llb2Image.c 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/**CFile****************************************************************

  FileName    [llb2Image.c]

  SystemName  [ABC: Logic synthesis and verification system.]

  PackageName [BDD based reachability.]

  Synopsis    [Computes image using partitioned structure.]

  Author      [Alan Mishchenko]
  
  Affiliation [UC Berkeley]

  Date        [Ver. 1.0. Started - June 20, 2005.]

  Revision    [$Id: llb2Image.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]

***********************************************************************/

#include "llbInt.h"

ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

extern Vec_Ptr_t * Llb_ManCutNodes( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper );
extern Vec_Ptr_t * Llb_ManCutRange( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper );

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Computes supports of the partitions.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Llb_ImgSupports( Aig_Man_t * p, Vec_Ptr_t * vDdMans, Vec_Int_t * vStart, Vec_Int_t * vStop, int fAddPis, int fVerbose )
{
    Vec_Ptr_t * vSupps;
    Vec_Int_t * vOne;
    Aig_Obj_t * pObj;
    DdManager * dd;
    DdNode * bSupp, * bTemp;
    int i, Entry, nSize;
    nSize  = Cudd_ReadSize( (DdManager *)Vec_PtrEntry( vDdMans, 0 ) );
    vSupps = Vec_PtrAlloc( 100 );
    // create initial
    vOne = Vec_IntStart( nSize );
    Vec_IntForEachEntry( vStart, Entry, i )
        Vec_IntWriteEntry( vOne, Entry, 1 );
    Vec_PtrPush( vSupps, vOne );
    // create intermediate 
    Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i )
    {
        vOne  = Vec_IntStart( nSize );
        bSupp = Cudd_Support( dd, dd->bFunc );  Cudd_Ref( bSupp );
        for ( bTemp = bSupp; bTemp != Cudd_ReadOne(dd); bTemp = cuddT(bTemp) )
            Vec_IntWriteEntry( vOne, bTemp->index, 1 );
        Cudd_RecursiveDeref( dd, bSupp );
        Vec_PtrPush( vSupps, vOne );
    }
    // create final
    vOne = Vec_IntStart( nSize );
    Vec_IntForEachEntry( vStop, Entry, i )
        Vec_IntWriteEntry( vOne, Entry, 1 );
    if ( fAddPis )
        Saig_ManForEachPi( p, pObj, i )
            Vec_IntWriteEntry( vOne, Aig_ObjId(pObj), 1 );
    Vec_PtrPush( vSupps, vOne );

    // print supports
    assert( nSize == Aig_ManObjNumMax(p) );
    if ( fVerbose )
    Aig_ManForEachObj( p, pObj, i )
    {
        int k, Counter = 0;
        Vec_PtrForEachEntry( Vec_Int_t *, vSupps, vOne, k )
            Counter += Vec_IntEntry(vOne, i);
        if ( Counter == 0 ) 
            continue;
        printf( "Obj = %4d : ", i );
        if ( Saig_ObjIsPi(p,pObj) )
            printf( "pi  " );
        else if ( Saig_ObjIsLo(p,pObj) )
            printf( "lo  " );
        else if ( Saig_ObjIsLi(p,pObj) )
            printf( "li  " );
        else if ( Aig_ObjIsNode(pObj) )
            printf( "and " );
        Vec_PtrForEachEntry( Vec_Int_t *, vSupps, vOne, k )
            printf( "%d", Vec_IntEntry(vOne, i) );
        printf( "\n" );
    }
    return vSupps;
}

/**Function*************************************************************

  Synopsis    [Computes quantification schedule.]

