173 1174 1175 1176 1177 1178
                    return Abc_ManResubQuit21( p->pRoot, pObjMin0, pObjMin1, pObjMax, 1 );
                }
            }
        }
    }
    // check negative unate divisors
1179
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs1UN, pObj0, i )
Alan Mishchenko committed
1180
    {
1181 1182
        puData0 = (unsigned *)pObj0->pData;
        Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs1UN, pObj1, k, i + 1 )
Alan Mishchenko committed
1183
        {
1184 1185
            puData1 = (unsigned *)pObj1->pData;
            Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs1UN, pObj2, j, k + 1 )
Alan Mishchenko committed
1186
            {
1187
                puData2 = (unsigned *)pObj2->pData;
Alan Mishchenko committed
1188 1189 1190 1191 1192 1193
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] & puData1[w] & puData2[w]) != puDataR[w] )
                    if ( ((puData0[w] & puData1[w] & puData2[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                if ( w == p->nWords )
                {
1194
                    LevelMax = Abc_MaxInt( pObj0->Level, Abc_MaxInt(pObj1->Level, pObj2->Level) );
Alan Mishchenko committed
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
                    assert( LevelMax <= Required - 1 );

                    pObjMax = NULL;
                    if ( (int)pObj0->Level == LevelMax )
                        pObjMax = pObj0, pObjMin0 = pObj1, pObjMin1 = pObj2;
                    if ( (int)pObj1->Level == LevelMax )
                    {
                        if ( pObjMax ) continue;
                        pObjMax = pObj1, pObjMin0 = pObj0, pObjMin1 = pObj2;
                    }
                    if ( (int)pObj2->Level == LevelMax )
                    {
                        if ( pObjMax ) continue;
                        pObjMax = pObj2, pObjMin0 = pObj0, pObjMin1 = pObj1;
                    }

                    p->nUsedNode2And++;
Alan Mishchenko committed
1212 1213
                    assert(pObjMin0);
                    assert(pObjMin1);
Alan Mishchenko committed
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
                    return Abc_ManResubQuit21( p->pRoot, pObjMin0, pObjMin1, pObjMax, 0 );
                }
            }
        }
    }
    return NULL;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubDivs2( Abc_ManRes_t * p, int Required )
{
    Abc_Obj_t * pObj0, * pObj1, * pObj2;
    unsigned * puData0, * puData1, * puData2, * puDataR;
    int i, k, w;
1238
    puDataR = (unsigned *)p->pRoot->pData;
Alan Mishchenko committed
1239
    // check positive unate divisors
1240
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs1UP, pObj0, i )
Alan Mishchenko committed
1241
    {
1242 1243
        puData0 = (unsigned *)pObj0->pData;
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs2UP0, pObj1, k )
Alan Mishchenko committed
1244
        {
1245
            pObj2 = (Abc_Obj_t *)Vec_PtrEntry( p->vDivs2UP1, k );
Alan Mishchenko committed
1246

1247 1248
            puData1 = (unsigned *)Abc_ObjRegular(pObj1)->pData;
            puData2 = (unsigned *)Abc_ObjRegular(pObj2)->pData;
Alan Mishchenko committed
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
            if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) )
            {
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] | (puData1[w] | puData2[w])) != puDataR[w] )
                    if ( ((puData0[w] | (puData1[w] | puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
            }
            else if ( Abc_ObjIsComplement(pObj1) )
            {
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] | (~puData1[w] & puData2[w])) != puDataR[w] )
                    if ( ((puData0[w] | (~puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
            }
            else if ( Abc_ObjIsComplement(pObj2) )
            {
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] | (puData1[w] & ~puData2[w])) != puDataR[w] )
                    if ( ((puData0[w] | (puData1[w] & ~puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
            }
            else 
            {
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] | (puData1[w] & puData2[w])) != puDataR[w] )
                    if ( ((puData0[w] | (puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
            }
            if ( w == p->nWords )
            {
                p->nUsedNode2OrAnd++;
                return Abc_ManResubQuit2( p->pRoot, pObj0, pObj1, pObj2, 1 );
            }
        }
    }
    // check negative unate divisors
1285
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs1UN, pObj0, i )
Alan Mishchenko committed
1286
    {
1287 1288
        puData0 = (unsigned *)pObj0->pData;
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs2UN0, pObj1, k )
Alan Mishchenko committed
1289
        {
1290
            pObj2 = (Abc_Obj_t *)Vec_PtrEntry( p->vDivs2UN1, k );
Alan Mishchenko committed
1291

