gasp.c 6.27 KB
Newer Older
Alan Mishchenko committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Revision Control Information
 *
 * $Source$
 * $Author$
 * $Revision$
 * $Date$
 *
 */
/*
    module: gasp.c

    The "last_gasp" heuristic computes the reduction of each cube in
    the cover (without replacement) and then performs an expansion of
    these cubes.  The cubes which expand to cover some other cube are
    added to the original cover and irredundant finds a minimal subset.

    If one of the reduced cubes expands to cover some other reduced
    cube, then the new prime thus generated is a candidate for reducing
    the size of the cover.

    super_gasp is a variation on this strategy which extracts a minimal
    subset from the set of all prime implicants which cover all
    maximally reduced cubes.
*/

#include "espresso.h"

29 30 31
ABC_NAMESPACE_IMPL_START


Alan Mishchenko committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

/*
 *  reduce_gasp -- compute the maximal reduction of each cube of F
 *
 *  If a cube does not reduce, it remains prime; otherwise, it is marked
 *  as nonprime.   If the cube is redundant (should NEVER happen here) we
 *  just crap out ...
 *
 *  A cover with all of the cubes of F is returned.  Those that did
 *  reduce are marked "NONPRIME"; those that reduced are marked "PRIME".
 *  The cubes are in the same order as in F.
 */
static pcover reduce_gasp(F, D)
pcover F, D;
{
    pcube p, last, cunder, *FD;
    pcover G;

    G = new_cover(F->count);
    FD = cube2list(F, D);

    /* Reduce cubes of F without replacement */
    foreach_set(F, last, p) {
    cunder = reduce_cube(FD, p);
    if (setp_empty(cunder)) {
        fatal("empty reduction in reduce_gasp, shouldn't happen");
    } else if (setp_equal(cunder, p)) {
        SET(cunder, PRIME);            /* just to make sure */
        G = sf_addset(G, p);        /* it did not reduce ... */
    } else {
        RESET(cunder, PRIME);        /* it reduced ... */
        G = sf_addset(G, cunder);
    }
    if (debug & GASP) {
        printf("REDUCE_GASP: %s reduced to %s\n", pc1(p), pc2(cunder));
    }
    free_cube(cunder);
    }

    free_cubelist(FD);
    return G;
}

/*
 *  expand_gasp -- expand each nonprime cube of F into a prime implicant
 *
 *  The gasp strategy differs in that only those cubes which expand to
 *  cover some other cube are saved; also, all cubes are expanded
 *  regardless of whether they become covered or not.
 */

pcover expand_gasp(F, D, R, Foriginal)
INOUT pcover F;
IN pcover D;
IN pcover R;
IN pcover Foriginal;
{
    int c1index;
    pcover G;

    /* Try to expand each nonprime and noncovered cube */
    G = new_cover(10);
    for(c1index = 0; c1index < F->count; c1index++) {
    expand1_gasp(F, D, R, Foriginal, c1index, &G);
    }
    G = sf_dupl(G);
    G = expand(G, R, /*nonsparse*/ FALSE);    /* Make them prime ! */
    return G;
}



/*
 *  expand1 -- Expand a single cube against the OFF-set, using the gasp strategy
 */
void expand1_gasp(F, D, R, Foriginal, c1index, G)
pcover F;        /* reduced cubes of ON-set */
pcover D;        /* DC-set */
pcover R;        /* OFF-set */
pcover Foriginal;    /* ON-set before reduction (same order as F) */
int c1index;        /* which index of F (or Freduced) to be checked */
pcover *G;
{
    register int c2index;
    register pcube p, last, c2under;
    pcube RAISE, FREESET, temp, *FD, c2essential;
    pcover F1;

    if (debug & EXPAND1) {
    printf("\nEXPAND1_GASP:    \t%s\n", pc1(GETSET(F, c1index)));
    }

    RAISE = new_cube();
    FREESET = new_cube();
    temp = new_cube();

    /* Initialize the OFF-set */
    R->active_count = R->count;
    foreach_set(R, last, p) {
    SET(p, ACTIVE);
    }
    /* Initialize the reduced ON-set, all nonprime cubes become active */
    F->active_count = F->count;
    foreachi_set(F, c2index, c2under) {
    if (c1index == c2index || TESTP(c2under, PRIME)) {
        F->active_count--;
        RESET(c2under, ACTIVE);
    } else {
        SET(c2under, ACTIVE);
    }
    }

    /* Initialize the raising and unassigned sets */
    (void) set_copy(RAISE, GETSET(F, c1index));
    (void) set_diff(FREESET, cube.fullset, RAISE);

    /* Determine parts which must be lowered */
    essen_parts(R, F, RAISE, FREESET);

    /* Determine parts which can always be raised */
    essen_raising(R, RAISE, FREESET);

    /* See which, if any, of the reduced cubes we can cover */
    foreachi_set(F, c2index, c2under) {
    if (TESTP(c2under, ACTIVE)) {
        /* See if this cube can be covered by an expansion */
        if (setp_implies(c2under, RAISE) ||
          feasibly_covered(R, c2under, RAISE, temp)) {
        
        /* See if c1under can expanded to cover c2 reduced against
         * (F - c1) u c1under; if so, c2 can definitely be removed !
         */

        /* Copy F and replace c1 with c1under */
        F1 = sf_save(Foriginal);
        (void) set_copy(GETSET(F1, c1index), GETSET(F, c1index));

        /* Reduce c2 against ((F - c1) u c1under) */
        FD = cube2list(F1, D);
        c2essential = reduce_cube(FD, GETSET(F1, c2index));
        free_cubelist(FD);
        sf_free(F1);

        /* See if c2essential is covered by an expansion of c1under */
        if (feasibly_covered(R, c2essential, RAISE, temp)) {
            (void) set_or(temp, RAISE, c2essential);
            RESET(temp, PRIME);        /* cube not prime */
            *G = sf_addset(*G, temp);
        }
        set_free(c2essential);
        }
    }
    }

    free_cube(RAISE);
    free_cube(FREESET);
    free_cube(temp);
}

/* irred_gasp -- Add new primes to F and find an irredundant subset */
pcover irred_gasp(F, D, G)
pcover F, D, G;                 /* G is disposed of */
{
    if (G->count != 0)
    F = irredundant(sf_append(F, G), D);
    else
    free_cover(G);
    return F;
}


/* last_gasp */
pcover last_gasp(F, D, R, cost)
pcover F, D, R;
cost_t *cost;
{
    pcover G, G1;

    EXECUTE(G = reduce_gasp(F, D), GREDUCE_TIME, G, *cost);
    EXECUTE(G1 = expand_gasp(G, D, R, F), GEXPAND_TIME, G1, *cost);
    free_cover(G);
    EXECUTE(F = irred_gasp(F, D, G1), GIRRED_TIME, F, *cost);
    return F;
}


/* super_gasp */
pcover super_gasp(F, D, R, cost)
pcover F, D, R;
cost_t *cost;
{
    pcover G, G1;

    EXECUTE(G = reduce_gasp(F, D), GREDUCE_TIME, G, *cost);
    EXECUTE(G1 = all_primes(G, R), GEXPAND_TIME, G1, *cost);
    free_cover(G);
    EXEC(G = sf_dupl(sf_append(F, G1)), "NEWPRIMES", G);
    EXECUTE(F = irredundant(G, D), IRRED_TIME, F, *cost);
    return F;
}
232 233
ABC_NAMESPACE_IMPL_END