  Description [Input array contains supports: 0=starting, ... intermediate...
  N-1=final. Output arrays contain immediately quantifiable vars (vQuant0)
  and vars that should be quantified after conjunction (vQuant1).]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_ImgSchedule( Vec_Ptr_t * vSupps, Vec_Ptr_t ** pvQuant0, Vec_Ptr_t ** pvQuant1, int fVerbose )
{
    Vec_Int_t * vOne;
124
    int nVarsAll, Counter, iSupp = -1, Entry, i, k;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    // start quantification arrays
    *pvQuant0 = Vec_PtrAlloc( Vec_PtrSize(vSupps) );
    *pvQuant1 = Vec_PtrAlloc( Vec_PtrSize(vSupps) );
    Vec_PtrForEachEntry( Vec_Int_t *, vSupps, vOne, k )
    {
        Vec_PtrPush( *pvQuant0, Vec_IntAlloc(16) );
        Vec_PtrPush( *pvQuant1, Vec_IntAlloc(16) );
    }
    // count how many times each var appears
    nVarsAll = Vec_IntSize( (Vec_Int_t *)Vec_PtrEntry(vSupps, 0) );
    for ( i = 0; i < nVarsAll; i++ )
    {
        Counter = 0;
        Vec_PtrForEachEntry( Vec_Int_t *, vSupps, vOne, k )
            if ( Vec_IntEntry(vOne, i) )
            {
                iSupp = k;
                Counter++;
            }
        if ( Counter == 0 )
            continue;
        if ( Counter == 1 )
            Vec_IntPush( (Vec_Int_t *)Vec_PtrEntry(*pvQuant0, iSupp), i );
        else // if ( Counter > 1 )
            Vec_IntPush( (Vec_Int_t *)Vec_PtrEntry(*pvQuant1, iSupp), i );
    }

    if ( fVerbose )
    for ( i = 0; i < Vec_PtrSize(vSupps); i++ )
    {
        printf( "%2d : Quant0 = ", i );
        Vec_IntForEachEntry( (Vec_Int_t *)Vec_PtrEntry(*pvQuant0, i), Entry, k )
            printf( "%d ", Entry );
        printf( "\n" );
    }

    if ( fVerbose )
    for ( i = 0; i < Vec_PtrSize(vSupps); i++ )
    {
        printf( "%2d : Quant1 = ", i );
        Vec_IntForEachEntry( (Vec_Int_t *)Vec_PtrEntry(*pvQuant1, i), Entry, k )
            printf( "%d ", Entry );
        printf( "\n" );
    }
}

/**Function*************************************************************

  Synopsis    [Computes one partition in a separate BDD manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
182
DdManager * Llb_ImgPartition( Aig_Man_t * p, Vec_Ptr_t * vLower, Vec_Ptr_t * vUpper, clock_t TimeTarget )
183 184 185 186 187 188 189 190 191
{
    Vec_Ptr_t * vNodes, * vRange;
    Aig_Obj_t * pObj;
    DdManager * dd;
    DdNode * bBdd0, * bBdd1, * bProd, * bRes, * bTemp;
    int i;

    dd = Cudd_Init( Aig_ManObjNumMax(p), 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
    Cudd_AutodynEnable( dd,  CUDD_REORDER_SYMM_SIFT );
192
    dd->TimeStop = TimeTarget;
193 194 195 196 197 198 199 200 201

    Vec_PtrForEachEntry( Aig_Obj_t *, vLower, pObj, i )
        pObj->pData = Cudd_bddIthVar( dd, Aig_ObjId(pObj) );

    vNodes = Llb_ManCutNodes( p, vLower, vUpper );
    Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i )
    {
        bBdd0 = Cudd_NotCond( (DdNode *)Aig_ObjFanin0(pObj)->pData, Aig_ObjFaninC0(pObj) );
        bBdd1 = Cudd_NotCond( (DdNode *)Aig_ObjFanin1(pObj)->pData, Aig_ObjFaninC1(pObj) );
202
//        pObj->pData = Cudd_bddAnd( dd, bBdd0, bBdd1 );   Cudd_Ref( (DdNode *)pObj->pData );
203 204
//        pObj->pData = Extra_bddAndTime( dd, bBdd0, bBdd1, TimeTarget );  
        pObj->pData = Cudd_bddAnd( dd, bBdd0, bBdd1 );  
205 206 207 208 209 210 211
        if ( pObj->pData == NULL )
        {
            Cudd_Quit( dd );
            Vec_PtrFree( vNodes );
            return NULL;
        }
        Cudd_Ref( (DdNode *)pObj->pData );
212 213 214 215 216 217 218 219
    }