1292 1293
            puData1 = (unsigned *)Abc_ObjRegular(pObj1)->pData;
            puData2 = (unsigned *)Abc_ObjRegular(pObj2)->pData;
Alan Mishchenko committed
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
            if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) )
            {
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] & (puData1[w] | puData2[w])) != puDataR[w] )
                    if ( ((puData0[w] & (puData1[w] | puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
            }
            else if ( Abc_ObjIsComplement(pObj1) )
            {
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] & (~puData1[w] & puData2[w])) != puDataR[w] )
                    if ( ((puData0[w] & (~puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
            }
            else if ( Abc_ObjIsComplement(pObj2) )
            {
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] & (puData1[w] & ~puData2[w])) != puDataR[w] )
                    if ( ((puData0[w] & (puData1[w] & ~puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
            }
            else 
            {
                for ( w = 0; w < p->nWords; w++ )
//                    if ( (puData0[w] & (puData1[w] & puData2[w])) != puDataR[w] )
                    if ( ((puData0[w] & (puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
            }
            if ( w == p->nWords )
            {
                p->nUsedNode2AndOr++;
                return Abc_ManResubQuit2( p->pRoot, pObj0, pObj1, pObj2, 0 );
            }
        }
    }
    return NULL;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Dec_Graph_t * Abc_ManResubDivs3( Abc_ManRes_t * p, int Required )
{
    Abc_Obj_t * pObj0, * pObj1, * pObj2, * pObj3;
    unsigned * puData0, * puData1, * puData2, * puData3, * puDataR;
Alan Mishchenko committed
1347
    int i, k, w = 0, Flag;
1348
    puDataR = (unsigned *)p->pRoot->pData;
Alan Mishchenko committed
1349
    // check positive unate divisors
1350
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs2UP0, pObj0, i )
Alan Mishchenko committed
1351
    {
1352 1353 1354
        pObj1 = (Abc_Obj_t *)Vec_PtrEntry( p->vDivs2UP1, i );
        puData0 = (unsigned *)Abc_ObjRegular(pObj0)->pData;
        puData1 = (unsigned *)Abc_ObjRegular(pObj1)->pData;
Alan Mishchenko committed
1355 1356
        Flag = (Abc_ObjIsComplement(pObj0) << 3) | (Abc_ObjIsComplement(pObj1) << 2);

1357
        Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs2UP0, pObj2, k, i + 1 )
Alan Mishchenko committed
1358
        {
1359 1360 1361
            pObj3 = (Abc_Obj_t *)Vec_PtrEntry( p->vDivs2UP1, k );
            puData2 = (unsigned *)Abc_ObjRegular(pObj2)->pData;
            puData3 = (unsigned *)Abc_ObjRegular(pObj3)->pData;
Alan Mishchenko committed
1362

1363
            Flag = (Flag & 12) | ((int)Abc_ObjIsComplement(pObj2) << 1) | (int)Abc_ObjIsComplement(pObj3);
Alan Mishchenko committed
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
            assert( Flag < 16 );
            switch( Flag )
            {
            case 0: // 0000
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 1: // 0001
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 2: // 0010
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 3: // 0011
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;

            case 4: // 0100
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] & ~puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] & ~puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 5: // 0101
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] & ~puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] & ~puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 6: // 0110
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] & ~puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] & ~puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 7: // 0111
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] & ~puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] & ~puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;

            case 8: // 1000
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((~puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] )
                    if ( (((~puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 9: // 1001
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((~puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] )
                    if ( (((~puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 10: // 1010
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((~puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] )
                    if ( (((~puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 11: // 1011
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((~puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] )
                    if ( (((~puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;

            case 12: // 1100
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] | puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] | puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
                        break;
                break;
            case 13: // 1101
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] | puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] | puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] )
                        break;
                break;
            case 14: // 1110
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] | puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] | puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] )
                        break;
                break;
            case 15: // 1111
                for ( w = 0; w < p->nWords; w++ )
//                    if ( ((puData0[w] | puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] )
                    if ( (((puData0[w] | puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] )
                        break;
                break;

            }
            if ( w == p->nWords )
            {
                p->nUsedNode3OrAnd++;
                return Abc_ManResubQuit3( p->pRoot, pObj0, pObj1, pObj2, pObj3, 1 );
            }
        }
    }
/*
    // check negative unate divisors
1477
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs2UN0, pObj0, i )
Alan Mishchenko committed
1478 1479 1480 1481 1482 1483
    {
        pObj1 = Vec_PtrEntry( p->vDivs2UN1, i );
        puData0 = Abc_ObjRegular(pObj0)->pData;
        puData1 = Abc_ObjRegular(pObj1)->pData;
        Flag = (Abc_ObjIsComplement(pObj0) << 3) | (Abc_ObjIsComplement(pObj1) << 2);

1484
        Vec_PtrForEachEntryStart( Abc_Obj_t *, p->vDivs2UN0, pObj2, k, i + 1 )
Alan Mishchenko committed
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        {
            pObj3 = Vec_PtrEntry( p->vDivs2UN1, k );
            puData2 = Abc_ObjRegular(pObj2)->pData;
            puData3 = Abc_ObjRegular(pObj3)->pData;

            Flag = (Flag & 12) | (Abc_ObjIsComplement(pObj2) << 1) | Abc_ObjIsComplement(pObj3);
            assert( Flag < 16 );
            switch( Flag )
            {
            case 0: // 0000
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] & puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] )
                        break;
                break;
            case 1: // 0001
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] & puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] )
                        break;
                break;
            case 2: // 0010
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] & puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] )
                        break;
                break;
            case 3: // 0011
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] & puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] )
                        break;
                break;

            case 4: // 0100
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] & ~puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] )
                        break;
                break;
            case 5: // 0101
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] & ~puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] )
                        break;
                break;
            case 6: // 0110
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] & ~puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] )
                        break;
                break;
            case 7: // 0111
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] & ~puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] )
                        break;
                break;

            case 8: // 1000
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((~puData0[w] & puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] )
                        break;
                break;
            case 9: // 1001
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((~puData0[w] & puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] )
                        break;
                break;
            case 10: // 1010
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((~puData0[w] & puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] )
                        break;
                break;
            case 11: // 1011
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((~puData0[w] & puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] )
                        break;
                break;

            case 12: // 1100
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] | puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] )
                        break;
                break;
            case 13: // 1101
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] | puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] )
                        break;
                break;
            case 14: // 1110
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] | puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] )
                        break;
                break;
            case 15: // 1111
                for ( w = 0; w < p->nWords; w++ )
                    if ( ((puData0[w] | puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] )
                        break;
                break;

            }
            if ( w == p->nWords )
            {
                p->nUsedNode3AndOr++;
                return Abc_ManResubQuit3( p->pRoot, pObj0, pObj1, pObj2, pObj3, 0 );
            }
        }
    }
*/
    return NULL;
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_ManResubCleanup( Abc_ManRes_t * p )
{
    Abc_Obj_t * pObj;
    int i;
1605
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs, pObj, i )
Alan Mishchenko committed
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        pObj->pData = NULL;
    Vec_PtrClear( p->vDivs );
    p->pRoot = NULL;
}

/**Function*************************************************************

  Synopsis    [Evaluates resubstution of one cut.]

  Description [Returns the graph to add if any.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
1622
Dec_Graph_t * Abc_ManResubEval( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int nSteps, int fUpdateLevel, int fVerbose )
Alan Mishchenko committed
1623
{
Alan Mishchenko committed
1624
    extern int Abc_NodeMffcInside( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vInside );
Alan Mishchenko committed
1625 1626
    Dec_Graph_t * pGraph;
    int Required;
1627
    abctime clk;
Alan Mishchenko committed
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

    Required = fUpdateLevel? Abc_ObjRequiredLevel(pRoot) : ABC_INFINITY;

    assert( nSteps >= 0 );
    assert( nSteps <= 3 );
    p->pRoot = pRoot;
    p->nLeaves = Vec_PtrSize(vLeaves);
    p->nLastGain = -1;

    // collect the MFFC
1638
clk = Abc_Clock();
Alan Mishchenko committed
1639
    p->nMffc = Abc_NodeMffcInside( pRoot, vLeaves, p->vTemp );
1640
p->timeMffc += Abc_Clock() - clk;
Alan Mishchenko committed
1641 1642 1643
    assert( p->nMffc > 0 );