    vRange = Llb_ManCutRange( p, vLower, vUpper );
    bRes   = Cudd_ReadOne(dd);   Cudd_Ref( bRes );
    Vec_PtrForEachEntry( Aig_Obj_t *, vRange, pObj, i )
    {
        assert( Aig_ObjIsNode(pObj) );
        bProd = Cudd_bddXnor( dd, Cudd_bddIthVar(dd, Aig_ObjId(pObj)), (DdNode *)pObj->pData );   Cudd_Ref( bProd );
220
//        bRes  = Cudd_bddAnd( dd, bTemp = bRes, bProd ); Cudd_Ref( bRes );
221 222
//        bRes  = Extra_bddAndTime( dd, bTemp = bRes, bProd, TimeTarget );  
        bRes  = Cudd_bddAnd( dd, bTemp = bRes, bProd );  
223 224 225 226 227 228 229 230
        if ( bRes == NULL )
        {
            Cudd_Quit( dd );
            Vec_PtrFree( vRange );
            Vec_PtrFree( vNodes );
            return NULL;
        }        
        Cudd_Ref( bRes );
231 232 233 234 235 236 237 238 239 240 241 242
        Cudd_RecursiveDeref( dd, bTemp );
        Cudd_RecursiveDeref( dd, bProd );
    }
    Vec_PtrForEachEntry( Aig_Obj_t *, vNodes, pObj, i )
        Cudd_RecursiveDeref( dd, (DdNode *)pObj->pData );

    Vec_PtrFree( vRange );
    Vec_PtrFree( vNodes );
    Cudd_AutodynDisable( dd );
//    Cudd_RecursiveDeref( dd, bRes );
//    Extra_StopManager( dd );
    dd->bFunc = bRes;
243
    dd->TimeStop = 0;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    return dd;
}

/**Function*************************************************************

  Synopsis    [Derives positive cube composed of nodes IDs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Llb_ImgComputeCube( Aig_Man_t * pAig, Vec_Int_t * vNodeIds, DdManager * dd )
{
    DdNode * bProd, * bTemp;
    Aig_Obj_t * pObj;
262 263
    int i;
    clock_t TimeStop;
264
    TimeStop = dd->TimeStop; dd->TimeStop = 0;
265
    bProd = Cudd_ReadOne(dd);   Cudd_Ref( bProd );
266
    Aig_ManForEachObjVec( vNodeIds, pAig, pObj, i )
267 268 269 270 271
    {
        bProd  = Cudd_bddAnd( dd, bTemp = bProd, Cudd_bddIthVar(dd, Aig_ObjId(pObj)) ); Cudd_Ref( bProd );
        Cudd_RecursiveDeref( dd, bTemp );
    }
    Cudd_Deref( bProd );
272
    dd->TimeStop = TimeStop;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    return bProd;
} 

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_ImgQuantifyFirst( Aig_Man_t * pAig, Vec_Ptr_t * vDdMans, Vec_Ptr_t * vQuant0, int fVerbose )
{
    DdManager * dd;
    DdNode * bProd, * bRes, * bTemp;
291 292
    int i;
    clock_t clk = clock();
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i )
    {
        // remember unquantified ones
        assert( dd->bFunc2 == NULL );
        dd->bFunc2 = dd->bFunc;   Cudd_Ref( dd->bFunc2 );