    // collect the divisor nodes
1644
clk = Abc_Clock();
Alan Mishchenko committed
1645 1646
    if ( !Abc_ManResubCollectDivs( p, pRoot, vLeaves, Required ) )
        return NULL;
1647
    p->timeDiv += Abc_Clock() - clk;
Alan Mishchenko committed
1648 1649 1650 1651 1652

    p->nTotalDivs   += p->nDivs;
    p->nTotalLeaves += p->nLeaves;

    // simulate the nodes
1653
clk = Abc_Clock();
Alan Mishchenko committed
1654
    Abc_ManResubSimulate( p->vDivs, p->nLeaves, p->vSims, p->nLeavesMax, p->nWords );
1655
p->timeSim += Abc_Clock() - clk;
Alan Mishchenko committed
1656

1657
clk = Abc_Clock();
Alan Mishchenko committed
1658
    // consider constants
Alan Mishchenko committed
1659
    if ( (pGraph = Abc_ManResubQuit( p )) )
Alan Mishchenko committed
1660 1661 1662 1663 1664 1665 1666
    {
        p->nUsedNodeC++;
        p->nLastGain = p->nMffc;
        return pGraph;
    }

    // consider equal nodes
Alan Mishchenko committed
1667
    if ( (pGraph = Abc_ManResubDivs0( p )) )
Alan Mishchenko committed
1668
    {
1669
p->timeRes1 += Abc_Clock() - clk;
Alan Mishchenko committed
1670 1671 1672 1673 1674 1675
        p->nUsedNode0++;
        p->nLastGain = p->nMffc;
        return pGraph;
    }
    if ( nSteps == 0 || p->nMffc == 1 )
    {
1676
p->timeRes1 += Abc_Clock() - clk;
Alan Mishchenko committed
1677 1678 1679 1680 1681 1682 1683
        return NULL;
    }

    // get the one level divisors
    Abc_ManResubDivsS( p, Required );

    // consider one node
Alan Mishchenko committed
1684
    if ( (pGraph = Abc_ManResubDivs1( p, Required )) )
Alan Mishchenko committed
1685
    {
1686
p->timeRes1 += Abc_Clock() - clk;
Alan Mishchenko committed
1687 1688 1689
        p->nLastGain = p->nMffc - 1;
        return pGraph;
    }
1690
p->timeRes1 += Abc_Clock() - clk;
Alan Mishchenko committed
1691 1692 1693
    if ( nSteps == 1 || p->nMffc == 2 )
        return NULL;

1694
clk = Abc_Clock();
Alan Mishchenko committed
1695
    // consider triples
Alan Mishchenko committed
1696
    if ( (pGraph = Abc_ManResubDivs12( p, Required )) )
Alan Mishchenko committed
1697
    {
1698
p->timeRes2 += Abc_Clock() - clk;
Alan Mishchenko committed
1699 1700 1701
        p->nLastGain = p->nMffc - 2;
        return pGraph;
    }
1702
p->timeRes2 += Abc_Clock() - clk;
Alan Mishchenko committed
1703 1704

    // get the two level divisors
1705
clk = Abc_Clock();
Alan Mishchenko committed
1706
    Abc_ManResubDivsD( p, Required );
1707
p->timeResD += Abc_Clock() - clk;
Alan Mishchenko committed
1708 1709

    // consider two nodes
1710
clk = Abc_Clock();
Alan Mishchenko committed
1711
    if ( (pGraph = Abc_ManResubDivs2( p, Required )) )
Alan Mishchenko committed
1712
    {
1713
p->timeRes2 += Abc_Clock() - clk;
Alan Mishchenko committed
1714 1715 1716
        p->nLastGain = p->nMffc - 2;
        return pGraph;
    }
1717
p->timeRes2 += Abc_Clock() - clk;
Alan Mishchenko committed
1718 1719 1720 1721
    if ( nSteps == 2 || p->nMffc == 3 )
        return NULL;

    // consider two nodes
1722
clk = Abc_Clock();
Alan Mishchenko committed
1723
    if ( (pGraph = Abc_ManResubDivs3( p, Required )) )
Alan Mishchenko committed
1724
    {
1725
p->timeRes3 += Abc_Clock() - clk;
Alan Mishchenko committed
1726 1727 1728
        p->nLastGain = p->nMffc - 3;
        return pGraph;
    }
1729
p->timeRes3 += Abc_Clock() - clk;
Alan Mishchenko committed
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    if ( nSteps == 3 || p->nLeavesMax == 4 )
        return NULL;
    return NULL;
}