        Cudd_AutodynEnable( dd, CUDD_REORDER_SYMM_SIFT );

        bRes = dd->bFunc;
        if ( fVerbose )
            Abc_Print( 1, "Part %2d : Init =%5d. ", i, Cudd_DagSize(bRes) );
        bProd = Llb_ImgComputeCube( pAig, (Vec_Int_t *)Vec_PtrEntry(vQuant0, i+1), dd );   Cudd_Ref( bProd );
        bRes  = Cudd_bddExistAbstract( dd, bTemp = bRes, bProd );                          Cudd_Ref( bRes );
        Cudd_RecursiveDeref( dd, bTemp );
        Cudd_RecursiveDeref( dd, bProd );
        dd->bFunc = bRes;

        Cudd_AutodynDisable( dd );

        if ( fVerbose )
            Abc_Print( 1, "Quant =%5d. ", Cudd_DagSize(bRes) );
        Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
        if ( fVerbose ) 
            Abc_Print( 1, "Reo = %5d. ", Cudd_DagSize(bRes) );
        Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
        if ( fVerbose ) 
            Abc_Print( 1, "Reo = %5d.  ", Cudd_DagSize(bRes) );
        if ( fVerbose ) 
            Abc_Print( 1, "Supp = %3d.  ", Cudd_SupportSize(dd, bRes) );
        if ( fVerbose ) 
            Abc_PrintTime( 1, "Time", clock() - clk );

    }
}

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Llb_ImgQuantifyReset( Vec_Ptr_t * vDdMans )
{
    DdManager * dd;
    int i;
    Vec_PtrForEachEntry( DdManager *, vDdMans, dd, i )
    {
        assert( dd->bFunc2 != NULL );
        Cudd_RecursiveDeref( dd, dd->bFunc );
        dd->bFunc = dd->bFunc2;
        dd->bFunc2 = NULL;
    }
}

/**Function*************************************************************

  Synopsis    [Computes image of the initial set of states.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
DdNode * Llb_ImgComputeImage( Aig_Man_t * pAig, Vec_Ptr_t * vDdMans, DdManager * dd, DdNode * bInit, 
    Vec_Ptr_t * vQuant0, Vec_Ptr_t * vQuant1, Vec_Int_t * vDriRefs, 
365
    clock_t TimeTarget, int fBackward, int fReorder, int fVerbose )
366
{
367
//    int fCheckSupport = 0;
368 369
    DdManager * ddPart;
    DdNode * bImage, * bGroup, * bCube, * bTemp;
370 371
    int i;
    clock_t clk, clk0 = clock();
372 373 374 375 376 377 378 379 380 381 382 383 384 385