/**Function*************************************************************

  Synopsis    [Computes the volume and checks if the cut is feasible.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_CutVolumeCheck_rec( Abc_Obj_t * pObj )
{
    // quit if the node is visited (or if it is a leaf)
    if ( Abc_NodeIsTravIdCurrent(pObj) )
        return 0;
    Abc_NodeSetTravIdCurrent(pObj);
    // report the error
    if ( Abc_ObjIsCi(pObj) )
        printf( "Abc_CutVolumeCheck() ERROR: The set of nodes is not a cut!\n" );
    // count the number of nodes in the leaves
    return 1 + Abc_CutVolumeCheck_rec( Abc_ObjFanin0(pObj) ) +
        Abc_CutVolumeCheck_rec( Abc_ObjFanin1(pObj) );
}

/**Function*************************************************************

  Synopsis    [Computes the volume and checks if the cut is feasible.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_CutVolumeCheck( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves )
{
    Abc_Obj_t * pObj;
    int i;
    // mark the leaves
    Abc_NtkIncrementTravId( pNode->pNtk );
1780
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
Alan Mishchenko committed
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
        Abc_NodeSetTravIdCurrent( pObj ); 
    // traverse the nodes starting from the given one and count them
    return Abc_CutVolumeCheck_rec( pNode );
}

/**Function*************************************************************

  Synopsis    [Computes the factor cut of the node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_CutFactor_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves )
{
    if ( pObj->fMarkA )
        return;
    if ( Abc_ObjIsCi(pObj) || (Abc_ObjFanoutNum(pObj) > 1 && !Abc_NodeIsMuxControlType(pObj)) )
    {
        Vec_PtrPush( vLeaves, pObj );
        pObj->fMarkA = 1;
        return;
    }
    Abc_CutFactor_rec( Abc_ObjFanin0(pObj), vLeaves );
    Abc_CutFactor_rec( Abc_ObjFanin1(pObj), vLeaves );
}

/**Function*************************************************************

  Synopsis    [Computes the factor cut of the node.]

  Description [Factor-cut is the cut at a node in terms of factor-nodes.
  Factor-nodes are roots of the node trees (MUXes/EXORs are counted as single nodes).
  Factor-cut is unique for the given node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_CutFactor( Abc_Obj_t * pNode )
{
    Vec_Ptr_t * vLeaves;
    Abc_Obj_t * pObj;
    int i;
    assert( !Abc_ObjIsCi(pNode) );
    vLeaves  = Vec_PtrAlloc( 10 );
    Abc_CutFactor_rec( Abc_ObjFanin0(pNode), vLeaves );
    Abc_CutFactor_rec( Abc_ObjFanin1(pNode), vLeaves );
1833
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pObj, i )
Alan Mishchenko committed
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
        pObj->fMarkA = 0;
    return vLeaves;
}

/**Function*************************************************************

  Synopsis    [Cut computation.]