    bImage = bInit;  Cudd_Ref( bImage );
    if ( fBackward )
    {
        // change polarity
        bCube  = Llb_DriverPhaseCube( pAig, vDriRefs, dd );                Cudd_Ref( bCube );
        bImage = Extra_bddChangePolarity( dd, bTemp = bImage, bCube );     Cudd_Ref( bImage );
        Cudd_RecursiveDeref( dd, bTemp );
        Cudd_RecursiveDeref( dd, bCube );
    }
    else
    {
        // quantify unique vriables
        bCube  = Llb_ImgComputeCube( pAig, (Vec_Int_t *)Vec_PtrEntry(vQuant0, 0), dd ); Cudd_Ref( bCube );
386 387 388 389 390 391 392 393
        bImage = Cudd_bddExistAbstract( dd, bTemp = bImage, bCube );                    
        if ( bImage == NULL )
        {
            Cudd_RecursiveDeref( dd, bTemp );
            Cudd_RecursiveDeref( dd, bCube );
            return NULL;
        }
        Cudd_Ref( bImage );
394 395 396 397 398 399 400 401 402 403
        Cudd_RecursiveDeref( dd, bTemp );
        Cudd_RecursiveDeref( dd, bCube );
    }
    // perform image computation
    Vec_PtrForEachEntry( DdManager *, vDdMans, ddPart, i )
    {
        clk = clock();
if ( fVerbose )
printf( "   %2d : ", i );
        // transfer the BDD from the group manager to the main manager
404 405 406 407
        bGroup = Cudd_bddTransfer( ddPart, dd, ddPart->bFunc );                           
        if ( bGroup == NULL )
            return NULL;
        Cudd_Ref( bGroup );
408 409 410 411
if ( fVerbose )
printf( "Pt0 =%6d. Pt1 =%6d. ", Cudd_DagSize(ddPart->bFunc), Cudd_DagSize(bGroup) );
        // perform partial product
        bCube  = Llb_ImgComputeCube( pAig, (Vec_Int_t *)Vec_PtrEntry(vQuant1, i+1), dd ); Cudd_Ref( bCube );
412
//        bImage = Cudd_bddAndAbstract( dd, bTemp = bImage, bGroup, bCube );                
413 414
//        bImage = Extra_bddAndAbstractTime( dd, bTemp = bImage, bGroup, bCube, TimeTarget );  
        bImage = Cudd_bddAndAbstract( dd, bTemp = bImage, bGroup, bCube );  
415 416 417 418 419 420 421 422 423
        if ( bImage == NULL )
        {
            Cudd_RecursiveDeref( dd, bTemp );
            Cudd_RecursiveDeref( dd, bCube );
            Cudd_RecursiveDeref( dd, bGroup );
            return NULL;
        }
        Cudd_Ref( bImage );

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
if ( fVerbose )
printf( "Im0 =%6d. Im1 =%6d. ", Cudd_DagSize(bTemp), Cudd_DagSize(bImage) );
//printf("\n"); Extra_bddPrintSupport(dd, bImage); printf("\n");
        Cudd_RecursiveDeref( dd, bTemp );
        Cudd_RecursiveDeref( dd, bCube );
        Cudd_RecursiveDeref( dd, bGroup );

//        Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
//        Abc_Print( 1, "Reo =%6d.  ", Cudd_DagSize(bImage) );

if ( fVerbose )
printf( "Supp =%3d. ", Cudd_SupportSize(dd, bImage) );
if ( fVerbose )
Abc_PrintTime( 1, "T", clock() - clk );
    }

    if ( !fBackward )
    {
        // change polarity
        bCube  = Llb_DriverPhaseCube( pAig, vDriRefs, dd );                Cudd_Ref( bCube );
        bImage = Extra_bddChangePolarity( dd, bTemp = bImage, bCube );     Cudd_Ref( bImage );
        Cudd_RecursiveDeref( dd, bTemp );
        Cudd_RecursiveDeref( dd, bCube );
    }
    else
    {
        // quantify unique vriables
        bCube  = Llb_ImgComputeCube( pAig, (Vec_Int_t *)Vec_PtrEntry(vQuant0, 0), dd ); Cudd_Ref( bCube );
        bImage = Cudd_bddExistAbstract( dd, bTemp = bImage, bCube );                    Cudd_Ref( bImage );
        Cudd_RecursiveDeref( dd, bTemp );
        Cudd_RecursiveDeref( dd, bCube );
    }

    if ( fReorder )
    {
    if ( fVerbose )
    Abc_Print( 1, "        Reordering... Before =%5d. ", Cudd_DagSize(bImage) );
    Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
    if ( fVerbose )
    Abc_Print( 1, "After =%5d. ", Cudd_DagSize(bImage) );
//    Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 100 );
//    Abc_Print( 1, "After =%5d.  ", Cudd_DagSize(bImage) );
    if ( fVerbose )
    Abc_PrintTime( 1, "Time", clock() - clk0 );
//    Abc_Print( 1, "\n" );
    }

    Cudd_Deref( bImage );
    return bImage;
}

////////////////////////////////////////////////////////////////////////
///                       END OF FILE                                ///
////////////////////////////////////////////////////////////////////////


ABC_NAMESPACE_IMPL_END