  Description [This cut computation works as follows: 
  It starts with the factor cut at the node. If the factor-cut is large, quit.
  It supports the set of leaves of the cut under construction and labels all nodes
  in the cut under construction, including the leaves.
  It computes the factor-cuts of the leaves and checks if it is easible to add any of them.
  If it is, it randomly chooses one feasible and continues.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_CutFactorLarge( Abc_Obj_t * pNode, int nLeavesMax )
{
    Vec_Ptr_t * vLeaves, * vFactors, * vFact, * vNext;
    Vec_Int_t * vFeasible;
    Abc_Obj_t * pLeaf, * pTemp;
    int i, k, Counter, RandLeaf;
    int BestCut, BestShare;
    assert( Abc_ObjIsNode(pNode) );
    // get one factor-cut
    vLeaves = Abc_CutFactor( pNode );
    if ( Vec_PtrSize(vLeaves) > nLeavesMax )
    {
        Vec_PtrFree(vLeaves);
        return NULL;
    }
    if ( Vec_PtrSize(vLeaves) == nLeavesMax )
        return vLeaves;
    // initialize the factor cuts for the leaves
    vFactors = Vec_PtrAlloc( nLeavesMax );
    Abc_NtkIncrementTravId( pNode->pNtk );
1874
    Vec_PtrForEachEntry( Abc_Obj_t *, vLeaves, pLeaf, i )
Alan Mishchenko committed
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    {
        Abc_NodeSetTravIdCurrent( pLeaf ); 
        if ( Abc_ObjIsCi(pLeaf) )
            Vec_PtrPush( vFactors, NULL );
        else
            Vec_PtrPush( vFactors, Abc_CutFactor(pLeaf) );
    }
    // construct larger factor cuts
    vFeasible = Vec_IntAlloc( nLeavesMax );
    while ( 1 )
    {
Alan Mishchenko committed
1886
        BestCut = -1, BestShare = -1;
Alan Mishchenko committed
1887 1888
        // find the next feasible cut to add
        Vec_IntClear( vFeasible );
1889
        Vec_PtrForEachEntry( Vec_Ptr_t *, vFactors, vFact, i )
Alan Mishchenko committed
1890 1891 1892 1893 1894
        {
            if ( vFact == NULL )
                continue;
            // count the number of unmarked leaves of this factor cut
            Counter = 0;
1895
            Vec_PtrForEachEntry( Abc_Obj_t *, vFact, pTemp, k )
Alan Mishchenko committed
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
                Counter += !Abc_NodeIsTravIdCurrent(pTemp);
            // if the number of new leaves is smaller than the diff, it is feasible
            if ( Counter <= nLeavesMax - Vec_PtrSize(vLeaves) + 1 )
            {
                Vec_IntPush( vFeasible, i );
                if ( BestCut == -1 || BestShare < Vec_PtrSize(vFact) - Counter )
                    BestCut = i, BestShare = Vec_PtrSize(vFact) - Counter;
            }
        }
        // quit if there is no feasible factor cuts
        if ( Vec_IntSize(vFeasible) == 0 )
            break;
        // randomly choose one leaf and get its factor cut
//        RandLeaf = Vec_IntEntry( vFeasible, rand() % Vec_IntSize(vFeasible) );
        // choose the cut that has most sharing with the other cuts
        RandLeaf = BestCut;

1913 1914
        pLeaf = (Abc_Obj_t *)Vec_PtrEntry( vLeaves, RandLeaf );
        vNext = (Vec_Ptr_t *)Vec_PtrEntry( vFactors, RandLeaf );
Alan Mishchenko committed
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
        // unmark this leaf
        Abc_NodeSetTravIdPrevious( pLeaf ); 
        // remove this cut from the leaves and factor cuts
        for ( i = RandLeaf; i < Vec_PtrSize(vLeaves)-1; i++ )
        {
            Vec_PtrWriteEntry( vLeaves,  i, Vec_PtrEntry(vLeaves, i+1) );
            Vec_PtrWriteEntry( vFactors, i, Vec_PtrEntry(vFactors,i+1) );
        }
        Vec_PtrShrink( vLeaves,  Vec_PtrSize(vLeaves) -1 );
        Vec_PtrShrink( vFactors, Vec_PtrSize(vFactors)-1 );
        // add new leaves, compute their factor cuts
1926
        Vec_PtrForEachEntry( Abc_Obj_t *, vNext, pLeaf, i )
Alan Mishchenko committed
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        {
            if ( Abc_NodeIsTravIdCurrent(pLeaf) )
                continue;
            Abc_NodeSetTravIdCurrent( pLeaf ); 
            Vec_PtrPush( vLeaves, pLeaf );
            if ( Abc_ObjIsCi(pLeaf) )
                Vec_PtrPush( vFactors, NULL );
            else
                Vec_PtrPush( vFactors, Abc_CutFactor(pLeaf) );
        }
        Vec_PtrFree( vNext );
        assert( Vec_PtrSize(vLeaves) <= nLeavesMax );
        if ( Vec_PtrSize(vLeaves) == nLeavesMax )
            break;
    }

    // remove temporary storage
1944
    Vec_PtrForEachEntry( Vec_Ptr_t *, vFactors, vFact, i )
Alan Mishchenko committed
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        if ( vFact ) Vec_PtrFree( vFact );
    Vec_PtrFree( vFactors );
    Vec_IntFree( vFeasible );
    return vLeaves;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


1956 1957
ABC_NAMESPACE_IMPL_END